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SOME PROPERTIES OF A CERTAIN SUBCLASS OF
MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH
AN EXTENDED FRACTIONAL DIFFERINTEGRAL OPERATOR

JAMAL M. SHENAN

ABSTRACT. Making use of an extended fractional differintegral operator (in-
troduced recently by Patel and Mishra), we introduce a new subclass of mul-
tivalent analytic functions. Such results as subordination and superordination
properties, convolution properties, inequality properties and other interesting
properties of this subclass are proved.

1. INTRODUCTION

Let H(U) be the class of functions analytic in U = {z : z € Cand |z| < 1}
and Hla, k] be the subclass of H(U) consisting of functions of the form f(z) =
a+apz® + ap 12" + . with Hy = H[0,1] and H = HJ[1,1].

Let A, (k) denote the class of functions of the form

f(z) =27 + ) angp?" P (p, kEN={1,2,3,..};2 € U), (1)
n=~k

which are analytic in the open unit disk U, and let A,(1) = A, and A;(1) = A. A
function f(z) € Ap(k) is said to be in the class S} ; (p) of multivalent (p-valent)
starlike of order p(0 < p < p), if it satisfies the following inequality:

!
%{Z;(i';)}>p(0§p<p,zeU). (2)
Let f and F' be members of H(U), the function f (z) is said to be subordinate to
F (z), or F () is said to be superordinate to f (z), if there exists a function w (2)
analytic in U with w (0) = 0 and |w (z)| < 1(z € U), such that f (z) = F (w (z)). In
such a case we write f (z) < F (z). In particular, if F' is univalent, then f (2) < F (2)
if and only if f(0) = F (0) and f (U) C F (U)(see [8,9]).
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For two functions f(z) given by (1) and

9(z) = 2% + anﬂ)znﬂ)a 3)

n=~k

The hadmard product (or convolution) of f and g is defined by

(f*g)(z) = 2" + Z ntpbnpz" P = (g% f)(2)- (4)
n=k
In [11] (see also [12] and [16]), Owa introduced the following definitions of fractional
calculus (that is, fractional integrals and fractional derivatives of an arbitrary or-
der).

Definition 1 Let the function f(z) be analytic in a simply connected region
(of the z—plane) containing the origin and let o > 0, then the fractional integral of
order « is defined by

o L[ O
Df ) = | T @>0). )

where the multiplicity of (z — ¢ )O‘_1 is removed by requiring log (z — ¢) to be real
when (z — ¢) > 0.

Definition 2 Let the function f(z) be analytic in a simply connected region
(of the z—plane) containing the origin and let 0 < a < 1, then the fractional
derivative of order « is defined by

DIf(2) = (11_ ) d% /0 (Zf(%a ¢ (0<a<l), (6)

where the multiplicity of (z — ¢)~“ is removed by requiring log (z — ¢) to be real
when (z —¢) > 0.

Definition 3 Under the hypotheses of Definition 2, the fractional derivative of
order o + n is defined by

ar
DIt f(z) = d—nDo‘f() (n<a<n+1; ne Ng=NU{0}). (7)
Very recently, Patel and Mishra [13] defined the extended fractional differintegral
operator Q) A, (k) — Ap(k) for a function f (z) € A,(k) and for a real number
a(—oco<a<p+1)by
F'p—a+1)
'p+1)
where DS f is, respectively the fractional integral of f of order —a when —oo <

a < 0 and the fractional derivative of f of order a if 0 < a < p+ 1.
It is easily seen from (8) that for a function f (z) of the form (1), we have

2D f(2), (®)

tp+YIp—atl)
Qo) — P (n Atz TP U 9
f(z) =2 +§j T s DT i p—asn™o?” eV,
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and

’

(0091 (2)) = (=) QLT f (2)+aQE P f () (~o0 < a < p 2 € ). (10)

The fractional differential operator Q*?) with 0 < a < 1 was investigated by

Srivastava and Aouf [17] and studied by Srivastava and Mishra [18]. We, further

observe that an’l) = Q¢ is the operator introduced and studied by Owa and Sri-
vastava [12].

By making use of the differintegral operator an’p ) and the above mentioned prin-
ciple of subordination between analytic functions, we introduce and investigate the
following subclass of the class A, (k) of p-valent analytic functions.

Definition 4 A function f (z) € A,(k) is said to be in the class S;‘y’,g (o; A, B) it
it satisfies the following subordination condition:

P r)\" (et ) (ol r )\ 1+ Az
(1-A) <Zp +A O 1 () 7 <~ 17ge

(—o<a<p, —-1<B<A<I1; A#B; AcR; p,keN; A€ C and Re(u) > 0).

