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IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL

ORDER WITH INFINITE DELAY

M. BENCHOHRA, Z. BOUTEFAL

Abstract. This paper deals with the existence of solutions to partial func-
tional differential equations with impulses and infinite delay, involving the Ca-
puto fractional derivative. Our works will be conducted by using Burton-Kirk
fixed point theorem.

1. Introduction

In this paper, we shall be concerned with the existence of solutions for the
following impulsive partial hyperbolic differential equations:

(cDr
zk
u)(x, y) = f(x, y, u(x,y)); if (x, y) ∈ Jk, k = 0, . . . ,m, (1)

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)), if y ∈ [0, b], k = 1, . . . ,m, (2)

u(x, y) = ϕ(x, y); if (x, y) ∈ J̃ , (3)

u(x, 0) = φ(x), x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b], (4)

where J0 = [0, x1]× [0, b], Jk := (xk, xk+1]× [0, b]; k = 1, . . . ,m, zk = (xk, 0), k =

0, . . . ,m, a, b > 0, J = [0, a]× [0, b], J̃ = (−∞, a]× (−∞, b]\(0, a]× (0, b], cDr
xk

is
the Caputo fractional derivative of order r = (r1, r2) ∈ (0, 1]×(0, 1], φ : [0, a] → Rn,
ψ : [0, b] → Rn are given continuous functions with φ(x) = ϕ(x, 0), ψ(y) = ϕ(0, y)
for each (x, y) ∈ J, 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × B → Rn, Ik :

Rn → Rn, k = 1, . . . ,m, ϕ : J̃ → Rn, are given functions. B is called a phase space
that will be specified in the next Section. If u : (−∞, a]× (−∞, b] → Rn, then for
any (x, y) ∈ J define u(x,y) by

u(x,y)(s, t) = u(x+ s, y + t), for (s, t) ∈ [−α, 0]× [−β, 0].
The problem of existence of solutions of Cauchy-type problems for ordinary dif-
ferential equations of fractional order in spaces of integrable functions was studies
in numerous works. We can find numerous applications of differential equations of
fractional order in viscoelasticity, electrochemistry, control, porous media, electro-
magnetic, etc. ( [13, 14, 20, 26, 30]). There has been a significant development in
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ordinary and partial fractional differential equations in recent years; see the mono-
graphs of Abbas et al. [5], Kilbas et al. [22], Podlubny [27], the papers of Abbas
and Benchohra [1, 2], Agarwal et al. [6], Benchohra et al. [7, 8], Vityuk and Go-
lushkov [31] and the references therein. In [3] Abbas and Benchohra considered the
existence of solutions to the fractional order initial value problem

(cDr
0u)(x, y) = f(x, y, u(x,y)), if (x, y) ∈ J, (5)

u(x, y) = ϕ(x, y), if (x, y) ∈ J̃ , (6)

u(x, 0) = φ(x), u(0, y) = ψ(y), (x, y) ∈ J. (7)

In [4], the same authors provided sufficient conditions for the existence and unique-
ness of solutions to the following fractional order implicit differential system

D
r

zk
u(x, y) = f(x, y, u(x, y), D

r

zk
u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m, (8)

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); if y ∈ [0, b], k = 1, . . . ,m, (9)

u(x, 0) = φ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

φ(0) = ψ(0).

(10)

The theory of functional differential equations has emerged as an important
branch of nonlinear analysis. Differential delay equations, or functional differential
equations, have been used in modeling scientific phenomena for many years. Often,
it has been assumed that the delay is either a fixed constant or is given as an
integral in which case it is called a distributed delay; see for instance the books
by Hale and Verduyn Lunel [17], Hino et al. [21], Kolmanovskii and Myshkis [23],
Lakshmikantham et al. [25], Smith [29], and Wu [32], and the papers [10, 16].

The theory of impulsive integer order differential equations have become im-
portant in some mathematical models of real processes and phenomena studied
in physics, chemical technology, population dynamics, biotechnology and econom-
ics. There has been a significant development in impulse theory in recent years,
especially in the area of impulsive differential equations and inclusions with fixed
moments; see the monographs of Benchohra et al. [7], Lakshmikantham et al. [24],
and Samoilenko and Perestyuk [28], and the references therein.

Motivated by the papers [3, 4], in this paper we present existence results for
the problem (1)-(4). Our approach is based on Burton-Kirk fixed point theorem
[9]. The present results complement and extend those devoted to problems without
impulses.

