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POSITIVE SOLUTIONS AND MONOTONE ITERATIVE

SEQUENCES FOR A CLASS OF HIGHER ORDER BOUNDARY

VALUE PROBLEMS OF FRACTIONAL ORDER

MUHAMED SYAM, MOHAMMED AL-REFAI

Abstract. In this paper, the method of lower and upper solutions is extended
to deal with certain nonlinear fractional boundary value problem of order 3 <

δ < 4. Two well-defined monotone sequences of lower and upper solutions
which converge uniformly to actual solution of the problem are presented. The
convergence of these sequences is verified numerically through one example and
a result on the existence of positive solutions is obtained.

1. Introduction

Boundary value problems with fractional order (BVPF) have many applications
in economics, engineering and physical sciences. They considered as generaliza-
tion of boundary value problems to non-integral order. The importance of such
problems comes from their various applications, and the fact that they are used
to model certain phenomena which can’t be modeled by equations with natural
derivatives, see [10, 21]. For extensive literature and results, we refer the readers
to [13, 18, 23, 24] and the references therein. Since finding exact solutions of such
problems is difficult task, developing efficient numerical and analytical techniques
for fractional differential equations has attracted many authors in recent years.
The basic theory of fractional differential equations involving Riemann-Liouville
fractional derivative with 0 < q < 1, has been investigated in [14]. The crucial task
in the analytical treatment is to prove the existence and uniqueness of solutions.
Such results are obtained in [6, 8, 9, 15, 16, 17] for fractional differential problems
with Riemann-Liouville fractional derivative, and in [7, 26] for problems with Ca-
puto’s fractional derivative. The analysis is based on the Laplace transform, some
fixed point results and the method of lower and upper solutions. A good survey
about the developments of the existence results can be found in [1, 12].

The method of lower and upper solutions has been considered as one of the
effective tools in studying elliptic and parabolic boundary value problems with
natural derivatives. It has been used to study multiplicity of solutions, to explore
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existence and uniqueness of solutions, as well as, to obtain accurate numerical
solutions [2, 3, 25]. For extensive survey we refer the readers to [22]. By means
of lower and upper solutions method and fixed point theorems, Liang et al. [16]
proved the existence of positive solutions of the following nonlinear boundary value
problem of fractional order

Dδ
0+y(x) + f(x, y) = 0, 0 < x < 1, 3 < δ ≤ 4,

y(0) = y′(0) = y′′(0) = y′′(1) = 0,

where f ∈ C([0, 1] × [0,∞), (0,∞)) and Dδ
0+ is the Riemann-Liouville fractional

derivative. Numerical solutions of the above problem in integro-differential form
have been considered by many authors. For instance, the well-known Adomian
decomposition method has been implemented to obtain numerical and analytical
solutions for δ = 4 in [11] and for 3 < δ ≤ 4 in [19]. Also, the efficiency of the
variational iteration method and homotopy perturbation method is proved for such
problems in [20].
Devoted by the above works, the purpose of this article is to extend the maximum
principle and the method of lower and upper solutions for the fourth order fractional
boundary value problem

Dδy(x) + f(x, y, y′′) = 0, 0 < x < 1, 3 < δ < 4, (1)

y(0) = a1, y(1) = b1, (2)

y′′(0)− µ1 y′′′(0) = a2, y
′′(1) + µ2 y′′′(1) = b2, (3)

where f ∈ C([0, 1] × R × R,R), a1, a2, b1, b2 ∈ R, µ1, µ2 ≥ 0, and Dδ is the left
Caputo fractional derivative of order δ. We transform the problem into a system of
two differential equations, one of fractional order and the other one with natural
order. By generalizing the recent results in [4] for a fractional boundary value
problem, and the ones in [22] for elliptic systems with natural order, we obtain two
monotone sequences of pairs of lower and upper solutions that converge uniformly
to actual solutions of the problem. These sequences are used to obtain accurate nu-
merical results of the problem, as well. It is worth to mention that the well known
results for elliptic systems can’t be generalized for fractional systems without the
use of recent results obtained in [5].
We organize this paper as follows. In section 2, we present some preliminary defi-
nitions and lemmas and establish a new positivity result for fractional order deriv-
ative. In Section 3, we present an algorithm to construct the monotone sequences
of lower and upper pairs of solutions. We then prove the convergence of these se-
quences to actual solutions of the problem. In Section 4, we present some numerical
results and finally some concluding remarks are presented in Section 5.

