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DISCONTINUOUS DYNAMICAL SYSTEMS AND

FRACTIONAL-ORDERS DIFFERENCE EQUATIONS

A. M. A. EL-SAYED, M. E. NASR

Abstract. In this work we are concerned with the definition of discrete dy-

namical systems of the fractional-orders difference equations. Then we use the
discontinuous dynamical systems approach to study some dynamical behavior

of these new dynamical systems.

1. Introduction

Consider the discrete dynamical system of the difference equation

xn = f(xn−1/2), n = 1, 2, 3, · · · . (1)

This difference equation can written as

xn = f(f(xn−1) = fof(xn−1) = f (2)(xn−1) = g(xn−1), n = 1, 2, 3, · · · . (2)

So, the discrete dynamical system of the difference equation (1) is equivalent to the
one of the difference equation (2).
As an example, let f(x) = ρ x (1−x) and consider the discrete dynamical system
of the Logistic map

xn = ρ xn−1/2 (1− xn−1/2), n = 1, 2, 3, · · · and x0 = 0.3 (say). (3)

Then the solution of (3) is given by

xn = f (2n)(xo), n = 1, 2, 3 · · ·

and the chaos and bifurcations of the solution is given in fig1.
Also the difference equation

xn = f(xn−1/3), n = 1, 2, 3, · · · (4)

can written as

xn = f(f(f(xn−1)) = fofof(xn−1) = f (3)(xn−1) = h(xn−1), n = 1, 2, 3, · · · .
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and the discontinuous dynamical system of the difference equation (4) is equivalent
to the one of the difference equation

xn = h(xn−1), n = 1, 2, 3, · · · . (5)

For another example, let f(x) = ρ x (1−x) and consider the discrete dynamical
system of the Logistic map

xn = ρ xn−1/3 (1− xn−1/3), n = 1, 2, 3, · · · and x0 = 0.3 (say). (6)

Then the solution of (6) is given by

xn = f (3n)(xo), n = 1, 2, 3 · · ·
and the chaos and bifurcations of the solution is given in fig 2.

Now, for the discontinuous dynamical system of the fractional-orders difference
equation

xn = f(xn−1/2, xn−1), n = 1, 2, 3, · · · (7)

and

xn = f(xn−1/3, xn−1), n = 1, 2, 3, · · · (8)

we have another situation.
Our aim here is to apply the discontinuous dynamical systems approach, ([2]-[6]) to
study some of the dynamical behavior, chaos and bifurcations, of the two discrete
dynamical systems of the fractional-orders difference equations of the Logistic map

xn = ρ xn−1/2 (1− xn−1), n = 1, 2, 3, · · · (9)

xn = ρ xn−1/3 (1− xn−1), n = 1, 2, 3, · · · . (10)

Firstly, we apply the discontinuous dynamical systems approach for the two discrete
dynamical systems (3) and (6) and obtain the same previous results ( see graph 3
and graph 4). Then we apply this approach to the discrete dynamical systems of
the fractional-orders Logistic map (9) and (10).

2. Discontinuous dynamical systems

Consider the problem of retarded functional equation

x(t) = f(x(t− r)), t ∈ (0, T ], and x(0) = xo (11)

Let t ∈ (0, r], then t− r ∈ (−r, 0] and the solution of (11) is given by

x(t) = xr(t) = f(t, xo), t ∈ (0, r].

For t ∈ (r, 2r], we find that t− r ∈ (0, r] and the solution of (11) is given by

x(t) = x2r(t) = f(xr(t)) = f2(xo), t ∈ (r, 2r].

Repeating the process we can deduce that the solution of the problem (11) is given
by

x(t) = xnr(t) = fn(xo), t ∈ ((n− 1)r, nr],

which is continuous on each subinterval ((k − 1)r, kr), k = 1, 2, ..., n, but

lim
t→kr+

x(k+1)r(t) = fk+1(xo) 6= xkr(t),

which implies that the solution of the problem (11) is discontinuous (sectionally
continuous) on (0, T ] and we have proved the following theorem
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Theorem 1 The solution of the problem of retarded functional equation is dis-
continuous (sectionally continuous) even the function f is continuous.