It may be noted that for suitable choice of 1, A, B, p, A and a the class S;‘:,i‘ (a; A, B)
extends several classes of analytic and p-valent functions studied by several authors
such as Aouf and Seoudy [3], Yang [19], Zhou and Owa [20] and Liu [4].

To prove our results, we need the following definitions and lemmas.

Definition 5 ([8]). Denote by @ the set of all functions f(z) that are analytic and
injective on U/E(f) where

B(f)={¢ €U lim 7() = oo},
and are such that f/(¢) # 0 for ¢ € OU/E(f).

Lemma 1 ([9]). Let the function h(z) be analytic and convex (univalent) in
U with h(0) = 1. Suppose also that the function g(z) given by

g(2) =1+ cp2® +cppr 28 + (12)
is analytic in U. If
/
o2+ L S (R0 > 000 £ 02 € D), (13)

then

9(2) < q(z) = %z*% /h(t)t%dt < h(t),

and ¢(z) is the best dominant of (13).

Lemma 2 ([15]). Let ¢g(z) be a convex univalent function in U and let « €

C,n € C* = C\{0} with

i 28] el n(3)

If the function g(z) is analytic in U and

og(z) +nzg'(2) < oq'(2) + nz¢'(2),
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then g(z) < ¢(z) and ¢(z) is the best dominant.

Lemma 3 ([9]). Let ¢(z) be convex univalent function in U and let k € C.
Further assume Re(k) > 0. If g(z) € H[q(0), 1] Q, and g(z) + kzg'(#) is univalent
in U, then

q(2) + kzq'(2) < g(2) + kzg'(2) ,
implies g(z) < ¢(z) and ¢(z) is the best subordinate.

Lemma 4 ([16]). Let the function F' be analytic and convex in U. If f, g € A
and f, g < F,then \f + (1 —=XN)g<F (0<A<1).

Lemma 5 ([14]). Let f(z) = 1 + Y ;= ax2*, be analytic in U and g(z) =
1 + Y32, biz”® be analytic and convex in U. If f(z) < g(z), then
|ak|<|b1\ (k‘EN)

Lemma 6 ([6]). Let 0 #5 € R, £ >0, 0<p <1, g(2) € H[1,k] and

vM
<+ 0 [ = 7~
9(2) * ( ké + 1/) ’

where
(1—p) |0 (1+ %)

11— 6+ pd + /14 (1 + £2)?

If h(z) € H[1, k] satisfies the following subordination condition;
g(2)[1=6+6(1—p)h(z)+p] <1+ Mz,

M = My (6,v,p) =

then

R(h(2)) >0 (z2€U).
In the present paper, we aim to prove some subordination and superordination
properties, convolution properties associated with the fractional differintegral oper-
ator an’p ), Sandwich-type result involving this operator is also derived . A similar

problem for analytic functions was studied by Aouf and Seoud [3] and Muhamad
[10].

2. MAIN RESULT
Theorem 1 Let f(z) € S;"’,é‘ (o; A, B) with R(A) > 0. Then

a, I
(Q,(z p)f(z)) {q(z) _ (p—a)'u /1 1+Azuu(p;g)u_1du_< 1+AZ’ (14)
0

zP Nk 1+ Bzu 1+ Bz

and ¢(z) is the best dominant.
Proof. Define the function g(z) by
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Then ¢(z) is of the form (12) and analytic in U. Differentiating (14) with respect
to z and using (10), we get

A r @\ (@) (2 Pr ) Nag'(2)
(1—M< pos ) +A<Qmmf@) pos —g@%%@_am

1+ Az
1+ Bz (16)
Applying Lemma 1 to (16) with v = %, we get
QleP) ¢ (2) ! p—a)y [F1+ At w-cwm
I AL A = tomE Tt
( > a(z) Ak /0 1+ Bt
_ (p—a),u/ 1+ Azu T 1+Az (17)
Y 0o 1+ Bzu " =71 + Bz’

and ¢(z) is the best dominant.

Theorem 2 Let ¢(z) be univalent function in U and let A € C*. Suppose also
that ¢(z) satisfies the following inequality:

R {1 + Z;](S) } > max {o, R ((p;‘)") } . (18)

If f € A, satisfies the following subordination:

(e.p) a (a+1,p) () p )
(1-N\) <sz(z)> +/\<Qz( : f(z)) <Qz f(z)) <q(ZH_)\Zin
. 0l (2 »

(@p) ¢\ "
(ﬂzzj<>> (o),

and ¢(z) is the best dominant.
Proof. Let the function g(z) be defined by (15). we know that (16) holds true.
Combining (16) and (19), we find that

Azg'(2) Azq'(2)
gz)+ ———— <qz) + ———.
) (p—a)u ) (p—a)p
By using Lemma 2 and (20), we easily get the assertion of Theorem 2.