2. Preliminary results

In this section, we present the definition of and some results about the Caputo
fractional derivative. We then define a pair of lower and upper solution of the
problem and present a positivity result which will be used through the text.

Definition 2.1. Let y ∈ (C[0, 1],R) and ζ > 0. The left Riemann-Liouville frac-
tional integral of order ζ is defined by

Iζy(x) =
1

Γ(ζ)

∫ x

0

y(t)

(x − t)1−ζ
dt, x > 0
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where Γ(ζ) =
∫ +∞

0
tζ−1e−tdt is the well-known Euler Gamma function.

Definition 2.2. Let y ∈ (Cn[0, 1],R) and ζ > 0. The left Caputo fractional deriv-
ative of order ζ is defined by

Dζy(x) = In−ζ
(

y(n)(x)
)

=
1

Γ(n− ζ)

x
∫

0

y(n)(t)

(x− t)ζ−n+1
dt,

where n = [ζ] + 1, and [ζ] is the greatest integer number of ζ.

The relations between the Caputo fractional derivative and the Riemann-Liouville
fractional integral are given in the following lemma.

Lemma 2.1. For y(x) ∈ Cn([0, 1],R), ζ > 0 and n = [ζ] + 1, we have

(1) Dζ(Iζy(x)) = y(x), and

(2) Iζ(Dζy(x)) = y(x)−
n−1
∑

k=0

ckx
k, where ck = y(k)(0+)

k! .

For the proof of the above results and more details about the definition and
properties of the fractional derivative, the reader is referred to [13] and [24].
By substituting y1(x) = y(x) and y2(x) = −y′′1 (x), and using the fact that Dδy =
Dδ−2D2y, the problem (1-3) is reduced to

D2y1(x) + y2(x) = 0, 0 < x < 1 (4)

Dαy2(x) + g(x, y1, y2) = 0, 0 < x < 1, 1 < α < 2, (5)

y1(0) = e1, y1(1) = e2, (6)

y2(0)− µ1 y′2(0) = e3, y2(1) + µ2 y′2(1) = e4, (7)

where e1 = a1, e2 = b1, e3 = −a2, e4 = −b2, α = δ−2 and g(x, y1, y2) = −f(x, y1,−y2).
We have the following definition of lower and upper pairs of solutions.

Definition 2.3. A pair of functions (v1, v2) ∈ C2([0, 1],R)2 is called a lower
solution of the problem (4-7), if they satisfy the following inequalities

D2v1(x) + v2(x) ≥ 0, 0 < x < 1 (8)

Dαv2(x) + g(x, v1, v2) ≥ 0, 0 < x < 1, 1 < α < 2, (9)

v1(0) ≤ e1, v1(1) ≤ e2, (10)

and v2(0)− µ1 v′2(0) ≤ e3, v2(1) + µ2 v′2(1) ≤ e4. (11)

Analogously, A pair of functions (w1, w2) ∈ C2([0, 1],R)2 is called an upper solution
of the problem (4-7), if they satisfy the reversed inequalities. In addition, if

v1(x) ≤ w1(x), and v2(x) ≤ w2(x) for all x ∈ [0, 1],

then we say that (v1, v2) and (w1, w2) are ordered pairs of lower and upper solutions.

The following positivity results will be used throughout the text.

Lemma 2.2. (Positivity Lemma) Let z(x) ∈ C2([0, 1],R), r(x) ∈ (C[0, 1],R) and
r(x) < 0, ∀x ∈ [0, 1]. Then z(x) ≥ 0 in [0, 1] provided that one of the following
hold.

(A1) z′′(x) ≤ 0, 0 < x < 1, and z(0), z(1) ≥ 0.
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(A2)

Dαz(x) + r(x)z(x) ≤ 0, 0 < x < 1, 1 < α < 2, (12)

z(0)− ν1z
′(0) ≥ 0, z(1) + ν2z

′(1) ≥ 0,

where ν1, ν2 ≥ 0 and ν1 ≥ 1
α−1 .

Proof. The proof of (A1) is a simple result of the maximum principle. To prove (A2)
assume by contradiction the conclusion is false, then z(x) has absolute minimum
at x0 with z(x0) < 0. Let x0 ∈ (0, 1) then z′(x0) = 0. By Theorem 2.1 of [5] there
holds

Γ(2− α)(Dαz)(x0) ≥ x−α
0

(

(α − 1)(z(0)− z(x0))− x0z
′(0)

)

. (13)

In the following we prove that (Dαz)(x0) ≥ 0. We consider two cases (i) z′(0) ≤ 0
and (ii) z′(0) > 0. If z′(0) ≤ 0, then the result is clear from Eq. (13), since
1 < α < 2, z(0) ≥ z(x0) and 0 < x0 < 1. We shall prove the result for z′(0) > 0.
Since ν1(α− 1) ≥ 1 and applying the boundary condition z(0) ≥ ν1z

′(0), we have

(α− 1)

(

z(0)− z(x0)

)

≥ (α− 1)

(

ν1z
′(0)− z(x0)

)

≥ z′(0)− (α− 1)z(x0).