Now, let f : [0, T ] × Rn → Rn and r1, r2, ..., rn ∈ R+. Then we can give
the following definition
Definition 1 The discontinuous dynamical system is the problem of retarded
functional equation

x(t) = f(t, x(t− r1), x(t− r2), ....., x(t− rn)), t ∈ (0, T ], (12)

x(t) = x0, t ≤ 0 (13)

Example 1 The discontinuous dynamical system corresponding to the Logistic
equation is

x(t) = ρ x(t− r) (1− x(t− r)), t ∈ (0, T ],

x(t) = xo, t ≤ 0.

The corresponding discrete dynamical system is

xn = ρ xn−1 (1− xn−1), n = 1, 2, · · ·N,

x−1 = xo.

Example 2 The discontinuous dynamical system corresponding to the Logistic
equation with two different delays is

x(t) = ρ x(t− r1) (1− x(t− r2)), t ∈ (0, T ],

x(t) = xo, t ≤ 0.

A corresponding discrete dynamical system is

xn = ρ xn−1 (1− xn−2), n = 1, 2, · · ·N,

x−1 = xo.

3. Fractional-orders systems

Let r = 1
2 and consider the discontinuous dynamical system

x(t) = ρ x(t− r) (1− x(t− r)), t ∈ (0, T ] and x(t) = xo, t ≤ 0. (14)

Let t ∈ (0, r], then (t− r) ∈ (−r, 0] and the solution of (14) is given by

xr(t) = ρ xo (1− xo), and xr(r) = ρ xo (1− xo) = xr.

Let t ∈ (r, 2r], then (t− r) ∈ (0, r] and the solution of (14) is given by

x2r(t) = ρ xr (1− xr), and x2r(2r) = ρ xr (1− xr) = x2r,

then

x1 = ρ xr (1− xr) = x2r. (15)

Let t ∈ (2r, 3r], then (t− r) ∈ (r, 2r] and the solution of (14) is given by

x3r(t) = ρ x2r (1− x2r), and x3r(3r) = ρ x2r (1− x2r) = x3r.

Let t ∈ (3r, 4r], then (t− r) ∈ (2r, 3r] and the solution of (14) is given by

x4r(t) = ρ x3r (1− x3r), and x4r(4r) = ρ x3r (1− x3r) = x3r,

then

x2 = ρ x3r (1− x3r). (16)
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Repeating the process we can deduce that the solution of the problem (14) is given
by

xmr(t) = ρ x(m−1)r (1−x(m−1)r, and xmr(mr) = ρ x(m−1)r (1−x(m−1)r) = xmr

Now for the discrete dynamical system (3), the solution is given by

xm/2 = ρ x(m−1)/2 (1− x(m−1)/2), m = 2, 4, 6, · · · (17)

and

xn = ρ x(m−1)/2 (1− x(m−1)/2), n = 1, 2, 3 · · · . (18)

The chaos and bifurcation of this system is given by Figure 3, which is the same as
Figure 1.

By the same way we can obtain the solution of the discrete dynamical system
(6) by

xm/3 = ρ x(m−1)/3 (1− x(m−1)/3), m = 3, 6, 9, · · · (19)

and

xn = ρ x(m−1)/3 (1− x(m−1)/3), n = 1, 2, 3 · · · . (20)

The chaos and bifurcation of this system is given by Figure 4, which is the same as
Figure 3.

3.1. General case. Now for the problems (9) and (10) we have the following.
Let r = 1

2 and consider the discontinuous dynamical system

x(t) = ρ x(t− r) (1− x(t− 1)), t ∈ (0, T ] and x(t) = xo, t ≤ 0. (21)

Let t ∈ (0, r], then (t− r) ∈ (−r, 0] and the solution of (21) is given by

xr(t) = ρ xo (1− xo), and xr(r) = ρ xo (1− xo) = xr.

