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ON A NEW SUBCLASS OF HARMONIC UNIVALENT

FUNCTIONS DEFINED BY FRACTIONAL CALCULUS

OPERATOR

SAURABH PORWAL AND M.K. AOUF

Abstract. The purpose of the present paper is to establish some results in-
volving coefficient conditions, distortion bounds, extreme points, convolution,

convex combinations and neighborhoods for a new class of harmonic univalent
functions in the open unit disc. We also discuss a class preserving integral op-
erator. Relevant connections of the results presented here with various known
results are briefly indicated.

1. Introduction

A continuous complex-valued function f = u + iv is said to be harmonic in
a simply connected domain D if both u and v are real harmonic in D. In any
simply connected domain we can write f = h + g where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that
|h′(z)| > |g′(z)|, z ∈ D. See Clunie and Sheil-Small [4], (see also [7], [12], [13]).

Denote by SH the class of functions f = h + g that are harmonic univalent
and sense-preserving in the open unit disk U = {z : |z| < 1} for which f(0) =
fz(0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic functions h
and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1)

Note that SH reduces to the class S of normalized analytic univalent functions
if the co-analytic part of its member is zero. For this class the function f(z) may
be exprssed as

f(z) = z +
∞∑
k=2

akz
k. (2)
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A function f of the form (1) is said to be harmonic starlike of order α, (0 ≤ α < 1)
for |z| = r < 1, if

∂

∂θ
(arg f(reiθ)) = Re

{
zh′(z)− zg′(z)

h(z) + g(z)

}
> α.

The class of all harmonic starlike functions of order α is denoted by S∗
H(α) and

extensively studied by Jahangiri [8]. The case α = 0 and α = b1 = 0 were studied
by Silverman and Silvia [17] and Silverman [16], (see also [3]). In [8] Jahangiri
proved that the coefficient condition

∞∑
k=2

k − α

1− α
|ak|+

∞∑
k=1

k + α

1− α
|bk| ≤ 1

is sufficient condition for functions f = h+ g to be harmonic starlike of order α. If
we put α = 0 in above inequalities then we obtain sufficient condition for function
f = h+ g belonging to the class S∗

H of harmonic starlike functions.
Further, we denote by VH the subclass of SH consisting of functions of form

f = h+ g, where

h(z) = z +
∞∑
k=2

|ak|zk, g(z) = (−1)n
∞∑
k=1

|bk|zk, |b1| < 1. (3)

2. Fractional Calculus

Let L(a, b) consists of Lebesgue measurable real or complex valued function f(x)
on [a, b]:

L(a, b) =

{
f : ||f ||1 =

∫ b

a

|f(t)|dt < +∞

}
.

Definition 1 (see [10], page 79). Let f(x) ∈ L(a, b), α ∈ C, Re(α) > 0, then

aI
α
x f(x) = aD

−α
x f(x) = Iαa+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a,

is called the Riemann-Liouville left-sided fractional integral of order α.
Definition 2 (see [10], page 84). The left-sided Riemann-Liouville fractional

derivative of order α ∈ C, Re(α) ≥ 0 of the function f(x) is defined by

(aD
α
xf) (x) =

(
Dα

a+f
)
(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

f(t)

(x− t)α−n+1
dt, n = [Re(α)]+1; x > a,

where [Re(α)] means the integral part of Re(α).
The following definitions of fractional derivatives and fractional integrals are due

to Owa [11] and Srivastava and Owa [18].
Definition 3. The fractional integral of order λ is defined for a function f(z)

of the form (2) by

D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(ξ)

(z − ξ)1−λ
dξ,

where λ > 0, f(z) is an analytic functions in a simply connected region of the z-
plane containing the origin and the multiplicity of (z−ξ)λ−1 is removed by requiring
log(z − ξ) to be real when (z − ξ) > 0.

It is easy to see that the Definition 3 is a particular case of Definition 1 for a = 0.
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Definition 4. The fractional derivative of order λ is defined for a function f(z)
of the form (2) by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ξ)

(z − ξ)λ
dξ,

where 0 ≤ λ < 1, f(z) is an analytic functions in a simply connected region of the
z-plane containing the origin and the multiplicity of (z − ξ)−λ is removed as in
Definition 3 above.

It is easy to see that the Definition 4 is a particular case of Definition 2 for a = 0
and 0 ≤ α < 1.

Very recently, Dixit and Porwal [5] introduce a new fractional derivative operator
for function of the form (2) as follows

Ω0f(z) = f(z)

Ω1f(z) = Γ(1− λ)z1+λD1+λ
z f(z)

.......................

