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ON A FRACTIONAL DIFFERENTIAL INCLUSION WITH STRIP

BOUNDARY CONDITIONS

AURELIAN CERNEA

Abstract. We study the existence of solutions for fractional differential inclu-

sions of order q ∈ (1, 2] with strip boundary conditions. We establish Filippov
type existence results in the case of nonconvex set-valued maps.

1. Introduction

This paper is concerned with the following boundary value problem

Dq
cx(t) ∈ F (t, x(t)) a.e. ([0, 1]),

x(0) = σ
∫ β

α
x(s)ds, x(1) = η

∫ δ

γ
x(s)ds,

(1.1)

where q ∈ (1, 2], Dq
c is the Caputo fractional derivative, F : I × R → P(R) is a

set-valued map, σ, η ∈ R and 0 < α < β < γ < δ < 1.
Differential equations with fractional order have recently proved to be strong

tools in the modelling of many physical phenomena. As a consequence there was an
intensive development of the theory of differential equations of fractional order ([15],
[17] etc.). The study of fractional differential inclusions was initiated by El-Sayed
and Ibrahim ([12]). Recently several qualitative results for fractional differential
inclusions were obtained in [2], [7]-[10] etc..

The present paper is motivated by a recent paper of Ahmad and Ntouyas ([1])
where existence results for problem (1.1) are established for convex as well as non-
convex set-valued maps. The existence results in [1] are based on a nonlinear
alternative of Leray-Schauder type and Covitz-Nadler contraction principle for set-
valued maps. For the motivation, discussion on strip boundary conditions, examples
and a consistent bibliography on these problems we refer to [1] and the references
therein.

The aim of our paper is to consider the situation when F (., .) has nonconvex
values and to present two new existence results for problem (1.1) which are Filippov
type existence results for this problem.

In our first approach we obtain an existence result by the application of the
set-valued contraction principle in the space of derivatives of solutions instead of
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the space of solutions as in [1]. We note that the idea of applying the set-valued
contraction principle due to Covitz and Nadler ([11]) in the space of derivatives
of the trajectories belongs to Tallos ([14], [18]) and it was already used for similar
results obtained for other classes of differential inclusions ([5]-[7], [9]).

In our second approach we show that Filippov’s ideas ([13]) can be suitably
adapted in order to obtain the existence of solutions for problem (1.1). Recall that
for a differential inclusion defined by a lipschitzian set-valued map with nonconvex
values, Filippov’s theorem ([13]) consists in proving the existence of a solution
starting from a given ”quasi” or ”almost” solution. Moreover, the result provides
an estimate between the ”quasi” solution and the solution obtained.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with

nonempty values in X. T is said to be a λ-contraction if there exists 0 < λ < 1
such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH(., .) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-
Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = infy∈B d(x, y).

The set-valued contraction principle ([11]) states that if X is complete, and
T : X → P(X) is a set valued contraction with nonempty closed values, then T (.)
has a fixed point, i.e. a point z ∈ X such that z ∈ T (z).

We denote by Fix(T ) the set of all fixed points of the set-valued map T . Obvi-
ously, Fix(T ) is closed.

Lemma 2.1. ([16]) Let X be a complete metric space and suppose that T1, T2
are λ-contractions with closed values in X. Then

dH(Fix(T1), F ix(T2)) ≤
1

1− λ
sup
z∈X

d(T1(z), T2(z)).

Let I = [0, 1], we denote by C(I,R) the Banach space of all continuous functions
from I toR with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space

of integrable functions u(.) : I → R endowed with the norm ||u(.)||1 =
∫ 1

0
|u(t)|dt.

Definition 2.2. ([15]) a) The fractional integral of order q > 0 of a Lebesgue
integrable function f(.) : (0,∞) → R is defined by

Iqf(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(q) =

∫∞
0
tq−1e−tdt.

b) The Caputo fractional derivative of order q > 0 of a function f(.) : [0,∞) → R
is defined by

Dq
cf(t) =

1

Γ(n− q)

∫ t

0

(t− s)−q+n−1f (n)(s)ds,
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where n = [q] + 1. It is assumed implicitly that f(.) is n times differentiable whose
n-th derivative is absolutely continuous.