Taking ¢(z) = ﬂ'é; in Theorem 2, we get the following result.

then

(20)

Corollary 1 Let A € C* and —1 < B < A < 1. Suppose also that
1— Bz (p—a)u
%{1+Bz}>max{0, —3?()\ .
If f € A, satisfies the following subordination:

MY LS IO (e DAV S IO
> ol )\

1+ Az A (A-B)z
< .
1+Bz (p—a)u(l+ Bz)?
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then

Q@) £ () “_<1+Az
2P 1+ Bz

1+Az
1+Bz

and is the best dominant.

Theorem 3 Let ¢(z) be convex univalent function in U and let A € C with

R(A) > 0. Also let
(a.p) "
(mf@>eﬂmwuﬂ@

zp

(a,p) H (a+1,p) (a,p) ®
(1-A\) Q0 pf(z) A 02 pf(z) Q2 pf(z)
P an’p)f (2) 2P

be univalent in U. If

q(z) + )‘L/(Z) < (1= ((WM)“—FA (Qi‘”l’p)f(z)) (an’p)f(z)>“7

(- Iz ) 2~

(a,p) “
ﬁ@<<92-””>7

and

then

2P

and ¢(z) is the best subordinate.
Proof. Let the function g(z) be defined by (15). Then

RO RN A SO TO AN £ S S TO N E IO
Q( )+ (p_ Oé)M < (1 >\) ( P ) +A ( an,p)f(z) 2P

o )
=92+ (p—a)p

By using Lemma 3 we easily get the assertion of theorem 3.

Taking ¢q(z) = iigz in Theorem 3, we get the following result.

Corollary 2 Let g(z) be convex univalent function in U and —1 < B < A < 1,
A € C with () > 0. Also let

(@p) ¢\ "
o¢<%f“>eHmwuﬂ@

zp

(,p) H (a+1,p) (,p) K
o [ETIEN (% TrE N ()
7 AN

be univalent in U. If

1+ Az AN A-BE Q™) £ (2) “H QTP r () (P r )\
1+Bz (p—a)u(l+ Bz)2 2P an,p)f(z) 2P ’

then

and

144 Qe r )\
1+ Bz 2P ’
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and ng is the best subordinate.

Combining the above results of subordination and superordination, we easily get
the following ”sandwich-type result”.

Corollary 3 Let ¢1(z) be convex function in U and let ¢g2(z) be univalent function
in U, let A € C with R(X) > 0. let ¢2(2) satisfy (18). If

(a,p) "
0 4 (Qf“) € Hlg(0), (@,

z

(a,p) H (a+1,p) (a,p) B
(1-A\) Q0 pf(z) A Q3 pf(z) 02 pf<z)
P an’p)f (2) 2P

is univalent in U, and also

I RN (SO IO £ S IO SO TON
QI( )+ (pia)‘u < (1 /\) < P > +)\< Q(Zoc,p)f(z)

and

then o) B
a,p
@ (2) < <szpf(z)) < go(2),

and ¢1(z) and go(z) are respectively, the best subordinate and dominant.

Theorem 4 If A\, p > 0 and f(z) € SZ”,’: (;1=2p,—1)(0 < p < 1), then
f(z) e S;"’,f (a;1 —2p,—1) for |z| < R, where

Mo \? Mk
= \/<(pa)u) H eyl @)

The bound R is the best possible.
Proof. We begin by writing

(@p)
(Qpr()> =p+l-pgz)  (zeU;0<p<). 22)

Then, clearly, the function g(z) is of the form (12), is analytic and has a positive
real part in U. Differentiating (22) with respect to z and using the identity (10), we
get,

1 ol r )\ () (el ()"
1‘/’%”( g >H<ﬂ‘;””f<z> o)

Azg'(2)
(p— )
By making use of the following well-known estimate (see [7]):
2g(2)| _ 2kt
R(g(z)) = 1—r2*

= g(2) + (23)

(Jz| <r<1)
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In (23), we obtain that

1 o Pr)\" (TP (2=
§R(“P{OA)( * ) +A<99@fw> ) !

2krk\
L e @

It is seen that the right-hand side of (24) is positive, provided that r < R, where
R is given by (21).

