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REMARKS ON FRACTIONAL KINETIC DIFFERINTEGRAL

EQUATIONS AND M-SERIES

A. CHOUHAN, S. SARASWAT

Abstract. This paper is devoted to investigate certain generalized fractional
kinetic differintegral equations using Laplace transform technique. Fractional

kinetic differintegral equations involving M-series are also studied and results
are obtained in the form suitable for numerical computation. Several special
cases containing generalized Mittag-Leffler function are discussed. An alterna-
tive method is suggested for solving certain fractional differential equations.

1. Introduction

In last few decades fractional kinetic equations have been extensively used in
describing and solving various problems of applied sciences. In view of the useful-
ness and importance of the kinetic equation in certain physical problems governing
reaction-diffusion in complex systems and anomalous diffusion fractional kinetic
equations are studied by Gloeckle and Nonnenmacher [4], Saichev and Zaslavsky
[10], Saxena et al. [12]-[14]. Recently, in a series of papers Saxena et al. [15]-[18],
Haubold et al. [5] have investigated the solution of certain fractional differinte-
gral equations related to reaction diffusion equations. Chouhan and Saraswat [2]
have studied the solution of a generalized fractional kinetic equation involving the
generalized fractional integral operator.

In the present paper we are investigating certain generalized fractional kinetic
differintegral equations. Several special cases involving Mittag-Leffler function and
M-series are also presented. In section 4 we have consider more generalized frac-
tional kinetic equation and its solution involving M-series and generalized fractional
integral operator operator containing a generalized Mittag-Leffler function in its
kernel.

2. Preliminaries and definitions

Definition 1 Wiman [21] studied the following Mittag-Leffler function of two
parameters
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Eα,β (t)=
∞∑
n=0

1

Γ(αn+β)
tn (t,α, β ∈ C, Re (α)>0) (1)

Prabhakar [9] introduced the more generalized function Eγ
α,β (t) in the form

Eγ
α,β (t)=

∞∑
n=0

(γ)n
Γ (αn+β)

tn

n!
(t,α, β, γ ∈ C, Re (α)>0) (2)

Definition 2 The Riemann – Liouville operators:
The right sided Riemann – Liouville fractional integral operator D−υ

a+ and the
right sided Riemann – Liouville fractional derivative operator Dυ

a+ are defined by
Samko et al., [11] for Re(υ) > 0,

(I
υ
a+f) (t) = (D

−υ
a+f) (t) =

1

Γ (υ)

∫ t

a

(t− x)
υ−1

f(x)dx (3)

and,

(Dυ
a+f) (t) =

(
d

dx

)n

(In−υ
a+ f) (t) (n = [Re (υ)] + 1) (4)

where [x] denotes the greatest integer in the real number x.
Hilfer [6] generalized the Riemann – Liouville fractional derivative operator Dυ

a+

in (4) by introducing a right sided fractional derivative operator of order and type
with respect to x as follows:

(D
υ,µ
a+ f) (t) = I

µ(1−υ)
a+

d

dt
(I

(1−µ)(1−υ)
a+ f) (t) . (5)

Definition 3 Prabhakar [9] studied some properties of the integral operator

(
Eγ

α,β,ω;a+φ
)
(t) =

∫ t

a

(t− x)
β−1

Eγ
α,β (ω(t− x)

α
)φ(x)dx (6)

with α, β, γ, ω ∈ C, Re (α) > 0, Re (β) > 0 containing the function (2) in its
kernel. The fractional integral operator (6) was further investigated by Kilbas et
al. [7].

Definition 4 The Parseval theorem [20] for Laplace transform is defined as

L
[∫ t

0

f (t− x) g (x) dx

]
(s) = L [f (t)] (s)L [g (t)] (s) (7)

Also Prabhakar [9] introduced the Laplace transform formula for the generalized
Mitta-Leffler function Eγ

α,β (t) as

L
[
tβ−1Eγ

α,β (ωt
α)
]
(s) =

sαγ−β

(sα−ω)
γ

(
α, β, ω ∈ C, Re (β) > 0, Re (s) > 0,

∣∣∣ ω
sα

∣∣∣ < 1
)

(8)
Using equations (7) and (8) it can be easily shown that

L
[(

Eγ
α,β,ω;0+φ

)
(t)

]
=

sαγ−β

(sα−ω)
γ φ (s) (9)

where φ (s) = L [φ (t)].
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The Laplace transform of Riemann – Liouville fractional integral operator (D
υ
0+f)(t)

and the Hilfer operator (D
υ,µ
a+ f) (t) are given as [6]:

L
[
(D

υ
0+f

)
(t)] (s) = sυL [f (t)] (s)−

n−1∑
k=0

skDυ−k−1
0+ f (0+), (n− 1 < υ<n) (10)

and,

L
[
(D

υ,µ
a+ f

)
(t)] (s) = sυL [f (t)] (s)− sµ(υ−1)

(
I
(1−µ)(1−υ)
0+ f

)
(0+) , (0 < υ<1) (11)

Definition 5 Sharma and Jain [19] introduced the generalized M-series as the
function defined by means of the power series

α
pM

β

q
(a1, a2, . . . , ap; b1, b2, . . . bq; z) =

α
pM

β

q
(z)= α

pM
β

q

(
(aj)

p
1; (bj)

q
1; z

)
=

∞∑
m=0

(a1)m . . . (ap)m
(b1)m . . . (bq)m

zm

Γ (αm+ β)
(z, α, β ∈ C,R (α) > 0 ) (12)

The M-series yields the following relationship with various classical special func-
tions:

• The Mittag-Leffler function (1) can be obtain from (12) for p = q = 0, we
have

Eα,β (z)=
α
0M

β
0 (− ; −; z) =

∞∑
m=0

1

Γ(αm+ β)
zm (13)

• The generalized Mittag- Leffler function (2), is obtained from (12) for p =
q = 1; a = γ ∈ C; b = 1:

Eγ
α,β (z) =

∞∑
m=0

(γ)m
Γ (αm+ β)

zm

m!
=

∞∑
m=0

(γ)m
(1)m

zm

Γ (αm+ β)
= α

1M
β
1 (γ ; 1; z) (14)

Chouhan and Saraswat [3] established the following result for M-series(
Iα0+

[
tγ−1 β

pM
γ

q

(
ωtβ

)])
(x) = xα+γ−1 β

pM
α+γ

q

(
ωxβ

)
(15)

where, α > 0, β > 0, γ > 0, ω ∈ R.

3. Fractional Kinetic Differintegral Equations

In this section we have investigated the solution of certain fractional kinetic dif-
ferintegral equations using Laplace transform technique and an alternative method
is also suggested in subsection 3.1.

Let N(t) denotes the number density of a given species at time t, N0 = N(0) is
the number density of that species at time t = 0.

Theorem 3.1 If min {Re (α) , Re (υ)} >0, c > 0, and f ∈ L(0,∞), then for the
solution of the fractional kinetic differintegral equation(

Dα
0+N

)
(t)− N0f(t) = −cυ

(
D−υ

0+N
)
(t) , (16)

with the initial condition

Dα−k−1
0+ N0 = bk , (k = 0, 1, 2, . . . , n− 1) (17)

there holds the formula

N (t) = N0(Eα+υ,α,−cυ;0+f)(t) +
n−1∑
k=0

bkt
α−k−1Eα+υ,α−k

[
−cυtα+υ

]
(18)
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where, n = [α] + 1.
Proof. Applying Laplace transform on both side of (16) and using (10), we get

N (s) = N0
sυ

sα+υ + cυ
f (s) +

n−1∑
k=0

sυ+k

sα+υ + cυ
Dα−k−1

0+ N0

making use of (7) and (8), we obtain

N (s) = N0L
[∫ t

0

(t− x)
α−1

Eα+υ,α

(
−cυ(t− x)

α+υ
)
f (x) dx

]

+
n−1∑
k=0

L
[
tα−k−1Eα+υ,α−k

(
−cυtα+υ

)]
Dα−k−1

0+ N0

finally taking Laplace inverse both side, using (17) and by virtue of (6) (for
γ = 1), we arrive at the solution (18) asserted by Theorem 3.1.

Lemma 3.1 (Kilbas et al. [7]). Let α, β, ρ, ω ∈ C, (Re (α) , Re (ρ) , Re (β) > 0) ,then∫ t

0

(t− x)
β−1

Eα,β [ω(t− x)
α
]xρ−1dx = Γ (ρ) t

β+ρ−1
Eα,β+ρ (ωt

α) (19)

If we set f (t) = tρ−1 in (16),then
Corollary 3.1 If min {Re (α) , Re (υ) , Re (ρ)} > 0, c > 0, then for the solution

of the equation (
Dα

0+N
)
(t)− N0t

ρ−1 = −cυ
(
D−υ

0+N
)
(t) (20)

holds the relation

N (t) = N0Γ (ρ) tα+ρ−1Eα+υ,α+ρ

(
−cυtα+υ

)
+

n−1∑
k=0

bkt
α−k−1Eα+υ,α−k

(
−cυtα+υ

)
.