2. The phase space B

The notion of the phase space B plays an important role in the study of both
qualitative and quantitative theory for functional differential equations. A usual
choice is a semi-normed space satisfying suitable axioms, which was introduced by
Hale and Kato [16] (see [17, 21, 25]).

For any (x, y) ∈ J denote E(x,y) := [0, x]×{0}∪ {0}× [0, y], furthermore in case
x = a, y = b we write simply E. Consider the space (B, ∥(., .)∥B) is a seminormed
linear space of functions mapping (−∞, 0]×(−∞, 0] into Rn satisfying the following
fundamental axioms which were adapted from those introduced by Hale and Kato
for ordinary differential functional equations:
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(A1) If z : (−∞, a] × (−∞, b] → Rn and z(x,y) ∈ B, for all (x, y) ∈ E, then
there are constants H,K,M > 0 such that for any (x, y) ∈ J the following
conditions hold:

(i) z(x,y) is in B;
(ii) ∥z(x, y)∥ ≤ H∥z(x,y)∥B,
(iii) ∥z(x,y)∥B ≤ K sup(s,t)∈[0,x]×[0,y] ∥z(s, t)∥+M sup(s,t)∈E(x,y)

∥z(s,t)∥B,
(A2) The space B is complete.

For examples of phase spaces we refer, for instance to ([3, 11, 12]).

3. Preliminaries

In this section, we introduce notations and definitions which are used throughout
this paper. By L1(J,Rn) we denote the space of Lebesgue-integrable functions
u : J → Rn with the norm

∥u∥L1 =

∫ a

0

∫ b

0

∥u(x, y)∥dydx.

Let C(J,Rn) be the space of continuous functions u : J → Rn with the norm

∥u∥∞ = sup
(x,y)∈J

∥u(x, y)∥.

Definition 3.1. ([22]): Let r1, r2 > 0 and r = (r1, r2). For u ∈ L1(J,Rn), the
expression

(Irzku)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − τ)r2−1u(s, τ)dτds,

where Γ(.) is the gamma function, is called the left-sided mixed Riemann-Liouville
integral of order r.

Definition 3.2. ([22]): For u ∈ L1(J,Rn), the Caputo fractional-order derivative
of order r is defined by the expression

(cDr
zk
u)(x, y) = (I1−r

zk

∂2

∂t∂x
u)(x, y).

We need the following generalization of Gronwall’s lemma for two independent
variables and singular kernel.

Lemma 3.3. ([18]) Let υ : J → [0,∞) be a real function and ω(., .) be a nonnega-
tive, locally integrable function on J. If there are constants c > 0 and 0 < r1, r2 < 1
such that

υ(x, y) ≤ ω(x, y) + c

∫ x

0

∫ y

0

υ(s, t)

(x− s)r1(y − t)r2
dtds,

then there exists a constant δ = δ(r1, r2) such that

υ(x, y) ≤ ω(x, y) + δc

∫ x

0

∫ y

0

ω(s, t)

(x− s)r1(y − t)r2
dtds,

for every (x, y) ∈ J.

Theorem 3.4. (Burton-Kirk)([9]) Let X be a Banach space, and A,B : X → X
two operators satisfying:

(i) A is completely continuous, and
(ii) B is a contraction.
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Then either

(a) the operator equation u = A(u) +B(u) has a solution, or
(b) the set E = {u ∈ X : u = λA(u) + λB(uλ )} is unbounded for λ ∈ (0, 1).

4. Auxiliary Results

To define the solutions of problem (1)-(4), we shall consider the space

Ω =
{
u : (−∞, a]× (−∞, b] → Rn : u(x,y) ∈ B for (x, y) ∈ E and there exist

u(x−k , .), u(x
+
k , .) exist with u(x

−
k , .) = u(xk, .); k = 1, . . . ,m, and

u ∈ C(Jk,Rn); k = 0, . . . ,m
}
,

where Jk = (xk, xk+1]×(0, b]. Let us define what we mean by a solution of problem
(1)-(4). Set

J ′ := J \ {(x1, y), . . . , (xm, y), y ∈ [0, b]}.
For u ∈ Ω, we denote by ũk, for k = 0, 1, . . . ,m, the function ũk ∈ C([xk, xk+1] ×
[0, b],Rn) given by ũk(x, y) = u(x, y) for (x, y) ∈ (xk, xk+1]× [0, b] and ũk(xk, y) =

limk→x+
k
u(x, y). Moreover, for a set D ⊂ Ω, we represent by D̃k, for k = 0, 1, . . . ,m

the set D̃k = {ũk : u ∈ D}.