In order to show that the bound R is the best possible, we consider the function
f(z) € Ap(k) defined by

(ev,p) a
<Qf<>> —pr-pE eliogp<n),

2P 1—zk

Noting that

1 i)\ (@) (28"
e () o (G () -

14 2P L 2k N2k
L=z (p—a)u(1+2h)?
for |z] < R,we conclude that the bound is the best possible. Theorem 4 is thus
proved.

~0. (25)

Theorem 5 Letf(z) € S;’,é‘ (a; A, B) withR()\) > 0. Then

o (11 Aw(z) i o [ op 'lp+1) ooF(n—Fp—a—l—l)znp
f(z)-(z <1+Bw(z)>> ( +1"(]9—04—|—1)nz:;C F'n+p+1) +>’

(26)
where w(z) is an analytic function with w(0) = 0 and |w(z)| <1 (2 € U).
Proof. Letf(z) € S;”,? (a; A, B) with ®()\) > 0. It follows from (14) that
2 r )\ 1+ Aw(z) o
2P 1+ Buw(z)’

where w(z) is an analytic function with w(0) = 0 and |w(z)] < 1 (¢ € U). By
virtue of (27), we easily find that

QD) f (2) = 27 (i I ;11:)8) . (28)

Combining (9) and (28), we have

, Tp—a+l) nADE D) i), i [ (L AWE) o
(Z + F'(p+1) ZI‘ n+p—a+1)z+> f()< <1—|—Bw(z)> >
(29)

The assertion (26) of Theorem 5 can now easily be derived from (29).
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Theorem 6 Let f(z) € S/ (o; A, B) with ®()\) > 0. Then

o\ L p—a+l) (n+p+1)
14 Bet®)i [ -» ntp
(14 Be") <z+ Tt Zrn+p ai D’ )*f(z)

1
2P

— (1 +Aei9)ﬂ £0(z€U; 0<0<2m). (30)

Proof. Let f(z) € S;‘”,f (a; A, B) with ()\) > 0. We know that (14) holds true,
which implies that

(@.p) : ¢
(Qz pf(z)> #1+A€9 (ZGU,O<0<27T) (31)

2P 1+ Bet?
It is easy to see that the condition (31) can be written as follows:
1 oL L
= [ng"p)f(z) (1+ Be) " — 27 (14 Ae™®) “} #0(zeU; 0<0<2m). (32)

Combining (9) and (23), we easily get the convolution property (30) asserted by
Theorem 6.

Theorem 7 Let \g > A1 > 0and —1 < B; < By < A3 < A; < 1. then
S)\QH(OL AQ,BQ) C S)\I“(Oé;Al,Bl). (33)

Proof. Let f(z) € S;‘fk’“ (a; Ag, By). Then

e r)\" Qe () (9P r ()" 14 42

Since —1 < By < By < Ay < Ay <1, we easily find that
(a,p) o (a+1,p) (e:p) H
(1= ) QP f(2) e Q f(z) QP f(2) < 1+ Asz y 1+Alz’
2P an‘p)f(z) zP 1+ Bsz 1+ Biz

(34)
that is f(z) € S’Z/)\fk’“ (a; A1, By). Thus the assertion (33) holds for Ay = Ay > 0. If

A2 > A1 > 0, by Theorem 1 and (34), we know that f(z) € S;,%H (a; A1, By), that

is
Qe rz)) L1t
2P 1+Blz’

(35)

At the same time, we have

2l r2)\" QP )\ (2P g ()" MY (98P (2)
(1_A1)< = >+/\1<Q§“””f(Z))< = >:<l Az)< = )

ol r )\ (o) (o))"
(1 — >\2) ( P + A2 Q(za,p)f (Z) 2P

Moreover, 0 < i—; < 1, and the function %i‘giz(—l < By <A; <1;z€U) is ana-

lytic and convex in U. Combining (34)-(36) using Lemma 4, we find that

A\, (@) (2@ 1A
(1 - )‘1) (Zp + M an,p)f (Z) zp = 1+ Blz7

A1
1Y

(36)
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that is f(z) € S;‘)lk’“ (a; Ay, By), which implies that the assertion (33) of Theorem
7 holds.

Theorem 8 Let f(2) € S;"’,é‘ (; A, B) with ®(A\) > 0and -1 < B < A < 1.