The above result together with α > 1, x0 ∈ (0, 1), z(0) < 0 and z′(0) > 0 imply

(α−1)(z(0)−z(x0))−x0z
′(0) ≥ z′(0)−(α−1)z(x0)−x0z

′(0) = z′(0)(1−x0)−(α−1)z(x0) ≥ 0,

and (Dαz)(x0) ≥ 0. The above results together with r(x) < 0 imply

Dαz(x0) + r(x0)z(x0) > 0,

which contradicts (12).
If x0 = 0, by simple maximum principle, z′(0+) ≥ 0. Applying the boundary
condition z(0)−ν1z

′(0) ≥ 0, yields z(0) = z(x0) ≥ 0 and a contradiction is reached.
Similarly, if x0 = 1, simple maximum principle implies z′(1−) ≤ 0. The boundary
condition z(1)+ν2z

′(1−) ≥ 0 yields z(1) = z(x0) ≥ 0 and a contradiction is reached.
�

3. Monotone sequences of lower and upper solutions

In this section, we construct two monotone sequences of lower and upper pairs of
solutions to problem (4-7). We then use these sequences to establish an existence
result and to construct solutions for the problem.
Given ordered lower and upper pairs of solutions to problem (4-7), V = (v1, v2)
and W = (w1, w2), respectively, we define the set

[V,W ] =
{

H = (h1, h2) ∈ C2([0, 1],R)2 : v1 ≤ h1 ≤ w1, v2 ≤ h2 ≤ w2

}

.

In the following we assume that the nonlinear term g(x, u1, u2) satisfies the following
conditions on [V,W ].

• (R1) g(x, h1, h2) is nondecreasing with respect to h1, that is,
∂g
∂h1

(x, h1, h2) ≥

0, for all H = (h1, h2) ∈ [V,W ].
• (R2) There exists a positive constant c such that

− c ≤
∂g

∂h2
(x, h1, h2), for all H = (h1, h2) ∈ [V,W ]. (14)

Next, we present the main theorem in this paper which describes how to construct
the monotone sequences of lower and upper pairs of solutions.
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Theorem 3.1. Assume that the conditions (R1) and (R2) hold and consider the

iterative sequence U (k) = (u
(k)
1 , u

(k)
2 ) defined by

−D2u
(k)
1 (x) = u

(k−1)
2 (x), 0 < x < 1 (15)

−Dαu
(k)
2 + c u

(k)
2 = c u

(k−1)
2 + g(x, u

(k−1)
1 , u

(k−1)
2 ), 0 < x < 1, 1 < α < 2,(16)

u
(k)
1 (0) = γ1(k), u

(k)
1 (1) = γ2(k), (17)

u
(k)
2 (0)− µ1Du

(k)
2 (0) = γ3(k), u

(k)
2 (1) + µ2Du

(k)
2 (1) = γ4(k). (18)

Then for µ1 ≥ 1
α−1 we have

(1) If U (0) = V = (v1, v2) and {γi(k), i = 1, 2, 3, 4, k ≥ 0} is increasing

sequence with γi(k) ≤ ei, then U (k) = V (k) = (v
(k)
1 , v

(k)
2 ) is an increasing

sequence of lower pairs of solutions to problem (4-7).
(2) If U (0) = W = (w1, w2) and {γi(k), i = 1, 2, 3, 4, k ≥ 0} is a decreasing

sequence with γi(k) ≥ ei then U (k) = W (k) = (w
(k)
1 , w

(k)
2 ) is a decreasing

sequence of upper pairs of solutions to problem (4-7). Moreover,

(3) v
(k)
1 ≤ w

(k)
1 and v

(k)
2 ≤ w

(k)
2 for all k ≥ 0.

