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CERTAIN SPECIAL DIFFERENTIAL SUPERORDINATIONS

USING LINEAR OPERATOR

R. M. EL-ASHWAH, M. K. AOUF AND S. M. EL-DEEB

Abstract. In this paper, we obtain special differential superordinations by
using linear operator ℵs

p,b.

1. Introduction

Let H(U) denote the class of analytic functions in the open unit disk U = {z ∈
C : |z| < 1} and H[a, n] denote the subclass of functions f ∈ H(U) of the form:

f(z) = a+ anz
n + an+1z

n+1 + . . . (a ∈ C; n ∈ N = {1, 2, ...}).

Also, let A (p, n) denote the subclass of functions f ∈ H(U) of the form:

f(z) = zp +
∞∑

k=n

ak+pz
k+p (n ∈ N). (1)

If f and g are analytic functions in U , we say that f is subordinate to g (g is
superordinate to f ), written f ≺ g if there exists a Schwarz function w, which
is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that f(z) =
g(w(z)). Furthermore, if the function g is univalent in U, then we have the following
equivalence (see [1] and [3]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let φ(r, s; z) : C2×U → C and let h be analytic in U . If p and φ(p(z), zp
′
(z); z)

are univalent in U, p, h ∈ H(U), let p(z) satisfies the first order differential super-
ordination

h(z) ≺ φ(p(z), zp
′
(z); z), (2)

then p(z) is a solution of the differential superordination (2). The analytic function
q(z) is called a subordinant of the solutions of the differential superordination , if
q(z) ≺ p(z) for all the functions p(z) satisfying (2). An univalent subordinant q̃(z)
is said to be the best subordinant of (2) if q̃(z) ≺ q(z) for all subordinant q(z) (see
[4]).
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El-Ashwah [2] defined the linear operator ℵs
p,bf(z) : A(p, n) → A(p, n) as follows:

ℵs
p,bf(z) = zp+

∞∑
k=n

(
k + b+ 1

b+ 1

)s

ak+pz
k+p (b ∈ C\Z− = {−1,−2, ...}; s ∈ C; p, n ∈ N; z ∈ U).

(3)
We can easily verify from (3) that (see [2]):

z
(
ℵs
p,bf(z)

)′
= (b+ 1)ℵs+1

p,b f(z)− (b+ 1− p)ℵs
p,bf(z). (4)

We note that
(i) ℵ0

p,bf(z) = f(z);

(ii) ℵ1
p,p−1f(z) = zp +

∞∑
n=1

(
n+p
p

)
an+pz

n+p =
zf ′(z)

p
.

In order to prove our results, we shall need the following definition and lemmas.
Definition 1 [4]. Let Q be the set of all functions f that are analytic and injective
on U \ E(f), where E(f) = {ζ ∈ ∂U : lim

z→ζ
f(z) = ∞} and are such that f ′(ζ) ̸= 0

for ζ ∈ ∂U \ E(f).
Lemma 1 [3]. Let h be a convex function with h(0) = a, and let γ ∈ C\{0} be a

complex number with Reγ ≥ 0. If p ∈ H[a, n]∩Q, p(z) + 1
γ zp

′
(z) is univalent in U

and

h(z) ≺ p(z) +
1

γ
zp

′
(z),

then

q(z) ≺ p(z),

where q(z) =
γ

nz
γ
n

z

0
h(t)t

γ
n−1dt, z ∈ U. The function q is convex and is the best

subordinant.
Lemma 2 [5]. For real or complex parameters α1, α2, α3

(
α3 /∈ Z−

0 = {0,−1,−2, ...}
)
,

1
0t

α2−1(1−t)α3−α2−1(1−tz)−α1dt =
Γ (α2) Γ (α3 − α2)

Γ (α3)
2F1 (α1, α2;α3; z) (Re (α3) > Re (α2) > 0)

(5)
and

2F1 (α1, α2;α3; z) = (1− z)
−α1

2F1

(
α1, α3 − α2;α3;

z

z − 1

)
. (6)

2. Main results
Unless otherwise mentioned, we shall assume in the reminder of this paper that

b ∈ C\Z−, s ∈ C, p, n ∈ N and z ∈ U and the powers are understood as principle
values.
Theorem 1. Let h be a convex function in U with h(0) = 1. Let f ∈ A (p, n) , F (z) =

Ic,p(f)(z) =
c+1

zc−p+1

z

0
tc−pf(t)dt, z ∈ U, Rec > −1 and suppose that

(
ℵs
p,bf(z)

)′

pzp−1
is
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univalent in U ,

(
ℵs
p,bF (z)

)′

pzp−1
∈ H[1, n] ∩Q and

h(z) ≺

(
ℵs
p,bf(z)

)′

pzp−1
, (7)

then

q(z) ≺

(
ℵs
p,bF (z)

)′

pzp−1
,

where q(z) =
c+ 1

nz
c+1
n

z

0

h(t)t
c+1
n −1dt. The function q is convex and it is the best sub-

ordinant.

