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ON A DISCRETIZATION PROCESS OF FRACTIONAL ORDER

RICCATI DIFFERENTIAL EQUATION

A. M. A. EL-SAYED, S. M. SALMAN

Abstract. In this work we introduce a discretization process to discretize the frac-

tional order differential equations. First of all, we consider the fractional order Ric-
cati differential equation then, we consider the corresponding fractional order Riccati
differential equation with piecewise constant arguments and we apply the proposed
discretization on it. The stability of the fixed points of the resultant dynamical sys-
tem and the Lyapunov exponent are investigated. Finally, we study some dynamic
behavior of the resultant systems such as bifurcation and chaos.

1. Introduction

In recent years differential equations with fractional order have attracted many researchers
because of their applications in many areas of science and engineering. The need for frac-
tional order differential equations stems in part from the fact that many phenomena cannot
be modeled by differential equations with integer derivatives. Analytical and numerical
techniques have been implemented to study such equations. The fractional calculus has
allowed the operations of integration and differentiation to be applied upon any fractional
order. Recently theory of fractional differential equations attracted many scientists and
mathematicians to work on [4],[13],[14],[16]. For the existence of solutions for fractional
differential equations, one can see [10],[11],[12].

About the development of existence theorems for fractional functional differential equa-
tions, many contributions exist and can be referred to [17],[18],[19]. Many applications of
fractional calculus amounting to replace the time derivative in a given evolution equation
by a derivative of fractional order.

Recalling the basic definitions (Caputo) and properties of fractional order differentiation
and integration
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Definition 1. The fractional integral of order β ∈ R
+ of the function f(t), t > 0 is

defined by

Iβf(t) =

∫ t

0

(t− s)β−1

Γ(β)
f(s)ds,

and the fractional derivative of order α ∈ (n− 1, n) of f(t), t > 0 is defined by

Dαf(t) = In−αDnf(t), D =
d

dt
.

In addition, the following results are the main in fractional calculus. Let β, γ ∈ R
+,

α ∈ (0, 1),

• Iβa : L1 → L1, and if f(x) ∈ L1, thenIγa I
β
a f(x) = Iγ+β

a f(x).
• limβ→n I

β
a f(x) = Ina f(x) uniformly on [a, b], n = 1, 2, 3, ..., where

I1af(x) =
∫ x

a
f(s)ds.

• limβ→0 I
β
a f(x) = f(x) weakly.

• If f(x) is absolutely continuous on [a, b], then limα→1 D
α
a f(x) =

df(x)
dx

.

On the other hand, some examples of dynamical systems generated by piecewise constant
arguments have been studied in [1]-[2],[8],[9]. Here we propose a discretization process
to obtain the discrete version of fractional order differential equations. Mean while, we
apply the same discretization process to discretize the fractional order Riccati differential
equation.

2. Discretization process

Consider the differential equation of Riccati type

dx

dt
= 1− ρx2(t), t ∈ (0, T ], (2.1)

x(0) = xo. (2.2)

Its solution is given by

x =
1√
ρ
tanh(t+ tanh−1√ρxo).

On the other hand, consider the corresponding equation with piecewise constant argu-
ments given by

dx

dt
= 1− ρx2([

t

r
]r), (2.3)

with x(0) = xo.

Let t ∈ [0, r), then [ t
r
] = 0, and the solution of (2.3) is given by

x1(t) = xo + t(1− ρx2
o), t ∈ [0, r)

Let t ∈ [r, 2r), then [ t
r
] = 1, and the solution of (2.3) is given by

x2(t) = x1(r) + (t− r)(1− ρx2
1), t ∈ [r, 2r).
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Repeating the process we get

xn+1(t) = xn(nr) + r(1− ρx2
n(nr)), t ∈ [nr, (n+ 1)r),

as t → (n+ 1)r, we obtain

xn+1((n+ 1)r) = xn(nr) + r(1− ρx2
n(nr)),

i.e.

xn+1 = xn + r(1− ρx2
n). (2.4)

It should be noticed that the discretization (2.4) can be obtained by applying Euler method
[5].