Ωnf(z) = Ω(Ωn−1f(z)).

Thus, we note that

Ωnf(z) = z +

∞∑
k=2

[ϕ(k, λ)]nakz
k, (4)

where

ϕ(k, λ) =
Γ(k + 1)Γ(1− λ)

Γ(k − λ)
.

It is interesting to note that for λ = 0,Ωnf(z) reduces to familiar Salagean
operator introduced by Salagean in [15].

From the motivation of the definition of modified Salagean operator defined by
Jahangiri et al. [9] for function of the form f = h+ g, where h and g are the form
(1) as follows

Dnf(z) = Dnh(z) + (−1)nDng(z).

Now, we define

Ωnf(z) = Ωnh(z) + (−1)nΩng(z)

where

Ωnh(z) = z +
∞∑
k=2

[ϕ(k, λ)]nakz
k

and

Ωng(z) =

∞∑
k=1

[ϕ(k, λ)]nbkz
k.

Now, we let RH(n, β, λ) denote the subclass SH consisting of functions f = h+g
of the form (1) that satisfy the condition

Re

{
Ωnh(z) + (−1)nΩng(z)

z

}
< β, (5)

for some β(1 < β ≤ 2), λ(0 ≤ λ ≤ 1), n ∈ N and z ∈ U .
We further let RH(n, β, λ) denote the subclass of RH(n, β, λ) consisting of func-

tions f = h+ g ∈ SH such that h and g are of the form (3).
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We note that for n = 1, λ = 0 and g ≡ 0 the class RH(n, β, λ) reduces to the
class R(β) studied by Uralegaddi et al. [19], (see also [6]).

In the present paper, we study the coefficient bounds, distortion bounds, extreme
points, convolution condition, convex combinations, neighborhood problems and
discuss a class preserving integral operator.

3. Main Results

First, we give a sufficient coefficient condition for functions in RH(n, β, λ).
Theorem 1. Let f = h+ g be such that h and g are given by (1). Furthermore,
let

∞∑
k=2

[ϕ (k, λ)]
n |ak|+

∞∑
k=1

[ϕ (k, λ)]
n |bk| ≤ β − 1. (6)

Then f is sense-preserving, harmonic univalent in U and f ∈ RH (n, β, λ).
Proof. If z1 ̸= z2, then

∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣ g(z1)−g(z2)
h(z1)−h(z2)

∣∣∣
= 1−

∣∣∣∣∣∣∣∣∣∣

∞∑
k=1

bk(z
k
1 − zk2 )

(z1−z2)+

∞∑
k=2

ak(z
k
1 − zk2 )

∣∣∣∣∣∣∣∣∣∣
> 1−

∞∑
k=1

k|bk|

1−

∞∑
k=2

k|ak|

≥ 1−

∞∑
k=1

[ϕ (k, λ)]
n

β − 1
|bk|

1−

∞∑
k=2

[ϕ (k, λ)]
n

β − 1
|ak|

≥ 0,

which proves univalence.
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Note that f is sense-preserving in U . This is because

|h′(z)| ≥ 1−
∞∑
k=2

k|ak||z|k−1

> 1−
∞∑
k=2

k|ak|

≥ 1−
∞∑
k=2

[ϕ (k, λ)]
n

β − 1
|ak|

≥
∞∑
k=1

[ϕ (k, λ)]
n

β − 1
|bk|

≥
∞∑
k=1

k|bk|

>
∞∑
k=1

k|bk||z|k−1

≥ |g′(z)| .

Now, we show that f ∈ RH (n, β, λ). Using the fact that Re ω < β, if and only
if, |ω − 1| < |ω + 1− 2β|, it suffices to show that∣∣∣∣∣∣∣∣

Ωnh(z) + (−1)nΩng(z)

z
− 1

Ωnh(z) + (−1)nΩng(z)

z
− (2β − 1)

∣∣∣∣∣∣∣∣ < 1, z ∈ U.