(21)
Lemma 3.2(Kilbas et al. [7]). Let α, β, ρ, ω ∈ C, (Re (α) , Re (ρ) , Re (β) > 0) ,

then∫ t

0

(t− x)
β−1

Eα,β [ω(t− x)
α
]xρ−1Eα,ρ (ωx

α) dx = tβ+ρ−1E2
α,β+ρ (ωt

α) (22)

If we set f (t) = tρ−1Eα+υ,ρ(−cυtα+υ) in (16), then
Corollary 3.2 If min {Re (α) , Re (υ) , Re (ρ)} > 0, c > 0, then for the solution

of the equation(
Dα

0+N
)
(t)− N0t

ρ−1Eα+υ,ρ(−cυtα+υ) = −cυ
(
D−υ

0+N
)
(t) (23)

holds the relation

N (t) = N0t
α+ρ−1E2

α+υ,α+ρ

(
−cυtα+υ

)
+

n−1∑
k=0

bkt
α−k−1Eα+υ,α−k

(
−cυtα+υ

)
. (24)

Lemma 3.3 Let α, µ, υ, ω ∈ C, (Re (α) , Re (υ) , Re (µ) > 0) , then∫ t

0

(t− x)
β−1

Eα,β [ω(t− x)
α
]xρ−1Eγ

α,ρ(ωx
α)dx = tβ+ρ−1Eγ+1

α,β+ρ [ωt
α] (25)

For f (t) = tρ−1Eγ
α+υ,ρ(−cυtα+υ) in (16), then

Corollary 3.3 If min {Re (α) , Re (υ) , Re (ρ)} > 0, c > 0, then for the solution
of the equation(

Dα
0+N

)
(t)− N0t

ρ−1Eγ
α+υ,ρ(−cυtα+υ) = −cυ

(
D−υ

0+N
)
(t) (26)
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holds the relation

N (t) = N0t
α+ρ−1Eγ+1

α+υ,α+ρ

(
−cυtα+υ

)
+

n−1∑
k=0

bkt
α−k−1Eα+υ,α−k

(
−cυtα+υ

)
. (27)

Remark 1. If we put α = 0 and bk = 0, the above corollary give rise to the
solution of generalized fractional kinetic equation as obtained by Saxena et al. ([13],
Theorem 1).

Again if we set α = 0, and bk = 0 in (18), we get the result obtained by Saxena
et al. [18].

Lemma 3.4 Let α, β, ρ, ω ∈ C, (Re (α) , Re (ρ) , Re (β) > 0) , then

Eα,β,ω;0+

[
tρ−1α

pM
ρ

q
(ωtα)

]
= tβ+ρ−1

∞∑
r=0

(ωtα)
r
[
α
pM

αr+β+ρ

q
(ωtα)

]
. (28)

Proof. Using the operator (6) (for γ = 1) and (12), we get

Eα,β,ω;0+

[
tρ−1α

pM
ρ

q
(ωtα)

]
=

∞∑
m=0

(a1)m . . . (ap)m
(b1)m . . . (bq)m

ωm

Γ (αm+ ρ)

∫ t

0

(t− x)
β−1

Eα,β [ω(t− x)
α
]xαm+ρ−1dx

now using (19), (1) and finally by virtue of (12), we obtain (28).
Theorem 3.2 If min {Re (α) , Re (υ)} > 0, c > 0, then for the solution of the

fractional kinetic differintegral equation

(Dα
0+N) (t)− N0t

ρ−1[α+υ
p M

ρ

q

(
−cυtα+υ

)
] = −cυ(D−υ

0+N) (t) . (29)

with the initial condition (17), there holds the formula

N (t) = N0t
α+ρ−1

∞∑
r=0

(
−cυtα+υ

)r
[α+υ

p M
(α+υ)r+α+ρ

q

(
−cυtα+υ

)
]

+
n−1∑
k=0

bkt
α−k−1Eα+υ,α−k

[
−cυtα+υ

]
(30)

where, n = [α] + 1.
Proof. The proof follows from Theorem 3.1, and via Lemma 3.4.
Remark 2. For p = q = 0 in Theorem 3.2 we obtain Corollary 3.2.
Remark 3. For p = q = 1, a1 = γ and b1 = 1 in Theorem 3.2 we obtain

Corollary 3.3.

3.1. An Alternative Method. This is employed by Babenko [1] for solving var-
ious types of fractional integral and differential equations and further described by
Podlubny [11].

Applying fractional integral operator D−α
0+ to the both side of (16) and using the

formula from Samko et al. [11],

D−α
0+ Dα

0+N (t) = N (t)−
n−1∑
k=0

tα−k−1

Γ (α− k)
Dα−k−1

0+ N0 (31)

we have,
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(
1 + cυD

−(α+υ)
0+

)
N (t) = N0D

−α
0+ f (t) +

n−1∑
k=0

tα−k−1

Γ (α− k)
Dα−k−1

0+ N0

using (17) and binomial expansion, we get

N (t) = N0

∞∑
r=0

(−cυ)
r
D

−r(α+υ)−α
0+ f (t) +

n−1∑
k=0

bk

∞∑
r=0

(−cυ)
r
D

−r(α+υ)
0+

tα−k−1

Γ (α− k)

On making use of equation (2.35) from Samko et al. [11], i.e.