Moreover, if we consider the equation

dx

dt
= 1− ρx([

t

r
]r)x([

t− r

r
]r), (2.5)

with x(0) = xo.
We can apply our procedure to obtain the discretization of the second order difference
equation

xn+1((n+ 1)r) = xn(nr) + r(1− ρxn(nr)x(n−1)(nr)). (2.6)

i.e.

xn+1 = xn + r(1− ρxnxn−1). (2.7)

The main purpose of this section is to introduce a discretization process of the fractional
order differential equation of Riccati type given by

Dαx(t) = 1− ρx2(t), t > 0, (2.8)

with the initial condition x(0) = xo.

Consider the counterpart of (2.8) with piecewise constant arguments

Dαx(t) = 1− ρx2([
t

r
]r), (2.9)

with the initial condition x(0) = xo.

The steps of the discretization process is as follows

1) Let t ∈ [0, r), then t
r
∈ [0, 1). So, we get

Dαx(t) = 1− ρx2
o, t ∈ [0, r),

and the solution of (2.9) is given by

x1(t) = xo + Iα(1− ρx2
0)

= xo + (1− ρx2
0)

∫ t

0

(t− s)α−1

Γ(α)
ds

= xo + (1− ρx2
0)

tα

Γ(1 + α)
.
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2) Let t ∈ [r, 2r), then t
r
∈ [1, 2). So, we get

Dαx(t) = 1− ρx2
1, t ∈ [r, 2r),

and the solution of (2.9) is given by

x2(t) = x1(r) + Iαr (1− ρx2
1)

= x1(r) + (1− ρx2
0)

∫ t

r

(t− s)α−1

Γ(α)
ds

= x1(r) + (1− ρx2
1(r))

(t− r)α

Γ(1 + α)

Repeating the process we can easily deduce that the solution of (2.9) is given by

xn+1(t) = xn(nr) +
(t− nr)α

Γ(1 + α)
(1− ρx2

n(nr)), t ∈ [nr, (n+ 1)r).

Let t → (n+ 1)r, we obtain the discretization

xn+1((n+ 1)r) = xn(nr) +
rα

Γ(1 + α)
(1− ρx2

n(nr)),

we get

xn+1 = xn +
rα

Γ(1 + α)
(1− ρx2

n). (2.10)

On a similar manner, consider the corresponding equation of (2.8) with piecewise constant
arguments

Dαx(t) = 1− ρx([
t

r
]r)x([

t− r

r
]r), (2.11)

with the initial condition x(0) = xo.
So, we obtain the second order discretization

xn+1 = xn +
rα

Γ(1 + α)
(1− ρxnxn−1). (2.12)

3. Approximate solution

In this part we give the error of the approximate solutions of (2.1) with the two equations
(2.4) and (2.7) where t = nr. The following table gives the absolute error = ||exact −
approximate|| for some different values of n and r between the exact solution of (2.1) and
(2.4).

n r=0.1 r=0.2 r=0.3

10 7.5392e-003 0.0030 4.0000e-004
30 2.0000e-004 1.0000e-004 2.9086e-005
50 1.0000e-004 1.8527e-007 1.5981e-009

Table 1: Absolute error of equation(2.4)

Similarly, The following table gives the absolute error = ||exact− approximate|| for some
different values of n and r between the exact solution of (2.1) and (2.7).
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n r=0.1 r=0.2 r=0.3

10 0.0232 0.0061 3.0000e-004
30 4.0000e-004 1.0000e-004 2.8788e-005
50 1.0000e-004 1.1772e-007 1.5984e-009

Table 2: Absolute error of equation(2.7)

4. Fixed points and their asymptotic stability

Now we study the fixed points of the system (2.10)which has two fixed points namely,
± 1√

ρ
given by solving the equation

x = x+
rα

Γ(1 + α)
(1− ρx2).