Lemma 4.1. [19] A set D ⊂ Ω is relatively compact if and only if, each set D̃k, k =
0, 1, . . . ,m, is relatively compact in C([xk, xk+1]× [0, b],Rn).

Definition 4.2. A function u ∈ Ω is said to be a solution of (1)-(4) if u satisfies
(cDr

0u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions (2), (3) and (4) are satisfied.

Let h ∈ C([xk, xk+1]× [0, b],Rn), zk = (xk, 0), and

µk(x, y) = u(x, 0) + u(x+k , y)− u(x+k , 0), k = 0, . . . ,m.

For the existence of solutions for the problem (1)−(4), we need the following lemma:

Lemma 4.3. A function u ∈ C([xk, xk+1]× [0, b],Rn); k = 0, . . . ,m is a solution
of the differential equation

(cDr
zk
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]× [0, b],

if and only if u(x, y) satisfies

u(x, y) = µk(x, y) + (Irzkh)(x, y); (x, y) ∈ [xk, xk+1]× [0, b]. (11)

Proof: Let u(x, y) be a solution of (cDr
zk
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]×

[0, b]. Then, taking into account the definition of the derivative (cDr
zk
u)(x, y), we

have

I1−r
zk

(D2
xyu)(x, y) = h(x, y).

Hence, we obtain

Irzk(I
1−r
zk

D2
xyu)(x, y) = (Irzkh)(x, y),

then

I1zkD
2
xyu(x, y) = (Irzkh)(x, y).

Since

I1zk(D
2
xyu)(x, y) = u(x, y)− u(x, 0)− u(x+k , y) + u(x+k , 0),

we have

u(x, y) = µk(x, y) + (Irzkh)(x, y).
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Now let u(x, y) satisfies (11). It is clear that u(x, y) satisfies

(cDr
0u)(x, y) = h(x, y), on [xk, xk+1]× [0, b].

Lemma 4.4. [5] Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function
u is a solution of the fractional integral equation

u(x, y) =



ϕ(x, y) if (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x

(
Ik(u(x

−
k , y))− Ik(u(x

−
k , 0))

)
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0
(xk − s)r1−1(y − t)r2−1h(s, t)dtds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0 (x− s)r1−1(y − t)r2−1h(s, t)dtds

(12)

if and only if u is a solution of the fractional initial value problem

cDr
zk
u(x, y) = h(x, y), (x, y) ∈ Jk, k = 0, . . . ,m, (13)

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)), k = 1, . . . ,m. (14)

5. Main Result

Our main result in this section is based upon the fixed point theorem due to
Burton and Kirk. Let us introduce the following hypotheses which are assumed
hereafter.

(H1) The functions Ik : Rn → Rn, and f : J × B → Rn are continuous.
(H2) There exist p, q ∈ C(J,R+) such that

∥f(t, x, u)∥ ≤ p(t, x) + q(t, x)∥u∥B, for (t, x) ∈ J and each u ∈ B.

(H3) There exists l > 0 such that

∥Ik(u)− Ik(v)∥ ≤ l∥u− v∥ for each u, v ∈ Rn.

Theorem 5.1. Assume that hypotheses (H1)-(H3) hold. If

2ml < 1, (15)

then the IV P (1)-(4) has at least one solution on J .

Proof. We shall reduce the existence of solutions of (1)-(4) to a fixed point problem.
Consider the operator N : Ω −→ Ω defined by

N(u)(x, y) =



ϕ(x, y) if (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x

(
Ik(u(x

−
k , y))− Ik(u(x

−
k , 0))

)
if (x, y) ∈ J,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1h(s, t)dtds k = 1, . . . ,m,

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1h(s, t)dtds.
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Consider the operators A,B : Ω → Ω defined by,

A(u)(x, y) =



ϕ(x, y), (x, y) ∈ J̃ ,

+ 1
Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1 k = 1, . . . ,m

×f(s, t, u(s, t))dtds
+ 1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1

×f(s, t, u(s, t))dtds, (x, y) ∈ J,

and

B(u)(x, y) =

 0, (x, y) ∈ J̃ ,

µ(x, y) +
∑

0<xk<x

(Ik(u(x
−
k , y))− Ik(u(x

−
k , 0))), (x, y) ∈ J.