Proof. (1) First, we apply induction arguments to show that U (k) = (v
(k)
1 , v

(k)
2 )

is an increasing sequence. From Equations (15-18) we have

−D2v
(1)
1 (x) = v

(0)
2 (x), (19)

v
(1)
1 (0) = γ1(1), v

(1)
1 (1) = γ2(1),

and

−Dαv
(1)
2 + c v

(1)
2 = cv

(0)
2 + g(x, v

(0)
1 , v

(0)
2 ), (20)

v
(1)
2 (0)− µ1Dv

(1)
2 (0) = γ3(1), v

(1)
2 (1) + µ2Dv

(1)
2 (1) = γ4(1).

Since V = (v
(0)
1 , v

(0)
2 ) is a pair of lower solution, we have

D2v
(0)
1 (x) + v

(0)
2 (x) ≥ 0, (21)

v
(0)
1 (0) = γ1(0) ≤ e1, v

(0)
1 (1) = γ2(0) ≤ e2,

and

Dαv
(0)
2 + g(x, v

(0)
1 , v

(0)
2 ) ≥ 0, (22)

v
(0)
2 (0)− µ1Dv

(0)
2 (0) = γ3(0) ≤ e3, v

(0)
2 (1) + µ2Dv

(0)
2 (1) = γ4(0) ≤ e4.

Let z1 = v
(1)
1 − v

(0)
1 and by substituting Eq. (19) in (21) we have D2z1 ≤ 0,

with z1(0) = γ1(1) − γ1(0) ≥ 0, and z1(1) = γ2(1) − γ2(0) ≥ 0. Applying

the Positivity Lemma we have z1 ≥ 0, and hence v
(1)
1 ≥ v

(0)
1 .

Let z2 = v
(1)
2 − v

(0)
2 and by substituting Eq. (20) in (22), we have Dαz2 −

z2 ≤ 0, with z2(0)−µ1Dz2(0) = γ3(1)−γ3(0) ≥ 0, and z2(1)+µ2Dz2(1) =
γ4(1)−γ4(0) ≥ 0. Applying the Positivity Lemma we have z2 ≥ 0 and hence

v
(1)
2 ≥ v

(0)
2 . Thus the result is proved for k = 1. Assume that the result is

true for k = n, that is;

v
(k)
1 ≥ v

(k−1)
1 and v

(k)
2 ≥ v

(k−1)
2 , for k = 0, 1, · · · , n.
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From Eq.’s (15) and (16), we have

−D2v
(n)
1 = v

(n−1)
2 , (23)

−D2v
(n+1)
1 = v

(n)
2 , (24)

−Dαv
(n)
2 + cv

(n)
2 = cv

(n−1)
2 + g(x, v

(n−1)
1 , v

(n−1)
2 ), (25)

and

−Dαv
(n+1)
2 + cv

(n+1)
2 = cv

(n)
2 + g(x, v

(n)
1 , v

(n)
2 ). (26)

By subtracting Eq. (24) from Eq. (23) and Eq. (26) from Eq. (25) we have

D2(v
(n+1)
1 − v

(n)
1 ) = v

(n−1)
2 − v

(n)
2 ,

Dα(v
(n+1)
2 − v

(n)
2 )− c(v

(n+1)
2 − v

(n)
2 ) = c(v

(n−1)
2 − v

(n)
2 ) + g(x, v

(n−1)
1 , v

(n−1)
2 )

−g(x, v
(n)
1 , v

(n)
2 ).

Let z1(x) = v
(n+1)
1 (x) − v

(n)
1 (x) and z2(x) = v

(n+1)
2 (x) − v

(n)
2 (x). Then,

using the induction hypotheses, the conditions (R1) and (R2), and the
Mean Value theorem, we have

D2z1 = v
(n−1)
2 (x)− v

(n)
2 ≤ 0,

Dαz2 − c z2 = c(v
(n−1)
2 − v

(n)
2 ) + (v

(n−1)
1 − v

(n)
1 )

∂g

∂y1
(ρ1) + (v

(n−1)
2 − v

(n)
2 )

∂g

∂y2
(ρ2),

= (v
(n−1)
2 − v

(n)
2 )

(

c+
∂g

∂y2
(ρ2)

)

+ (v
(n−1)
1 − v

(n)
1 )

∂g

∂y1
(ρ1) ≤ 0,

for some ρ1 = µv
(n−1)
1 + (1 − µ)v

(n)
1 , ρ2 = νv

(n−1)
2 + (1 − ν)v

(n)
2 and

0 ≤ µ, ν ≤ 1. Since the sequence {γi(k), i = 1, 2, 3, 4, k ≥ 0} is increasing
we have

z1(0), z1(1), z2(0)− µ1Dz2(0), z2(1) + µ2Dz2(1) ≥ 0,

and hence by the Positivity Lemma, z1, z2 ≥ 0, and the result is proved for
k = n+ 1.
Second, we prove that (v