Let t ∈ (r, 2r], then (t− r) ∈ (0, r] and the solution of (21) is given by

x2r(t) = ρ xr (1− xo), and x2r(2r) = ρ xr (1− xo) = x2r

and

x1 = ρ xr (1− xo). (22)

Let t ∈ (2r, 3r], then (t− r) ∈ (r, 2r] and the solution of (21) is given by

x3r(t) = ρ x2r (1− xr), and x3r(3r) = ρ x2r (1− xr) = x3r.

Let t ∈ (3r, 4r], then (t− r) ∈ (2r, 3r] and the solution of (21) is given by

x4r(t) = ρ x3r (1− x2r), and x4r(4r) = ρ x3r (1− x2r) = x3r.

and

x2 = ρ x3r (1− x2r). (23)

Repeating the process we can deduce that the solution of the problem (21) is given
by

xmr(t) = ρ x(m−1)r (1−x(m−2)r, and xmr(mr) = ρ x(m−1)r (1−x(m−2)r) = xmr.

Now for the discrete dynamical system (9), the solution is given by

xm/2 = ρ x(m−1)/2 (1− x(m−2)/2), m = 2, 4, 6, · · · (24)

and

xn = ρ x(m−1)/2 (1− x(m−2)/2), n = 1, 2, 3 · · · . (25)
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The chaos and bifurcation of this system is given by Figure 5.

By the same way, the solution of the discrete dynamical system (10)is given by

xm/3 = ρ x(m−1)/3 (1− x(m−3)/3), m = 3, 6, 9, · · · (26)

and

xn = ρ x(m−1)/3 (1− x(m−3)/3), n = 1, 2, 3 · · · . (27)

The chaos and bifurcation of this system is given by Figure 6.

4. Equilibrium Points and their stability

The equilibrium points of (9) are the solution of the equation

ρ xeq (1− xeq) = xeq

which are

(xeq)1 = 0,

(xeq)2 = 1− 1

ρ
.

To determine the stability of a fixed point, consider a small perturbation from the
fixed point by letting

xn = xeq + ε0λ
n. (28)

We can find the map for the deviation ε0λ
n by substituting (28) into (9) to obtain

xeq + ε0λ
n = ρ (xeq + ε0λ

n− 1
2 )[1− xeq − ε0λn−1],

which implies that

1 = ρ[(1− xeq)λ−
1
2 − xeq λ−1], (29)

The equilibrium point of (9) is locally stable if all the roots λ of the equation (29)
satisfy |λ| < 1 (see [8]).
Then the equilibrium point xeq = 0 is locally stable if ρ < 1 , while the second
equilibrium point xeq = 1− 1

ρ is locally stable if all the roots λ of the equation,

λ− λ 1
2 + (ρ− 1) = 0, (30)

satisfy |λ| < 1.
Then the equilibrium point xeq = 1− 1

ρ , ρ > 1 is locally stable if 1 < ρ < 2.

By the same way we can obtain the Equilibrium Points and their stability for map
(10).

5. Bifurcation and Chaos

In this section, some numerical simulations results are presented to show that
dynamical behavior for the two discrete dynamical systems (3) and (6) is the same
dynamical behavior for the discontinuous dynamical systems (17) and (19) respec-
tively. Also, we show the dynamical behavior for the two discrete dynamical systems
(9) and (10) by using the discontinuous dynamical systems approach (24) and (26).
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Figure 1: Bifurcation diagram of map (3) with respect to ρ.

Figure 2: Bifurcation diagram of map (6) with respect to ρ.
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Figure 3: Bifurcation diagram of map (17) with respect to ρ.

Figure 4: Bifurcation diagram of map (19) with respect to ρ.
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Figure 5: Bifurcation diagram of map (24) with respect to ρ.

Figure 6: Bifurcation diagram of map (26) with respect to ρ.

6. Conclusions

Here we used the discontinuous dynamical systems approached to study the
chaos and bifurcation of the discrete dynamical systems of fractional orders.
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