We have∣∣∣∣∣∣∣∣
z +

∑∞
k=2 [ϕ (k, λ)]

n
akz

k + (−1)n
∑∞

k=1 [ϕ (k, λ)]
n
bkzk

z
− 1

z +
∑∞

k=2 [ϕ (k, λ)]
n
akz

k + (−1)n
∑∞

k=1 [ϕ (k, λ)]
n
bkzk

z
− (2β − 1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑∞

k=2 [ϕ (k, λ)]
n
akz

k−1 + (−1)n
z

z

∑∞
k=1 [ϕ (k, λ)]

n
bkzk−1

2 (β − 1)−
∑∞

k=2 [ϕ (k, λ)]
n
akzk−1 − (−1)n

z

z

∑∞
k=1 [ϕ (k, λ)]

n
bkzk

∣∣∣∣∣∣∣
≤

∑∞
k=2 [ϕ (k, λ)]

n |ak| |z|k−1
+
∑∞

k=1 [ϕ (k, λ)]
n |bk| |z|k−1

2 (β − 1)−
∑∞

k=2 [ϕ (k, λ)]
n |ak| |z|k−1 −

∑∞
k=1 [ϕ (k, λ)]

n |bk| |z|k−1

≤
∑∞

k=2 [ϕ (k, λ)]
n |ak|+

∑∞
k=1 [ϕ (k, λ)]

n |bk|
2 (β − 1)−

∑∞
k=2 [ϕ (k, λ)]

n |ak| −
∑∞

k=1 [ϕ (k, λ)]
n |bk|

which is bounded above by 1 by using (6) and so the proof is complete.
The harmonic univalent functions of the form

f(z) = z +
∞∑
k=2

β − 1

[ϕ (k, λ)]
nxkz

k +
∞∑
k=1

β − 1

[ϕ (k, λ)]
n ykzk, (7)

where 1 < β ≤ 2, 0 ≤ λ ≤ 1, n ∈ N and
∑∞

k=2 |xk| +
∑∞

k=1 |yk| = 1, show that
the coefficient bound given by (6) is sharp. It is worthy to note that the function
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of the form (7) belongs to the class RH (n, β, λ) for all
∑∞

k=2 |xk|+
∑∞

k=1 |yk| ≤ 1
because coefficient inequality (6) holds.

Theorem 2. Let fn be given by (3). Then fn ∈ RH (n, β, λ) if and only if

∞∑
k=2

[ϕ (k, λ)]
n |ak|+

∞∑
k=1

[ϕ (k, λ)]
n |bk| ≤ β − 1.

Proof. Since RH (n, β, λ) ⊂ RH (n, β, λ), we only need to prove the ”only if”
part of the theorem. To this end, for functions fn of the form (3), we notice that
the condition

Re

{
Ωnh(z) + (−1)nΩng(z)

z

}
< β

is equivalent to

Re

{
1 +

∞∑
k=2

[ϕ (k, λ)]
n
akz

k−1 + (−1)n
z

z

∞∑
k=1

[ϕ (k, λ)]
n
bkzk−1

}

≤ 1 +

∞∑
k=2

[ϕ (k, λ)]
n |ak| |z|k−1

+

∞∑
k=1

[ϕ (k, λ)]
n |bk| |z|k−1

< β, z ∈ U.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the
values of z to be real and let z → 1−, we obtain

∞∑
k=2

[ϕ (k, λ)]
n |ak|+

∞∑
k=1

[ϕ (k, λ)]
n |bk| ≤ β − 1,

which is the required condition.
The harmonic univalent functions of the form

fn(z) = z +

∞∑
k=2

β − 1

[ϕ (k, λ)]
nxkz

k + (−1)n
∞∑
k=1

β − 1

[ϕ (k, λ)]
n ykzk, (8)

where 1 < β ≤ 2, 0 ≤ λ ≤ 1, n ∈ N, xk ≥ 0, yk ≥ 0 and
∑∞

k=2 xk +
∑∞

k=1 yk ≤ 1

belongs to the class RH (n, β, λ).
Theorem 3. If f ∈ RH(n, β, λ), then

|f(z)| ≤ (1 + |b1|)r +
(
1− λ

2

)n

(β − 1− |b1|)r2, |z| = r < 1

and

|f(z)| ≥ (1− |b1|)r −
(
1− λ

2

)n

(β − 1− |b1|)r2, |z| = r < 1.
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Proof. Let f ∈ RH(n, β, λ). Taking the absolute value of f , we have

|f(z)| ≤ (1 + |b1|)r +
∞∑
k=2

(|ak|+ |bk|)rk

≤ (1 + |b1|)r +
∞∑
k=2

(|ak|+ |bk|)r2

≤ (1 + |b1|)r +
(
1−λ
2

)n ∞∑
k=2

(
2

1− λ

)n

(|ak|+ |bk|)r2

≤ (1 + |b1|)r +
(
1−λ
2

)n ∞∑
k=2

[ϕ(k, λ)]n(|ak|+ |bk|)r2

≤ (1 + |b1|)r +
(
1−λ
2

)n
(β − 1− |b1|)r2

and

|f(z)| ≥ (1− |b1|)r −
∞∑
k=2

(|ak|+ |bk|)rk

≥ (1− |b1|)r −
∞∑
k=2

(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(
1−λ
2

)n ∞∑
k=2

(
2

1− λ

)n

(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(
1−λ
2

)n ∞∑
k=2

[ϕ(k, λ)]n(|ak|+ |bk|)r2

≥ (1− |b1|)r −
(
1−λ
2

)n
(β − 1− |b1|)r2.