Let v(., .) : (−∞, a]× (−∞, b] → Rn be a function defined by,

v(x, y) =

{
ϕ(x, y), (x, y) ∈ J̃ .
µ(x, y), (x, y) ∈ J.

Then v(x,y) = ϕ for all (x, y) ∈ E.
For each w ∈ (J,Rn) with w(x, y) = 0 for each (x, y) ∈ E, we denote by w the
function defined by

w(t, x) =

{
0, (x, y) ∈ J̃ ,
w(x, y) (x, y) ∈ J.

If u(., .) satisfies the integral equation,

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s,t))dtds,

we can decompose u(., .) as u(x, y) = w(x, y) + v(x, y); (x, y) ∈ (xk, xk+1] × [0, b],
which implies u(x,y) = w(x,y) + v(x,y), for every (x, y) ∈ J × [0, b] and the function
w(., .) satisfies

w(x, y) =
∑

0<xk<x

(Ik(u(x
−
k , y))− Ik(u(

−
k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(t− t)r2−1f(s, t, w(s,t) + v(s,t))dtds.

Set

C0 = {w ∈ Ω : w(x, y) = 0 for (x, y) ∈ E},

and let ∥.∥C0 be the norm in C0 defined by

∥w∥C0 = sup
(x,y)∈E

∥w(x,y)∥B + sup
(x,y)∈J

∥w(x, y)∥ = sup
(x,y)∈J

∥w(x, y)∥, w ∈ C0.
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C0 is a Banach space with norm ∥.∥C0 . Let the operators A,B : C0 → C0 defined
by

(Aw)(x, y) =


1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1, k = 1, . . . ,m

×f(s, t, w(s,t) + v(s,t))dtds
+ 1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1

×f(s, t, w(s,t) + v(s,t))dtds, (x, y) ∈ J,

and

(Bw)(x, y) = µ(x, y) +
∑

0<xk<x

(Ik(u(x
−
k , y))− Ik(u(x

−
k , 0))), (x, y) ∈ J.

Then the problem of finding the solution of the IV P (1)–(4) is reduced to finding
the solutions of the operator equation A(w) + B(w) = w. We shall show that the
operators A and B satisfy the conditions of Theorem 3.4. The proof will be given
by a couple of steps.

Step 1: A is continuous.

Let {wn} be a sequence such that wn → w in C0, then for each (x, y) ∈ J

∥A(wn)(x, y)−A(w)(x, y)∥

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1

× ∥f(s, t, wn(s,t) + vn(s,t))− f(s, t, w(s,t) + v(s,t))∥dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

× ∥f(s, t, wn(s,t) + vn(s,t))− f(s, t, w(s,t) + v(s,t))∥dtds.

≤
∥f(., ., wn(.,.) + vn(.,.))− f(., ., w(.,.) + v(.,.))∥

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1dtds

+
∥f(., ., wn(.,.) + vn(.,.))− f(., , w(.,.) + v(.,.))∥

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds.

Since f is continuous function, we have

∥A(wn)−A(w)∥C0 ≤
2ar1br2∥f(., ., wn(.,.))− f(., ., w(.,.))∥∞

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→ ∞

Thus A is continuous.

Step 2: A maps bounded sets into bounded sets in C0.
Indeed, it is enough show that for any η∗, there exists a positive constant l such
that, for each w ∈ Bη∗ = {w ∈ C0 : ∥w∥C0 ≤ η∗} we have ∥A(w)∥C0 ≤ l. By (H2)
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we have for each (x, y) ∈ (xk, xk+1]× [0, b],

∥A(w)(x, y)∥ ≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

≤ ∥p∥∞ + ∥q∥∞η∗

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds.

Thus

∥A(w)∥B ≤ 2ar1br2(∥p∥∞ + ∥q∥∞η∗)
Γ(r1 + 1)Γ(r2 + 1)

:= l,

where

∥w(s,t) + v(s,t)∥B ≤ ∥w(s,t)∥B + ∥v(s,t)∥B
≤ Kη∗ +K∥ϕ(0, 0)∥+M∥ϕ∥B := η.

Hence ∥A(w)∥C0 ≤ l.