(k)
1 , v

(k)
2 ), k ≥ 0 is a pair of lower solution. Since

the sequence {v
(k)
2 } is increasing and −D2v

(k)
1 = v

(k−1)
2 , we have

D2v
(k)
1 + v

(k)
2 = −v

(k−1)
2 (x) + v

(k)
2 (x) ≥ 0,

which together with v
(k)
1 (0) = γ1(k) ≤ e1 and v

(k)
1 (1) = γ2(k) ≤ e2, proves

that v
(k)
1 is a lower solution. From Eq. (16) we have

Dαv
(k)
2 = c(v

(k)
2 − v

(k−1)
2 )− g(x, v

(k−1)
1 , v

(k−1)
2 ).
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Hence, applying the Mean Value theorem and using the fact that the se-

quences {v
(k)
1 } and {v

(k)
2 } are increasing we have

Dαv
(k)
2 + g(x, v

(k)
1 , v

(k)
2 ) = c(v

(k)
2 − v

(k−1)
2 ) + g(x, v

(k)
1 , v

(k)
2 )− g(x, v

(k−1)
1 , v

(k−1)
2 ),

= c(v
(k)
2 − v

(k−1)
2 ) +

∂g

∂y1
(ρ1)(v

(k)
1 − v

(k−1)
1 )

+(v
(k)
2 − v

(k−1)
2 )

∂g

∂y2
(ρ2),

=

(

c+
∂g

∂y2
(ρ2)

)

(v
(k)
2 − v

(k−1)
2 ) +

∂g

∂y1
(ρ1)(v

(k)
1 − v

(k−1)
1 ) ≥ 0,

which together with v
(k)
2 (0) − µ1Dv

(0)
2 (0) = γ3(k) ≤ e3 and v

(k)
2 (1) +

µ2Dv
(0)
2 (1) = γ4(k) ≤ e4, proves that v

(k)
2 is a lower solution. Here

ρ1 = ηv
(k−1)
1 +(1−η)v

(k)
1 and ρ2 = ζv

(k−1)
2 +(1−ζ)v

(k)
2 for some 0 ≤ η, ζ ≤ 1.

(2) The proof is similar to that of (1). First we apply induction arguments to

prove that the two sequences {w
(k)
1 } and {w

(k)
2 } are decreasing. Then, we

use these results to show that (w
(k)
1 , w

(k)
2 ) is a pair of upper solution for

each k ≥ 0.

(3) Since V = (v
(0)
1 , v

(0)
2 ) and W = (w

(0)
1 , w

(0)
2 ) are ordered pairs of lower

and upper solutions, we have v
(0)
1 ≤ w

(0)
1 and v

(0)
2 ≤ w

(0)
2 . Hence, the

result is true for n = 0. Assume the result is true for k = n, that is;

v
(k)
1 ≤ w

(k)
1 and v

(k)
2 ≤ w

(k)
2 , k = 0, 1, · · · , n. We have

−D2v
(n+1)
1 = v

(n)
2 and −D2w

(n+1)
1 = w

(n)
2 .

Hence,

D2(w
(n+1)
1 − v

(n+1)
1 ) = v

(n)
2 − w

(n)
2 ≤ 0,

which together with w
(n+1)
1 (0) ≥ v

(n+1)
1 (0) and w

(n+1)
1 (1) ≥ v

(n+1)
1 (1),

proves that w
(n+1)
1 −v

(n+1)
1 ≥ 0, and hence; the result is proved for k = n+1.

Similarly, since

−Dαv
(n+1)
2 + cv

(n+1)
2 = cv

(n)
2 + g(x, v

(n)
1 , v

(n)
2 ),

and
−Dαw

(n+1)
2 + cw

(n+1)
2 = cw

(n)
2 + g(x,w

(n)
1 , w

(n)
2 ),

we have

Dα(w
(n+1)
2 −v

(n+1)
2 )−c(w

(n+1)
2 −v

(n+1)
2 ) = c(v

(n)
2 −w

(n)
2 )+g(x, v

(n)
1 , v

(n)
2 )−g(x,w

(n)
1 , w

(n)
2 ).