We recall (e.g., [15]) that if q > 0 and f(.) ∈ C(I,R) or f(.) ∈ L∞(I,R) then
(Dq

cI
qf)(t) ≡ f(t).

Lemma 2.3. ([1]) For a given function f(.) ∈ C(I,R) the unique solution of
the boundary value problem

Dq
cx(t) = f(t),

x(0) = σ
∫ β

α
x(s)ds, x(1) = η

∫ δ

γ
x(s)ds

is given by

x(t) = 1
Γ(q)

∫ t

0
(t− s)q−1f(s)ds+ σ

∆ [−(η2 (δ
2 − γ2)− 1)+

t(η(δ − γ)− 1)]
∫ β

α
(
∫ s

0
(s−m)q−1

Γ(q) f(m)dm)ds+ 1
∆ [σ2 (β

2 − α2)−
(σ(β − α)− 1)t][η

∫ δ

γ
(
∫ s

0
(s−m)q−1

Γ(q) f(m)dm)ds−
∫ 1

0
(1−s)q−1

Γ(q) f(s)ds],

(2.1)

where

∆ = [
η

2
(δ2 − γ2)− 1)][σ(β − α)− 1]− [

σ

2
(β2 − α2)][η(δ − γ)− 1] ̸= 0.

Remark 2.4. Denote A(t, s) = (t−s)q−1

Γ(q) χ[0,t](s), B(t, s) = σ
∆Γ(q) [−(η2 (δ

2−γ2)−
1) + t(η(δ − γ)− 1)] 1q [(β − s)qχ[0,β](s)− (α− s)qχ[0,α](s)], C(t, s) =

1
∆Γ(q) [

σ
2 (β

2 −
α2)−(σ(β−α)−1)t]ηq [(δ−s)

qχ[0,δ](s)−(γ−s)qχ[0,γ](s)], D(t, s) = − 1
∆Γ(q) [

σ
2 (β

2−
α2)− (σ(β − α)− 1)t](1− s)q−1 and G(t, s) = A(t, s) +B(t, s) + C(t, s) +D(t, s),
where χS(.) is the characteristic function of the set S. Then the solution x(.) in
Lemma 2.3 may be written as

x(t) =

∫ 1

0

G(t, s)f(s)ds, (2.2)

Moreover, for any t, s ∈ I we have

|G(t, s)| ≤ 1

Γ(q)
+

σ

|∆|Γ(q)
[|η
2
(δ2 − γ2)− 1|+ |η(δ − γ)− 1|]β

q + αq

q
+

1

|∆|Γ(q)
[|σ
2
(β2 − α2)|+ |σ(β − α)− 1|][η

q
(δq + γq) + 1] =:M.

Definition 2.5. A function x(.) ∈ C(I,R) with its Caputo derivative of order
q existing on [0, 1] is a solution of problem (1.1) if there exists a function f(.) ∈
L1(I,R) such that f(t) ∈ F (t, x(t)) a.e. (I) and (2.1) is satisfied.

3. The main results

We study first problem (1.1) with fixed point techniques. In order to do this we
introduce the following hypothesis.

Hypothesis 3.1. (i) F (., .) : I × R → P(R) has nonempty closed values and
for every x ∈ R, F (., x) is measurable.

(ii) There exists L(.) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, .) is L(t)-
Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.

(iii) d(0, F (t, 0)) ≤ L(t) a.e. (I)

Denote L0 :=
∫ 1

0
L(s)ds.
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Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and ML0 < 1. Let

y(.) ∈ C(I,R) be such that y(0) = σ
∫ β

α
y(s)ds, y(1) = η

∫ δ

γ
y(s)ds and there exists

p(.) ∈ L1(I,R+) with d(D
q
cy(t), F (t, y(t))) ≤ p(t) a.e. (I).

Then for every ε > 0 there exists x(.) ∈ C(I,R) a solution of problem (1.1)
satisfying for all t ∈ I

|x(t)− y(t)| ≤ M

1−ML0

∫ 1

0

p(t)dt+ ε.