Theorem 4. Let f ∈ clcoRH(n, β, λ), if and only if

f(z) =
∞∑
k=1

(λkhk(z) + γkgk(z)), (9)

where h1(z) = z

hk(z) = z + β−1
[ϕ(k,λ)]n z

k, (k = 2, 3, ...)

gk(z) = z + (−1)n β−1
[ϕ(k,λ)]n z

k, (k = 1, 2, 3, ...)

and
∞∑
k=1

(λk + γk) = 1, λk ≥ 0 and γk ≥ 0.

In particular the extreme points of RH(n, β, λ) are {hk} and {gk}.
Proof. For functions f of the form (9) we may write

f(z) =

∞∑
k=1

{λkhk(z) + γkgk(z)}

= z +
∞∑
k=2

(
β − 1

[ϕ(k, λ)]n

)
λkz

k + (−1)n
∞∑
k=1

(
β − 1

[ϕ(k, λ)]n

)
γkz

k.
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Then
∞∑
k=2

[ϕ(k, λ)]n

β − 1

(
β − 1

[ϕ(k, λ)]n
λk

)
+

∞∑
k=1

[ϕ(k, λ)]n

β − 1

(
β − 1

[ϕ(k, λ)]n
γk

)

=
∞∑
k=2

λk +
∞∑
k=1

γk

= 1− λ1 ≤ 1,

and so f ∈ clco RH(n, β, λ).
Conversely, suppose that f ∈ clco RH(n, β, λ).
Set

λk =
[ϕ(k, λ)]n

β − 1
|ak|, (k = 2, 3, 4, ...)

and

γk =
[ϕ(k, λ)]n

β − 1
|bk|, (k = 1, 2, 3, ...).

Then note that by Theorem 2,

0 ≤ λk ≤ 1, (k = 2, 3, 4, ...)

and

0 ≤ γk ≤ 1, (k = 1, 2, 3, ...).

We define λ1 = 1 −
∞∑
k=2

λk −
∞∑
k=1

γk and note that by Theorem 2, λ1 ≥ 0.

Consequently, we obtain f(z) =

∞∑
k=1

{λkhk(z) + γkgk(z)} as required.

Theorem 5. RH(n, β, λ) ⊆ S∗
H where n ∈ N, 1 < β ≤ 2, 0 ≤ λ < 1.

Proof. Let f ∈ RH(n, β, λ).
Then by Theorem 2, we have

∞∑
k=2

[ϕ(k, λ)]n

β − 1
|ak|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bk| ≤ 1. (10)

Now
∞∑
k=2

k|ak|+
∞∑
k=1

k|bk|

≤
∞∑
k=2

[ϕ(k, λ)]n

β − 1
|ak|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bk|

≤ 1, (Using (10)).

Thus f ∈ S∗
H .

This completes the proof of the Theorem 5.
For our next theorem, we need to define the convolution of two harmonic func-

tions. For harmonic function of the form

f(z) = z +
∞∑
k=2

|ak|zk + (−1)n
∞∑
k=1

|bk|zk
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and

F (z) = z +
∞∑
k=2

|Ak|zk + (−1)n
∞∑
k=1

|Bk|zk

we define their convolution

(f ∗ F )(z) = f(z) ∗ F (z) = z +
∞∑
k=2

|akAk|zk + (−1)n
∞∑
k=1

|bkBk|zk, (11)

using this definition, we show that the class RH(n, β, λ) is closed under convolution.
Theorem 6. For 1 < β ≤ α ≤ 2, let f ∈ RH(n, β, λ) and F ∈ RH(n, α, λ).

Then (f ∗ F )(z) ∈ RH(n, β, λ) ⊆ RH(n, α, λ).