Let z = w
(n+1)
2 − v

(n+1)
2 and using the Mean Value theorem, we get

Dαz − cz = (c+
∂g

∂y1
(ρ1))(v

(n)
2 − w

(n)
2 ) +

∂g

∂y2
(ρ2)(v

(n)
1 − w

(n)
1 ),

where ρ1 = ηv
(n)
1 + (1 − η)v

(n+1)
1 and ρ2 = ζv

(n)
2 + (1 − ζ)v

(n+1)
2 for some

0 ≤ η, ζ ≤ 1. Using the induction hypothesis and the conditions (R1) and
(R2), we have

Dαz − cz ≤ 0,

which together with z(0) − µ1Dz(0) ≥ 0 and z(1) + µ2Dz(1) ≥ 0 proves

that z ≥ 0. Thus w
(n+1)
2 ≥ v

(n+1)
2 and the proof is complete.
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�

We state the convergence results of the two sequences in the following theorem.

Theorem 3.2. Assume that the conditions (R1) and (R2) hold, and consider the

two iterative sequences V (k) = (v
(k)
1 , v

(k)
2 ) and W (k) = (w

(k)
1 , w

(k)
2 ) obtained from

Eq.’s (15-18) with U (0) = V = (v1, v2) and U (0) = W = (w1, w2), respectively.
Then for µ1 ≥ 1

α−1

(1) the two sequences converge uniformly to V ∗ = (v∗1 , v
∗

2) and W ∗ = (w∗

1 , w
∗

2),
respectively with v∗1 ≤ w∗

1 and v∗2 ≤ w∗

2 . Moreover,
(2) for any solution Y = (y1, y2) ∈ [V,W ] of (4-7), we have v∗1 ≤ y1 ≤ w∗

1 and
v∗2 ≤ y2 ≤ w∗

2 , i.e; Y ∈ [V ∗,W ∗].

Proof. (1) The two sequences {v
(k)
1 } and {v

(k)
2 } are increasing and bounded

above by w
(0)
1 and w

(0)
2 , respectively. Hence, they converge to v∗1 and v∗2 ,

respectively. Since they are sequences of continuous functions defined on
a compact set [0, 1], then by Dini’s theorem, the convergence is uniform.

By applying similar arguments, the sequences {w
(k)
1 } and {w

(k)
2 } converge

uniformly to w∗

1 and w∗

2 , respectively. Since v
(k)
1 ≤ w

(k)
1 and v

(k)
2 ≤ w

(k)
2 ,

for each k ≥ 0, then v∗1 ≤ w∗

1 and v∗2 ≤ w∗

2 , which completes the proof.

(2) It is enough to show that v
(k)
1 ≤ y1 ≤ w

(k)
1 and v

(k)
2 ≤ y2 ≤ w

(k)
2 , for each

k ≥ 0. We apply induction arguments to show that v
(k)
1 ≤ y1 and v

(k)
2 ≤ y2.

Similar arguments can be used to prove that y1 ≤ w
(k)
1 and y2 ≤ w

(k)
2 .

Since Y ∈ [V,W ], then the result is true for k = 0. Assume the result is

true for k = n, that is, v
(k)
1 ≤ y1 ≤ w

(k)
1 and v

(k)
2 ≤ y2 ≤ w

(k)
2 , for each

k = 0, 1, · · · , n. We have

−D2v
(n+1)
1 = v

(n)
2 and D2y1 + y2 = 0.

By adding the above equations and using the induction hypothesis, we have

D2(y1 − v
(n+1)
1 ) = v

(n)
2 − y2 ≤ 0,

which together with y1(0) ≥ v
(n+1)
1 (0) and y1(1) ≥ v

(n+1)
1 (1) proves that

y1 ≥ v
(n+1)
1 , and the result is true for k = n+ 1.

By adding Equtions (5) and (26) we have

Dα(y2 − v
(n+1)
2 ) + cv

(n+1)
2 = cv

(n)
2 + g(x, v

(n)
1 , v

(n)
2 )− g(x, y1, y2).

Subtracting c(y2 − v
(n+1)
2 ) from both sides and using the Mean Value the-

orem, the above equation reduces to

Dα(y2 − v
(n+1)
2 )− c(y2 − v

(n+1)
2 ) = −c(y2 − v

(n+1)
2 ) + c(v

(n)
2 − v

(n+1)
2 ) +

∂g

∂y1
(ρ1)(v

(n)
1 − y1) +

∂g

∂y2
(ρ2)(v

(n)
2 − y2)

=

(

c+
∂g

∂y2
(ρ2)

)

(v
(n)
2 − y2) +

∂g

∂y1
(ρ1)(v

(n)
1 − y1),

where ρ1 = ηv
(n)
1 +(1−η)y1 and ρ2 = ζv

(n)
2 +(1−ζ)y2 for some 0 ≤ η, ζ ≤ 1.