Step 3: A maps bounded sets into equicontinuous sets in C0.
Let (x1, y1), (x2, y2) ∈ (0, a] × (0, b], x1 < x2, y1 < y2, Bη∗ be a bounded set as in
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Step 2. Let w ∈ Bη∗ , then

∥A(w)(x2, y2)−A(w)(x1, y1)∥

≤ 1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]

× f(s, t, w(s,t) + v(s,t))dtds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1]

× f(s, t, w(s,t) + v(s,t))dtdx

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

0

(x2 − s)r1−1(y2 − t)r2−1∥f(s, t, w(s,t) + v(s,t))∥dtds

≤ ∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1]dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

∫ x2

x1

∫ y1

0

(x2 − s)r1−1(y2 − t)r2−1dtds

≤ ∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
∥p∥∞ + ∥q∥∞η∗

Γ(r1 + 1)Γ(r2 + 1)
[2yr22 (x2 − x1)

r1 + 2xr12 (y2 − y1)
r2

+ xr11 y
r2
1 − xr12 y

r2
2 − 2(x2 − x1)

r1(y2 − y1)
r2 ].

As x1 → x2, y1 → y2 the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we

can conclude that A : C0 → C0 is continuous and completely continuous.
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Step 4: B is a contraction.
Let w,w∗ ∈ C0, then for each (x, y) ∈ J , we have

∥B(w)(x, y)−B(w∗)(x, y)∥

≤
m∑

k=1

(∥Ik(w(x−k , y))− Ik(w
∗(x−k , y))∥+ ∥Ik(w(x−k , 0))− Ik(w

∗(x−k , 0))∥)

≤
m∑

k=1

l(∥w − w∗∥C0
+ ∥w − w∗∥C0

)

≤ 2ml∥w − w∗∥C0 .

Thus

∥B(w)−B(w∗)∥C0 ≤ 2ml∥w − w∗∥C0 .

Hence by (15), B is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E = {w ∈ C0 : w = λB
(w
λ

)
+ λA(w) for some λ ∈ (0, 1)}

is bounded. Let w ∈ E , then w = λB
(
w
λ

)
+ λA(w). Thus, for each (x, y) ∈ J we

have

w(x, y) = λ

m∑
k=1

(∥Ik
(u(x−k , y))

λ
)∥+ ∥Ik

(u(x−k , 0))

λ
∥)

+
λ

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds

+
λ

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, w(s,t) + v(s,t))dtds.
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This implies by (H2) and (H3) that, for each (x, y) ∈ J, we have

∥w(x, y)∥ ≤
m∑

k=1

λ(∥Ik
u(x−k , y)

λ
∥ − ∥Ik(0)∥+ ∥Ik

u(x−k , 0)

λ
∥ − ∥Ik(0)∥)

+ 2λ
m∑

k=1

∥Ik(0)∥+
∥p∥∞

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1

× ∥w(s,t) + v(s,t)∥Bdtds

+
∥q∥∞

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
∥p∥∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1∥w(s,t) + v(s,t)∥Bdtds

+
∥q∥∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ l
m∑

k=1

(∥u(t−k , x)∥+ ∥u(t−k , 0)∥) + 2I∗

+
∥p∥∞

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1∥w(s,t) + v(s,t)∥Bdtds

+
∥q∥∞

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
∥p∥∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1∥w(s,t) + v(s,t)∥Bdtds

+
∥q∥∞

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1dtds,

where

I∗ =
m∑

k=1

∥Ik(0)∥,

and

∥w(s,t) + v(s,t)∥B ≤ ∥w(s,t)∥B + ∥v(s,t)∥B
≤ K sup{w(s̃, t̃) : (s̃, t̃) ∈ [0, s]× [0, t]}

+M∥ϕ∥B +K∥ϕ(0, 0)∥. (16)

If we name γ(s, t) the right hand side of (16), then we have

∥w(s,t) + v(s,t)∥B ≤ γ(x, y),

and therefore, for γ(x, y) ∈ J we obtain

∥w(t, x)∥ ≤ l

m∑
k=1

(∥u(t−k , x)∥+ ∥u(t−k , 0)∥) + 2I∗ +
2ar1br2∥q∥∞

Γ(r1 + 1)Γ(r2 + 1)

+
∥p∥∞

Γ(r1)Γ(r2)

( m∑
k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
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+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds
)
. (17)

Using the above inequality and the definition of γ for each (x, y) ∈ J we have

γ(t, x) ≤ M∥ϕ∥B +K∥ϕ(0, 0)∥+ l
m∑

k=1

(∥u(t−k , x)∥+ ∥u(t−k , 0)∥) + 2I∗

+
∥p∥∞

Γ(r1)Γ(r2)

(
m∑

k=1

∫ tk

tk−1

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

+

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1γ(s, τ)dτds

)
+

2ar1br2∥q∥∞
Γ(r1 + 1)Γ(r2 + 1)

.