Proof. For u(.) ∈ L1(I,R) define the following set-valued maps

Mu(t) = F (t,

∫ 1

0

G(t, s)u(s)ds), t ∈ I,

T (u) = {ϕ(.) ∈ L1(I,R); ϕ(t) ∈Mu(t) a.e. (I)}.
It follows from Lemma 2.2 that x(.) is a solution of problem (1.1) if and only if

Dq
cx(.) is a fixed point of T (.).
We shall prove first that T (u) is nonempty and closed for every u ∈ L1(I,R).

The fact that the set valued map Mu(.) is measurable is well known. For example

the map t →
∫ 1

0
G(t, s)u(s)ds can be approximated by step functions and we can

apply Theorem III. 40 in [4]. Since the values of F are closed with the measurable
selection theorem (Theorem III.6 in [4]) we infer that Mu(.) admits a measurable
selection ϕ. One has

|ϕ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t,

∫ 1

0

G(t, s)u(s)ds)) ≤

≤ L(t)(1 +M

∫ 1

0

|u(s)|ds),

which shows that ϕ ∈ L1(I,R) and T (u) is nonempty.
On the other hand, the set T (u) is also closed. Indeed, if ϕn ∈ T (u) and ||ϕn −

ϕ||1 → 0 then we can pass to a subsequence ϕnk
such that ϕnk

(t) → ϕ(t) for a.e.
t ∈ I, and we find that ϕ ∈ T (u).

We show next that T (.) is a contraction on L1(I,R).
Let u, v ∈ L1(I,R) be given and ϕ ∈ T (u). Consider the following set-valued

map

H(t) =Mv(t) ∩ {x ∈ R; |ϕ(t)− x| ≤ L(t)|
∫ 1

0

G(t, s)(u(s)− v(s))ds|}.

From Proposition III.4 in [4], H(.) is measurable and from Hypothesis 3.1 ii)H(.)
has nonempty closed values. Therefore, there exists ψ(.) a measurable selection of
H(.). It follows that ψ ∈ T (v) and according with the definition of the norm we
have

||ϕ− ψ||1 =

∫ 1

0

|ϕ(t)− ψ(t)|dt ≤
∫ 1

0

L(t)(

∫ 1

0

|G(t, s)|.|u(s)− v(s)|ds)dt

=

∫ 1

0

(

∫ 1

0

L(t)|G(t, s)|dt)|u(s)− v(s)|ds ≤ML0||u− v||1.

We deduce that

d(ϕ, T (v)) ≤ML0||u− v||1.
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Replacing u by v we obtain

dH(T (u), T (v)) ≤ML0||u− v||1,

thus T (.) is a contraction on L1(I,R).
We consider next the following set-valued maps

F1(t, x) = F (t, x) + p(t)[−1, 1], (t, x) ∈ I ×R,

M1
u(t) = F1(t,

∫ 1

0

G(t, s)u(s)ds),

T1(u) = {ψ(.) ∈ L1(I,R); ψ(t) ∈M1
u(t) a.e. (I)}, u(.) ∈ L1(I,R).

Obviously, F1(., .) satisfies Hypothesis 3.1.
Repeating the previous step of the proof we obtain that T1 is also a ML0-

contraction on L1(I,R) with closed nonempty values.
We prove next the following estimate

dH(T (u), T1(u)) ≤
∫ 1

0

p(t)dt. (3.1)

Let ϕ ∈ T (u) and define

H1(t) =M1
u(t) ∩ {z ∈ R; |ϕ(t)− z| ≤ p(t)}.

With the same arguments used for the set valued map H(.), we deduce that
H1(.) is measurable with nonempty closed values. Hence let ψ(.) be a measurable
selection of H1(.). It follows that ψ ∈ T1(u) and one has

||ϕ− ψ||1 =

∫ 1

0

|ϕ(t)− ψ(t)|dt ≤
∫ 1

0

p(t).

As above we obtain (3.1).
We apply Lemma 2.1 and we infer that

dH(Fix(T ), F ix(T1)) ≤
1

1−ML0

∫ 1

0

p(t)dt.

Since v(.) = Dq
cy(.) ∈ Fix(T1) it follows that for any ε > 0 there exists u(.) ∈

Fix(T ) such that

||v − u||1 ≤ 1

1−ML0

∫ 1

0

p(t)dt+
ε

M
.