Proof. Let f(z) = z+
∞∑
k=2

|ak|zk+(−1)n
∞∑
k=1

|bk|zk be in RH(n, β, λ) and F (z) =

z+
∞∑
k=2

|Ak|zk+(−1)n
∞∑
k=1

|Bk|zk be in RH(n, α, λ). Then the convolution (f ∗F )(z)

is given by (11). We wish to show that the coefficients of f ∗F satisfy the required
condition given in Theorem 2. For F (z) ∈ RH(n, α, λ), we note that |Ak| ≤ 1 and
|BK | ≤ 1. Now, for the convolution function (f ∗ F )(z) we have

∞∑
k=2

[ϕ(k, λ)]n

β − 1
|akAk|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bkBk|

≤
∞∑
k=2

[ϕ(k, λ)]n

β − 1
|ak|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bk|

≤ 1, (since f ∈ RH(n, β, λ)).

Therefore (f ∗ F )(z) ∈ RH(n, β, λ) ⊆ RH(n, α, λ).
Theorem 7. The class RH(n, β, λ) is closed under convex combination.
Proof. For i = 1, 2, 3... let fi(z) ∈ RH(n, β, λ) where fi(z) is given by

fi(z) = z +

∞∑
k=2

|aki |zk + (−1)n
∞∑
k=1

|bki |zk.

Then by Theorem 2, we have

∞∑
k=2

[ϕ(k, λ)]n

β − 1
|aki |+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bki | ≤ 1.

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z +
∞∑
k=2

( ∞∑
i=1

ti|aki |

)
zk + (−1)n

∞∑
k=1

( ∞∑
i=1

ti|bki |

)
zk.
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Then by Theorem 2, we have

∞∑
k=2

[ϕ(k, λ)]n

β − 1

( ∞∑
i=1

ti|aki |

)
+

∞∑
k=1

[ϕ(k, λ)]n

β − 1

( ∞∑
i=1

ti|bki |

)

=
∞∑
i=1

ti

( ∞∑
k=2

[ϕ(k, λ)]n

β − 1
|aki |+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bki |

)

≤
∞∑
i=1

ti = 1.

Therefore
∞∑
i=1

tifi(z) ∈ RH(n, β, λ).

The δ-neighborhood of f is the set, (see [2], [14])

Nδ(f) =

{
F : F (z) = z +

∞∑
k=2

|Ak|zk + (−1)n
∞∑

k=1

|Bk|zkand
∞∑

k=1

k(|ak −Ak|+ |bk −Bk| ≤ δ)

}
.

Theorem 8. Let f ∈ RH(n, β, λ) and δ ≤ 2−β. If F ∈ Nδ(f), then F is harmonic
starlike function.

Proof. Let F (z) = z+
∞∑
k=2

|Ak|zk + (−1)n
∞∑
k=1

|Bk|zk belong to Nδ(f). We have

∞∑
k=2

k|Ak|+
∞∑
k=1

k|Bk|

≤
∞∑
k=2

k(|ak −Ak|+ |bk −Bk|) +
∞∑
k=2

k(|ak|+ |bk|) + |b1 −B1|+ |b1|

≤ δ + β − 1

≤ 1.

Hence, F (z) is harmonic starlike function.

4. A Family of Class Preserving Integral Operator

Let f(z) = h(z) + g(z) ∈ SH be given by (1) then F (z) defined by relation

F (z) =
c+ 1

zc

∫ z

0

tc−1h(t)dt+
c+ 1

zc

∫ z

0

tc−1g(t)dt, (c > −1). (12)

Theorem 9. Let f(z) = h(z) + g(z) ∈ SH be given by (3) and f(z) ∈ RH(n, β, λ)
then F (z) be defined by (12) also belong to RH(n, β, λ).

Proof. Let

f(z) = z +
∞∑
k=2

|ak|zk + (−1)n
∞∑
k=1

|bk|zk

be in RH(n, β, λ) then by Theorem 2, we have

∞∑
k=2

[ϕ(k, λ)]n

β − 1
|ak|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bk| ≤ 1. (13)
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By definition of F (z) we have

F (z) = z +
∞∑
k=2

c+ 1

c+ k
|ak|zk + (−1)n

∞∑
k=1

c+ 1

c+ k
|bk|zk.

Now
∞∑
k=2

[ϕ(k, λ)]n

β − 1

(
c+ 1

c+ k
|ak|
)
+

∞∑
k=1

[ϕ(k, λ)]n

β − 1

(
c+ 1

c+ k
|bk|
)

≤
∞∑
k=2

[ϕ(k, λ)]n

β − 1
|ak|+

∞∑
k=1

[ϕ(k, λ)]n

β − 1
|bk|

≤ 1.

Thus F (z) ∈ RH(n, β, λ).
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