Proof. We have
zc−p+1F (z) = (c+ 1)z0t

c−pf(t)dt, (8)

by differentiating (8) with respect to z, we obtain that

zc−p+1F
′
(z) + (c− p+ 1)zc−pF (z) = (c+ 1)zc−pf(z)

that is, that

zF
′
(z) + (c− p+ 1)F (z) = (c+ 1)f(z)

and

z
(
ℵs
p,bF (z)

)′
+ (c− p+ 1)

(
ℵs
p,bF (z)

)
= (c+ 1)

(
ℵs
p,bf(z)

)
(z ∈ U) . (9)

Differentiating (9) with respect to z, we have

z
(
ℵs
p,bF (z)

)′′
+
(
ℵs
p,bF (z)

)′
+ (c− p+ 1)

(
ℵs
p,bF (z)

)′
= (c+ 1)

(
ℵs
p,bf(z)

)′
then

z
(
ℵs
p,bF (z)

)′′
+ (c− p+ 2)

(
ℵs
p,bF (z)

)′
= (c+ 1)

(
ℵs
p,bf(z)

)′
. (10)

Denote

ϕ(z) =

(
ℵs
p,bF (z)

)′

pzp−1
(z ∈ U) ,

then

pzp−1ϕ(z) =
(
ℵs
p,bF (z)

)′
(11)

and differentiating (11) with respect to z, we obtain that

p(p− 1)zp−1ϕ(z) + pzpϕ
′
(z) = z

(
ℵs
p,bF (z)

)′′
(12)

using (10), (11) and (12), the differential superordination (2.1) becomes

h(z) ≺ ϕ(z) +
1

c+ 1
zϕ

′
(z),

by using Lemma 1 for γ = c+ 1, we have

q(z) ≺ ϕ(z),

i.e.

q(z) ≺

(
ℵs
p,bF (z)

)′

pzp−1
,
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where q(z) =
c+ 1

nz
c+1
n

z

0

h(t)t
c+1
n −1dt. The function q is convex and it is the best sub-

ordinant.

Putting h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1) in Theorem 1, we obtain the following

corollary.

Corollary 1. Let h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1). Let f ∈ A (p, n) , F (z) =

Ic,p(f)(z) =
c+1

zc−p+1

z

0
tc−pf(t)dt, Rec > −1, z ∈ U and suppose that

(
ℵs
p,bf(z)

)′

pzp−1
is

univalent in U ,

(
ℵs
p,bF (z)

)′

pzp−1
∈ H[1, n] ∩Q and

1 + (1− 2β)z

1− z
≺

(
ℵs
p,bf(z)

)′

pzp−1
, (13)

then

q(z) ≺

(
ℵs
p,bF (z)

)′

pzp−1
,

where q is given by q(z) = (2β−1)+2(1−β) 2F1

(
1, c+1

n ; c+1
n + 1; z

)
. The function

q is convex and it is the best subordinant.
Theorem 2. Let h be a convex function in U with h(0) = 1. Let f ∈ A (p, n) , suppose

that

(
ℵs
p,bf(z)

)′

pzp−1
is univalent in U ,

ℵs
p,bf(z)

zp
∈ H[1, n] ∩Q. If

h(z) ≺

(
ℵs
p,bf(z)

)′

pzp−1
, (14)

then

q(z) ≺
ℵs
p,bf(z)

zp
, (15)

where q(z) =
p

nz
p
n

z

0
h(t)t

p
n−1dt. The function q is convex and it is the best subor-

dinant.
Proof. consider

ϕ(z) =
ℵs
p,bf(z)

zp
=

zp +
∞∑

k=n

(
k+b+1
b+1

)s
ak+pz

k+p

zp
= 1+ϕnz

n+ϕn+1z
n+1+.. (z ∈ U) .

(16)
Differentiating (16) with respect to z, we obtain(

ℵs
p,bf(z)

)′
= pzp−1ϕ(z) + zpϕ

′
(z),

that is, that (
ℵs
p,bf(z)

)′

pzp−1
= ϕ(z) +

1

p
zϕ

′
(z).
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Then, the differential superordination (14) becomes

h(z) ≺ ϕ(z) +
1

p
zϕ

′
(z).

By using Lemma 1 for γ = p, we have

q(z) ≺ ϕ(z),

i.e.

q(z) ≺
ℵs
p,bf(z)

zp
,

where q(z) =
p

nz
p
n

z

0
h(t)t

p
n−1dt. The function q is convex and it is the best subor-

dinant.

Putting h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1) in Theorem 2, we obtain the following

corollary.