If (t, x) ∈ J, then Lemma 3.3 implies that there exists k̃ = k̃(r2, r2) such that

γ(t, x) ≤

(
M∥ϕ∥B +K∥ϕ(0, 0)∥+ l

m∑
k=1

(∥u(t−k , x)∥+ ∥u(t−k , 0)∥)

+ 2I∗ +
2ar1br2∥q∥∞

Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

∥p∥∞
Γ(r2)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

)
≤

(
M∥ϕ∥B +K∥ϕ(0, 0)∥+ l

m∑
k=1

(∥u(t−k , x)∥+ ∥u(t−k , 0)∥)

+ 2I∗ +
2ar1br2∥q∥∞

Γ(r1 + 1)Γ(r2 + 1)

)
×

(
1 + k̃

∥p∥∞ar1br2
Γ(r2 + 1)Γ(r2 + 1)

)
:= R̃.

Since for every (t, x) ∈ J , ∥w(t,x))∥∞ ≤ γ(x, y).
This shows that the set E is bounded. As a consequence of Theorem 3.4 we deduce
that A+B has a fixed point which is a solution of problem (1)-(4).

6. Example

Consider the following impulsive partial hyperbolic functional differential equa-
tions

(cDr
zk
u)(x, y) =

e−x−y

9 + ex+y

2 + |u(x, y)|
(1 + |u(x, y)|)

, (x, y) ∈ J =

[
0,

1

2

]
×[0, 1]∪

(
1

2
, 1

]
×[0, 1],

(18)

u

(
1

2

+

, y

)
= u

(
1

2

−
, y

)
+

∣∣∣u( 1
2

−
, y
)∣∣∣

1
4 +

∣∣∣u(1
2

−
, y
)∣∣∣ , if y ∈ [0, 1], (19)

u(x, y) = x+ y2, if (x, y) ∈ [−1, 1]× [−2, 1] \ (0, 1]× (0, 1], (20)

u(x, 0) = x, u(0, y) = y2, x ∈ [0, 1], y ∈ [0, 1], (21)
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where z0 = (0, 0), z1 =
(
1
2 , 0
)
. Let γ ∈ R, and Cγ be the set of all piece-wise contin-

uous functions ϕ : (−∞, 0]×(−∞, 0] → Rn for which a limit lim∥(s,t)∥→∞ eγ(s+t)ϕ(s, t)
exists, with the norm

∥ϕ∥Cγ = sup
(s,t)∈(−∞,0]×(−∞,0]

eγ(s+t)∥ϕ(s, t)∥.

Set

f(x, y, φ) =
e−x−y(2 + |φ|)

(9 + ex+y)(1 + |φ|)
, (x, y) ∈ [0, 1]× [0, 1], φ ∈ C,

and

I1(u) =
|u|

1
4 + |u|

, u ∈ R.

It is clear that the functions f and I1 are continuous, and for (x, y) ∈ [0, 1]× [0, 1]
and φ ∈ C, we have

|f(x, y, φ)| ≤ e−x−y

9 + ex+y
(2 + |φ|).

Hence (H2) is satisfied with

p(x, y) =
2e−x−y

9 + ex+y
and q(x, y) =

e−x−y

9 + ex+y
.

Also, for u1, u2 ∈ R, we have

|I1(u1)− I1(u2)| =

∣∣∣∣ |u1|
1
4 + |u1|

− |u2|
1
4 + |u2|

∣∣∣∣
=

1

4

∣∣∣∣ |u1| − |u2|
( 14 + |u1|)( 14 + |u2|)

∣∣∣∣
≤ 1

4
|u1 − u2|.

Thus (H3) is satisfied with l = 1
4 . Finally condition (15) is satisfied. Theorem

5.1 implies that problem (18)-(21) has at least one solution defined on (−∞, 1] ×
(−∞, 1].
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and suggestions.
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