We deduce the stability analysis of these fixed points as follows [5]
xfix1 = 1√

ρ
is stable if

0 < ρ <
(Γ(1 + α))2

r2α
, (4.1)

and the second fixed point xfix2 = −1√
ρ
is unstable.

On the other hand, to study the stability of the fixed points of equation (2.12) we first
split it into two equations as follows

yn+1 = xn (4.2)

xn+1 = xn +
rα

Γ(1 + α)
(1− ρxnyn). (4.3)

This system has two fixed points namely, (x, y)fix1 = ( 1√
ρ
, 1√

ρ
) and (x, y)fix2 = (−1√

ρ
, −1√

ρ
).

We deduce the stability analysis of these fixed points as follows [15].

The Jacobian matrix is given by

J =

(

1 0

1− rαρ
Γ(1+α)y − rαρ

Γ(1+α)x

)

,

which has the eigenvalues

λ1,2 = 0.5(1− rα
√
ρ

Γ(1 + α)
)± 0.5

√

(1− rα
√
ρ

Γ(1 + α)
)2 + 4

rα
√
ρ

Γ(1 + α)
,

If we take for instance r = 0.2, α = 0.85, and ρ = 12, we get λ1 = 1 and λ2 = −0.6021.
This means that this fixed point is unstable.
While the eigenvalues corresponding to the second fixed point are

λ1,2 = 0.5(1 +
rα

√
ρ

Γ(1 + α)
)± 0.5

√

(1 +
rα

√
ρ

Γ(1 + α)
)2 − 4

rα
√
ρ

Γ(1 + α)
.
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Similarly, if we take r = 0.3, α = 0.95, and ρ = 8, we get λ1 = 1 and λ2 = 0.7616. This
means that this fixed point is unstable.
In the next section, we assure our analytical results obtained above by numerical experi-
ments.

It’s worth to mention here that Lyapunov exponent for (2.10) is given by

Lya.exp = lim
n→∞

Σlog2(1− 2
rα

Γ(1 + α)
ρxn).

When α → 1 the same Lyapunov exponent for the original discrete system (xn+1 =
xn + r(1− ρx2

n)) is obtained.

5. Bifurcation and chaos

In this section we show by numerical experiments that the dynamical behavior of the
dynamical systems (2.10) and (2.12) is affected by the change in both r and α.
Take r = 0.3 and α = 0.85 in (2.10) (Figure (1)).
Take r = 0.3 and α = 0.95 in (2.10) (Figure (2)).
Take r = 0.4 and α = 0.90 in (2.10) (Figure (3)).
Take r = 0.5 and α = 0.90 in (2.10) (Figure (4)).
Take r = 0.2 and α = 0.85 in (2.12) (Figure (5)).
Take r = 0.2 and α = 0.90 in (2.12) (Figure (6)).
Take r = 0.4 and α = 0.90 in (2.12) (Figure (7)).
Take r = 0.3 and α = 0.95 in (2.12) (Figure (8)).

Figure 1. Bifurcation dia-
gram of (2.10) when r = 0.3,
α = 0.85

Figure 2. Bifurcation dia-
gram of (2.10) when r = 0.3,
α = 0.95
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Figure 3. Bifurcation dia-
gram of (2.10) when r = 0.4,
α = 0.90

Figure 4. Bifurcation dia-
gram of (2.10) when r = 0.5,
α = 0.90

Figure 5. Bifurcation dia-
gram of (2.12) when r = 0.2,
α = 0.85

Figure 6. Bifurcation dia-
gram of (2.12) when r = 0.2,
α = 0.90

Figure 7. Bifurcation dia-
gram of (2.12) when r = 0.4,
α = 0.90

Figure 8. Bifurcation dia-
gram of (2.12) when r = 0.3,
α = 0.95
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6. Conclusion

We introduced a novel discretization process to discretize fractional order differential
equations. We have noticed that when α → 1, the discretization will be Euler’s method
discretizartion [5]. Indeed, the parameter α plays as a brake for the stability of the
resultant systems. Finally, all figures above agrees with our analytical results in (4.1).
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