D
−r(α+υ)
0+

tα−k−1

Γ (α− k)
=

tα+r(α+υ)−k−1

Γ[r (α+ υ) + (α− k)]

we have,

N (t) = N0

∞∑
r=0

(−cυ)
r
D

−r(α+υ)−α
0+ f (t) +

n−1∑
k=0

bkt
α−k−1

∞∑
r=0

[−cυtα+υ]
r

Γ[r (α+ υ) + (α− k)]

(32)
finally by virtue of (3), (1) and (6) (for γ = 1) we obtained (16).
Moreover, the proof of Theorem 3.2 follows from (32) and (15).

4. Generalized Fractional Kinetic Equation Which Involve An
Integral Operator Containing Generalized Mittag-Leffler

Function In Its Kernel

Theorem 4.1 If min {Re (α) , Re (β) , Re (ρ)} > 0, c > 0, then for the solution
of the fractional kinetic equation

(D
β,υ
0+ N) (t)− N0t

ρ−1 α
pM

ρ

q
(ωtα) = −cβEγ

α,β,ω;0+N (t) (33)

with initial condition, (
I
(1−υ)(1−β)
0+ N

)
(0+) = b0 (34)

there holds the formula

N (t) = b0

∞∑
k=0

(
−cβ

)k
t2βk+β+υ−βυ−1Eγk

α,2βk+β+υ−βυ (ωt
α)

+N0t
β+ρ−1

∞∑
k=0

∞∑
r=0

(
−cβt2β

)k (γk)r
r!

(ωtα)
r
[
α
pM

2βk+αr+β+ρ

q
(ωtα)

]
(35)

Proof. Applying Laplace transform on both side of (33) and using (11) and
(34), we get

N (s) =
b0s

υ(β−1)[
sβ + cβ sαγ−β

(sα−ω)γ

] +N0

∞∑
m=0

(a1)m . . . (ap)m
(b1)m . . . (bq)m

ωm s−αm−ρ[
sβ + cβ sαγ−β

(sα−ω)γ

] (36)

Again by virtue of (8), it is not difficult to see that

sυ(β−1)[
sβ + cβ sαγ−β

(sα−ω)γ

] = L

[ ∞∑
k=0

(
−cβ

)k
t2βk+β+υ−βυ−1Eγk

α,2βk+β+υ−βυ (ωt
α)

]
(s)



JFCA-2013/4 ON FRACTIONAL KINETIC DIFFERINTEGRAL EQUATIONS 145

and,

s−αm−ρ[
sβ + cβ sαγ−β

(sα−ω)γ

] = L

[ ∞∑
k=0

(
−cβ

)k
t2βk+αm+ρ+β−1Eγk

α,2βk+αm+ρ+β (ωt
α)

]
(s)

Upon using these last two results in (36) and applying inverse Laplace transform,
we obtain

N (t) = b0

∞∑
k=0

(
−cβ

)k
t2βk+β+υ−βυ−1Eγk

α,2βk+β+υ−βυ (ωt
α)

+N0

∞∑
k=0

∞∑
m=0

(a1)m . . . (ap)m
(b1)m . . . (bq)m

ωm
(
−cβ

)k
t2βk+αm+ρ+β−1Eγk

α,2βk+αm+ρ+β (ωt
α)

finally expanding Mittag-Leffler function in second term of R.H.S. using (2) and
applying (12) we arrive at the solution (35) asserted by Theorem 4.1.

If we set p = 0 = q, then we get the following particular case of the solution
(35).

Corollary 4.1 If min {Re (α) , Re (β) , Re (ρ)} > 0, c > 0, then for the solution
of the fractional kinetic equation

(D
β,υ
0+ N) (t)− N0t

ρ−1 Eα,ρ (t) (ωt
α) = −cβEγ

α,β,ω;0+N (t) (37)

with initial condition (34), there holds the formula

N (t) = b0

∞∑
k=0

(
−cβ

)k
t2βk+β+υ−βυ−1Eγk

α,2βk+β+υ−βυ (ωt
α)

+N0t
β+ρ−1

∞∑
k=0

(
−cβt2β

)k
Eγk+1

α,2βk+β+ρ (ωt
α). (38)

A number of several special cases of Theorem 4.1 can also be obtained by taking
suitable values for parameters in M-series.
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