Applying (R1), (R2) and the induction hypothesis, we get

Dα(y2 − v
(n+1)
2 )− c(y2 − v

(n+1)
2 ) ≤ 0,
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which together with

y2(0)−µ1Dy2(0) ≥ v
(n+1)
2 (0)−µ1Dv

(n+1)
2 (0) and y2(1)+µ2Dy2(1) ≥ v

(n+1)
2 (1)+µ2Dv

(n+1)
2 (1),

proves that y2 ≥ v
(n+1)
2 , and the result is true for k = n+ 1.

�

The existence of solution of the problem (4-7) is established in the following
theorem.

Theorem 3.3. Assume that the conditions (R1) and (R2) hold, and consider the

two iterative sequences V (k) = (v
(k)
1 , v

(k)
2 ) and W (k) = (w

(k)
1 , w

(k)
2 ) obtained from

Eq.’s (15-18) with U (0) = V = (v1, v2) and U (0) = W = (w1, w2), respectively. If
µ1 ≥ 1

α−1 and γi(k) = ei for i = 1, 2, 3, 4 and k ≥ 0 then the problem (4-7) possesses

two solutions V ∗ = (v∗1 , v
∗

2) and W ∗ = (w∗

1 , w
∗

2) in [V,W ] with v1 ≤ v∗1 ≤ w∗

1 ≤ w1

and v2 ≤ v∗2 ≤ w∗

2 ≤ w2.

Proof. We have

− lim
k→∞

D2v
(k)
1 = lim

k→∞

v
(k−1)
2 , (27)

and

− lim
k→∞

Dαv
(k)
2 + c lim

k→∞

v
(k)
2 = c lim

k→∞

v
(k−1)
2 + lim

k→∞

g(x, v
(k−1)
1 , v

(k−1)
2 ). (28)

Since {v
(k)
1 } and {v

(k)
2 } converge uniformly and using the result in [4], we have

lim
k→∞

D2v
(k)
1 = D2

(

lim
k→∞

v
(k)
1

)

= D2v∗1 ,

and

lim
k→∞

Dαv
(k)
2 = Dα

(

lim
k→∞

v
(k)
2

)

= Dαv∗2 .

The continuity of g(x, y1, y2) yields

lim
k→∞

g(x, v
(k−1)
1 , v

(k−1)
2 ) = g

(

x, lim
k→∞

v
(k−1)
1 , lim

k→∞

v
(k−1)
2

)

= g(x, v∗1 , v
∗

2).

By substituting the above results in Eq.’s (27) and (28), we get

−D2v∗1 = v∗2 , and Dαv∗2 = g(x, v∗1 , v
∗

2).

Since γi(k) = ei, by the continuity of the boundary conditions v∗1 and v∗2 satisfy the
boundary conditions (6-7). Thus, (v∗1 , v

∗

2) is a solution of (4-7).
By applying similar arguments we obtain (w∗

1 , w
∗

2) is also a solution of (4-7). The
inequalities v1 ≤ v∗1 ≤ w∗

1 ≤ w1 and v2 ≤ v∗2 ≤ w∗

2 ≤ w2, are obtained in Theorem
3.2.

�

We refer to the solutions V ∗ = (v∗1 , v
∗

2) and W ∗ = (w∗

1 , w
∗

2) as the maximal and
minimal solutions, respectively.

Remark 1. The question whether these two solutions are the same is left as an
open problem. This question has been solved for elliptic systems with natural order
using the Green’s identity which is still not generalized for fractional derivatives.
However, we leave it to the numerical results as a practical criterion to ensure
the convergence of the two sequences to a common limit and hence the results of
uniqueness of solutions is obtained.
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4. Numerical Results

In this section, we apply the analysis described in the previous sections on one
example to show the validity of our procedure. Based on Theorem 3.1 and 3.2,
we start our procedure by initial ordered lower and upper pairs of solutions V =

(v
(0)
1 , v

(0)
2 ) and W = (w

(0)
1 , w

(0)
2 ), respectively. Then, we generate new lower and

upper pairs of solutions by solving the system of boundary value problems (3.2)-
(3.3) with the following boundary conditions

u
(k)
1 (0) = e1, u

(k)
1 (1) = e2, u

(k)
2 (0)−µ1Du

(k)
2 (0) = e3, and u

(k)
2 (1)+µ2Du

(k)
2 (1) = e4.