Then .
(p—a)p / 1—Au @-ewm_,
: d
»  Jy1-But ™
e (7@ o / L+ Au ooy, -
2P Ak o 1+ Bu '
The extremal function of (37) is defined by
1
L 1
— 1+ Azu @-on ”
Q(a,p)F _ P (p Q)M/ 771(1 )
SUE(2) =2 ( » Jo TxzBu" 0™ (38)

Proof. Letf(z) € S;‘,’,f (a; A, B) with R(A) > 0. From Theorem 1 we know that
(14) holds true, which implies that

(a,p) " — 1 p—a)p
R (QZ (2)> < sup R { (p— au €t - Azu u _1du}

2P eU Ak 91+ Bzu
(p—a)u /1 14+ Azu\ @-cw_,
< R ——— : d
ST S\ iy B )™
(p—a)u /1 1+Au @-—ow_4
< Xk d 39
=" J, 1+Bu" “ (39)

and

() . _ 1 —a)u
§R<QZ f(z)) - inf?)%{(p a)u/ 1—|—Azuu(pkk> ldu}
0

2P z€U Ak 14+ Bzu
(p—a)u /1 ) 1+ Azu —odn 4
> f — d
- Ak 0 v R 14+ Bzu v "
(p—a) /1 1+ Ay -on
> F du, 40
="M J, 1+Bu" “ (40)

Combining (37) and (40), we get (37). By noting that the function Q(Za’p)F(z)
defined by (38) belongs to the class S;‘”,f (a; A, B), we obtain that equality (37) is
sharp. The proof of Theorem 8 is evidently completed.

In view of Theorem 8, we easily derive the following distortion theorems for the
class S;‘y’,g (a; A, B).

Corollary 4 Let f(z) € S;\”,i‘ (; A, B) with ®(A) > 0and —1 < B < A <L
Then for |z| = r < 1, we have

(p—a)u/ll—Aur o), “
p -1y
" ( » Jo 1-Burt ™

1
1 A
1 + pP—) i ©
< rP ((p )\;)M/O . Z: u‘( Ak)l 1du> . (41)

< |y (z)
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The extremal function of (41) is defined by (38).
By noting that

R <R (V) <t e R 20).

From Theorem 8, we easily get the following results.
Corollary 5 Let f(z) € S;)\”,’: (; A, B) with ®(A) > 0and —1 < B < A <L

Then
(O [ o)
=

(a.p) 5 B 1 o 3
% (Qz f(z)) _ ((p a)u/ 1+ Au D) _1du> .
0

ZP Ak

Theorem 9 Let f(z) defined by (1) be in the class S;};,f (o; A, B), Then
I'p+1)I'(k+p—a+1) A-B
Fk+p+1)T(p—a) | Me+up-—a)|

The inequality (42) is sharp, with the extremal function defined by (38).
Proof. Combining (1) and (11), we obtain

1w [P (@) (2@
> ol )\

F'k+p+1)I'(p—a)
I'p+1)T'(k+p—a+1)

|an+p‘§

=1+ M+pulp-—a) apirz® + ..

1+ Az
14+ Bz
An application of Lemma 5 to (43) yields
I'(k+p+1)I'(p—a)
F'p+H)T(k+p—a+1)
Thus, from (44), we easily arrive at (42) asserted by Theorem 9.
Theorem 10 Let 0 # A€ R, p e R, a>1, § >0and 0 < p < 1. If f(2) €
SNV (a; A, 0) with

p;

=1+ (A—B)z+.. (43)

M+ 1 (p — )] anyp| < |A = B (44)

(1= (1+ 25)

A=
2
kA
|1AFpA|+x/1+(l+Ulﬂﬁﬂ)

)

then
QP (2) € Sk (pp— (p—a)(1—p)).

Proof. Suppose that f(z) € S;"’: (a; A,0). By (11), we have

ol f )\ () (o))
(1-)) (Zp + A 70 = <1+ Az (45)
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Let the function g(z) be defined by (15). We then find from (14) and (45) that

g(z) < p—aln a),uz_u:;zm / (1+ At) gy
0

Ak
(p— )
=1+ mz.
We now suppose that
L) ) e (> 1 0<p<l zeU 46
I} () P p (@>1;0<p<1; 2€U). (46)
Then h € H[1,k]. It follows from (45) and (46) that
g2) {1 =)+ A1 = p)h(z) +p]} <1+ Az (z€U). (47)
An application of Lemma 6 to (47) yields
R(h(z)) >0 (z€U). (48)
Combining (46) and (48), we find that
QL (2)

Q(a’p)f(z) =(1=p)R(h(z)+p>p (a>1;,0<p<1; z€U). (49)

The assertion of Theorem 10 can now easily be derived from (10) and (49).
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