We define x(t) =
∫ 1

0
G(t, s)u(s)ds, t ∈ I and we have

|x(t)− y(t)| ≤
∫ 1

0

|G(t, s)|.|u(s)− v(s)|ds ≤ M

1−ML0

∫ 1

0

p(t)dt+ ε

which completes the proof.

The assumption in Theorem 3.2 is satisfied, in particular, for y(.) = 0 and there-
fore, via Hypothesis 3.1 (iii), with p(.) = L(.). We obtain the following consequence
of Theorem 3.2.

Corollary 3.3. Assume that Hypothesis 3.1 is satisfied and ML0 < 1. Then
for every ε > 0 there exists x(.) a solution of problem (1.1) satisfying for all t ∈ I

|x(t)| ≤ ML0

1−ML0
+ ε. (3.2)
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We present next the main result of this paper.

Theorem 3.4. Assume that Hypothesis 3.1 (i), (ii) is satisfied and ML0 < 1.

Let y(.) ∈ C(I,R) be such that y(0) = σ
∫ β

α
y(s)ds, y(1) = η

∫ δ

γ
y(s)ds and there

exists p(.) ∈ L1(I,R+) with d(D
q
cy(t), F (t, y(t))) ≤ p(t) a.e. (I).

Then there exists x(.) ∈ C(I,R) a solution of problem (1.1) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ M

1−ML0

∫ 1

0

p(t)dt. (3.3)

Proof. The set-valued map t→ F (t, y(t)) is measurable with closed values and

F (t, y(t)) ∩ {Dq
cy(t) + p(t)[−1, 1]} ̸= ∅ a.e. (I).

It follows (e.g., Theorem 1.14.1 in [3]) that there exists a measurable selection
f1(t) ∈ F (t, y(t)) a.e. (I) such that

|f1(t)−Dq
cy(t)| ≤ p(t) a.e. (I) (3.4)

Define x1(t) =
∫ 1

0
G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤M

∫ 1

0

p(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈
L1(I,R), n ≥ 1 with the following properties

xn(t) =

∫ 1

0

G(t, s)fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.6)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.7)

If this construction is realized then from (3.4)-(3.7) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ 1

0

|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

M

∫ 1

0

L(t1)|xn(t1)− xn−1(t1)|dt1 ≤M

∫ 1

0

L(t1)

∫ 1

0

|G(t1, t2)|.

|fn(t2)− fn−1(t2)|dt2 ≤M2

∫ 1

0

L(t1)

∫ 1

0

L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤ (M)n
∫ 1

0

L(t1)

∫ 1

0

L(t2)...

∫ 1

0

L(tn)|x1(tn)− y(tn)|dtn...dt1 ≤

≤ (ML0)
nM

∫ 1

0

p(t)dt.

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (3.7), for almost all
t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤
M

∫ 1

0
p(t)dt+

∑n−1
i=1 (M

∫ 1

0
p(t)dt)(ML0)

i =
M

∫ 1
0
p(t)dt

1−ML0
.

(3.8)
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On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all t ∈ I

|fn(t)−Dq
cy(t)| ≤

∑n−1
i=1 |fi+1(t)− fi(t)|+

+|f1(t)−Dq
cy(t)| ≤ L(t)

M
∫ 1
0
p(t)dt

1−ML0
+ p(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.5),

(3.6) we deduce that x(.) is a solution of (1.1). Finally, passing to the limit in (3.8)
we obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.5)-
(3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we al-
ready constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satisfying
(3.5), (3.7) for n = 1, 2, ...N and (3.6) for n = 1, 2, ...N − 1. The set-valued map
t → F (t, xN (t)) is measurable. Moreover, the map t → L(t)|xN (t) − xN−1(t)| is
measurable. By the lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} ̸= ∅.

Theorem 1.14.1 in [3] yields that there exist a measurable selection fN+1(.) of
F (., xN (.)) such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies (3.6) and
(3.7) and the proof is complete.

Remark 3.5. Obviously, Theorem 3.4 extends Theorem 3.2. We do not suppose
that d(0, F (t, 0)) ≤ L(t) a.e. (I) and the estimate in (3.3) is better than the one
in Theorem 3.2.

Even if Theorem 3.4 improves Theorem 3.2, we chosen to present both results;
on one hand because the methods used in their proofs are different and on the other
hand to show that there exists situations when the fixed point approaches are less
powerful.
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