Corollary 2. Let h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1) . Let f ∈ A (p, n) , suppose that(

ℵs
p,bf(z)

)′

pzp−1
is univalent in U ,

ℵs
p,bf(z)

zp
∈ H[1, n] ∩Q. If

1 + (1− 2β)z

1− z
≺

(
ℵs
p,bf(z)

)′

pzp−1
, (17)

then

q(z) ≺
ℵs
p,bf(z)

zp
, (18)

where q is given by q(z) = (2β − 1) + 2(1− β) 2F1

(
1, p

n ;
p+n
n ; z

)
. The function q is

convex and it is the best subordinant.
Theorem 3. Let h be a convex function in U with h(0) = 1. Let f ∈ A (p, n) , suppose

that
1

pzp−1

(
zpℵs+1

p,b f(z)

ℵs
p,bf(z)

)′

is univalent in U and
ℵs+1
p,b f(z)

ℵs
p,bf(z)

∈ H[1, n] ∩Q. If

h(z) ≺ 1

pzp−1

(
zpℵs+1

p,b f(z)

ℵs
p,bf(z)

)
, (19)

then

q(z) ≺
ℵs+1
p,b f(z)

ℵs
p,bf(z)

, (20)

where q(z) =
p

nz
p
n

z

0
h(t)t

p
n−1dt. The function q is convex and it is the best subor-

dinant.
Proof. consider

ϕ(z) =
ℵs+1
p,b f(z)

ℵs
p,bf(z)

=

zp +
∞∑

k=n

(
k+b+1
b+1

)s+1

ak+pz
k+p

zp +
∞∑

k=n

(
k+b+1
b+1

)s
ak+pzk+p
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we have z
pϕ

′
(z) + ϕ(z) =

1

pzp−1

(
zpℵs+1

p,b f(z)

ℵs
p,bf(z)

)′

. Then, the differential superordi-

nation (19) becomes

h(z) ≺ ϕ(z) +
z

p
ϕ

′
(z).

By using Lemma 1 for γ = p, we have

q(z) ≺ ϕ(z),

i.e.

q(z) ≺
ℵs+1
p,b f(z)

ℵs
p,bf(z)

,

where q(z) =
p

nz
p
n

z

0
h(t)t

p
n−1dt. The function q is convex and it is the best subor-

dinant.
Putting h(z) = 1+(1−2β)z

1−z (0 ≤ β < 1) in Theorem 3, we obtain the following
corollary.

Corollary 3. Let h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1). Let f ∈ A (p, n) , suppose that

1

pzp−1

(
zpℵs+1

p,b f(z)

ℵs
p,bf(z)

)′

is univalent in U and
ℵs+1
p,b f(z)

ℵs
p,bf(z)

∈ H[1, n] ∩Q. If

1 + (1− 2β)z

1− z
≺ 1

pzp−1

(
zpℵs+1

p,b f(z)

ℵs
p,bf(z)

)′

,

then

q(z) ≺
ℵs+1
p,b f(z)

ℵs
p,bf(z)

,

where q is given by q(z) = (2β − 1) + 2(1− β) 2F1

(
1, p

n ;
p+n
n ; z

)
. The function q is

convex and it is the best subordinant.
Theorem 4. Let h be a convex function in U with h(0) = 1. Let f ∈ A (p, n) , suppose

that (b+ 1)
ℵs+1
p,b f(z)

zp
− b

ℵs
p,bf(z)

zp
is univalent in U and

ℵs
p,bf(z)

zp
∈ H[1, n] ∩Q. If

h(z) ≺ (b+ 1)
ℵs+1
p,b f(z)

zp
− b

ℵs
p,bf(z)

zp
, (21)

then

q(z) ≺
ℵs
p,bf(z)

zp
, (22)

where q(z) =
1

nz
1
n

z

0

h(t)t
1
n−1dt. The function q is convex and it is the best subor-

dinant.
Proof. consider

ϕ(z) =
ℵs
p,bf(z)

zp
= 1 +

∞∑
k=n

(
k + b+ 1

b+ 1

)s

ak+pz
k.

we obtain

ϕ(z) + zϕ
′
(z) = (b+ 1)

ℵs+1
p,b f(z)

zp
− b

ℵs
p,bf(z)

zp
.
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Then, the differential superordination (21) becomes

h(z) ≺ ϕ(z) + zϕ
′
(z).

By using Lemma 1 for γ = 1, we have

q(z) ≺ ϕ(z),

i.e.

q(z) ≺
ℵs
p,bf(z)

zp
,

where q(z) =
1

nz
1
n

z

0

h(t)t
1
n−1dt. The function q is convex and it is the best subor-

dinant.
Putting h(z) = 1+(1−2β)z

1−z (0 ≤ β < 1) in Theorem 4, we obtain the following
corollary.

Corollary 4. Let h(z) = 1+(1−2β)z
1−z (0 ≤ β < 1). Let f ∈ A (p, n) , suppose that

(b+ 1)
ℵs+1
p,b f(z)

zp
− b

ℵs
p,bf(z)

zp
is univalent in U and

ℵs
p,bf(z)

zp
∈ H[1, n] ∩Q. If

1 + (1− 2β)z

1− z
≺ (b+ 1)

ℵs+1
p,b f(z)

zp
− b

ℵs
p,bf(z)

zp
,

then

q(z) ≺
ℵs
p,bf(z)

zp
,

where q is given by q(z) = (2β − 1) + 2(1− β) 2F1

(
1, 1

n ;
1+n
n ; z

)
. The function q is

convex and it is the best subordinant.
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