Discritize the interval [0, 1] with the nodes xi = ih, h = 1
N for some positive

integer N. Let u
(k,j)
1 = u

(k)
1 (xj), u

(k,j)
2 = u

(k)
2 (xj), and g(k,j) = g(xj , u

(k,j)
1 , u

(k,j)
2 )

for j = 0, 1, ..., N. We approximate Equation (3.2) by the finite difference method
as follows:

−
u
(k,j+1)
1 − 2u

(k,j)
1 + u

(k,j−1)
1

h2
= u

(k−1,j)
2 ,

or

u
(k,j+1)
1 = 2u

(k,j)
1 − u

(k,j−1)
1 − h2u

(k−1,j)
2 , k = 1, 2, ..., N − 1,

u
(k,0)
1 = e1, u

(k,1)
1 = ω1.

To find the unknown ω1, we use the linear shooting method by setting u
(k,N)
1 = e2.

To solve Equation (3.3), we first apply Iα for both sides to get

−u
(k)
2 (x)+e3+(µ1+x)ω2 =

1

Γ(α)

x
∫

0

−cu
(k)
2 (t) + cu

(k−1)
2 (t) + g(t, u

(k−1)
1 (t), u

(k−1)
2 (t))

(x− t)1−α
dt.

We then use the Trapezoidal rule to approximate the integral at xj

−u
(k,j)
2 = −e3 − (µ1 + xj)ω2 +

h

2Γ(α)

[

−cu
(k,0)
2 + u

(k−1,0)
2 + g(k−1,0)

(xj − x0)1−α

]

+
h

Γ(α)

[

j−1
∑

i=1

−cu
(k,i)
2 + u

(k−1,i)
2 + g(k−1,i)

(xj − xi)1−α

]

.

Finally, the unknown ω2 is obtained by setting u
(k,N)
2 + µ2Du

(k,N)
2 = e4 and using

the linear shooting method. To compute Du
(k,N)
2 , we implement the backward

difference formula

Du
(k,N)
2 =

u
(k,N−1)
2 − u

(k,N−2)
2

h
.

Example 1: Consider the fractional boundary value problem

D7/2y(x)− y2(x)e
−y2(x) = 0, 0 < x < 1,

subject to

y(0) = 1, y(1) = 0, y′′(0)− 2y′′′(0) = −1, and y′′(1) = −1.
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Following to our discussion in this paper, we transform the problem to the form

D2y1(x) + y2(x) = 0,

D3/2y2(x) − y2(x)e
y2(x) = 0,

subject to

y1(0) = 1, y1(1) = 0

y2(0)− 2y′2(0) = 1, y2(1) = 1.

An initial ordered lower and upper solutions are

(v
(0)
1 , v

(0)
2 ) = (2x(x− 1),−1), (w

(0)
1 , w

(0)
2 ) = (1− x(x − 1), 1.)

It is easy to see that (v
(0)
1 , v

(0)
2 ) ≤ (w

(0)
1 , w

(0)
2 ), and the function g(x, y1, y2) =

−y2(x)e
y2(x) satisfies the two conditions (R1) and (R2) with c = 2e. The numerical

solutions for v
(k)
1 and w

(k)
1 are plotted in Figure 1 for k = 0, 1, 2, 3. One can see

that the upper and lower solutions become closers to each other and numerically
they almost coincide after only 4 iterations. For sure more accurate bounds can be

obtained by performing more iterations. Also, since v
(1)
1 ≥ 0 a positivity result is

obtained.
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Figure 1. A plot of w(k) and v(k), k = 0, 1, 2, 3, for Example 1.

5. Concluding Remarks

In this paper we have applied comparison arguments to study a class of non-
linear fractional differential equations with fractional order 3 < δ < 4. First, we
have transformed the problem into a system of two boundary value problems, one
with natural order and the other with fractional order. We then have established
an existence result by introducing an increasing sequence of lower solutions that
converges uniformly to a true solution (minimal solution) of the problem. Similar
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result is obtained by introducing a decreasing sequence of upper solutions that con-
verges uniformly to a true solution (maximal solution) of the problem. While the
existence result is established the uniqueness result is left as an open problem, but
has been verified numerically in this paper.

The convergence of the lower and upper sequences to actual solution of the
problem has been verified through an example. In this example, the finite difference
method, the linear shooting method and the Trapezoidal rule have been used to
obtain the numerical results, which indicate the rapid convergence of the lower
and upper solution to the actual solution of the problem. Since our goal in this
example is to show the convergence of the sequences, we used simple methods such
as Trapezoidal rule. However, if one is interested in obtaining more accurate results,
Simpson’s rule can be implemented.
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