Journal of Fractional Calculus and Applications, Vol. 4(2) July 2013, pp. 260-266. ISSN: 2090-5858. http://www.fcaj.webs.com/

CERTAIN SPECIAL DIFFERENTIAL SUPERORDINATIONS USING LINEAR OPERATOR

R. M. EL-ASHWAH, M. K. AOUF AND S. M. EL-DEEB

ABSTRACT. In this paper, we obtain special differential superordinations by using linear operator $\aleph^s_{n,b}$.

1. INTRODUCTION

Let $\mathcal{H}(U)$ denote the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}[a, n]$ denote the subclass of functions $f \in \mathcal{H}(U)$ of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (a \in \mathbb{C}; \ n \in \mathbb{N} = \{1, 2, \dots\}).$$

Also, let $\mathcal{A}(p, n)$ denote the subclass of functions $f \in \mathcal{H}(U)$ of the form:

$$f(z) = z^p + \sum_{k=n}^{\infty} a_{k+p} z^{k+p} \quad (n \in \mathbb{N}).$$

$$\tag{1}$$

If f and g are analytic functions in U, we say that f is subordinate to g (g is superordinate to f), written $f \prec g$ if there exists a Schwarz function w, which is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that f(z) = g(w(z)). Furthermore, if the function g is univalent in U, then we have the following equivalence (see [1] and [3]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Let $\varphi(r, s; z) : \mathbb{C}^2 \times U \to \mathbb{C}$ and let *h* be analytic in *U*. If *p* and $\varphi(p(z), zp'(z); z)$ are univalent in *U*, *p*, *h* $\in \mathcal{H}(U)$, let p(z) satisfies the first order differential superordination

$$h(z) \prec \varphi(p(z), zp'(z); z), \tag{2}$$

then p(z) is a solution of the differential superordination (2). The analytic function q(z) is called a subordinant of the solutions of the differential superordination, if $q(z) \prec p(z)$ for all the functions p(z) satisfying (2). An univalent subordinant $\tilde{q}(z)$ is said to be the best subordinant of (2) if $\tilde{q}(z) \prec q(z)$ for all subordinant q(z) (see [4]).

Key words and phrases. p-Valent functions, differential superordination.

²⁰⁰⁰ Mathematics Subject Classification: 30C45.

Submitted April 11, 2013.

JFCA-2013/4(2)

2) CERTAIN SPECIAL DIFFERENTIAL SUPERORDINATIONS 261

El-Ashwah [2] defined the linear operator $\aleph_{p,b}^s f(z) : A(p,n) \to A(p,n)$ as follows:

$$\aleph_{p,b}^{s}f(z) = z^{p} + \sum_{k=n}^{\infty} \left(\frac{k+b+1}{b+1}\right)^{s} a_{k+p} z^{k+p} \quad (b \in \mathbb{C} \setminus \mathbb{Z}^{-} = \{-1, -2, ...\}; s \in \mathbb{C}; p, n \in \mathbb{N}; z \in U)$$
(3)

We can easily verify from (3) that (see [2]):

$$z\left(\aleph_{p,b}^{s}f(z)\right)' = (b+1)\aleph_{p,b}^{s+1}f(z) - (b+1-p)\aleph_{p,b}^{s}f(z).$$
(4)

We note that (i) $\lambda^0 f(x) = f(x)$

(i)
$$\aleph_{p,b}^0 f(z) = f(z);$$

(ii) $\aleph_{p,p-1}^1 f(z) = z^p + \sum_{n=1}^{\infty} \left(\frac{n+p}{p}\right) a_{n+p} z^{n+p} = \frac{zf'(z)}{p}.$

In order to prove our results, we shall need the following definition and lemmas. **Definition 1** [4]. Let Q be the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where $E(f) = \{\zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty\}$ and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1 [3]. Let h be a convex function with h(0) = a, and let $\gamma \in \mathbb{C} \setminus \{0\}$ be a complex number with $Re\gamma \geq 0$. If $p \in \mathcal{H}[a, n] \cap Q$, $p(z) + \frac{1}{\gamma}zp'(z)$ is univalent in U and

$$h(z) \prec p(z) + \frac{1}{\gamma} z p'(z),$$

then

$$q(z) \prec p(z),$$

where $q(z) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} h(t)t^{\frac{\gamma}{n}-1}dt$, $z \in U$. The function q is convex and is the best subordinant.

Lemma 2 [5]. For real or complex parameters $\alpha_1, \alpha_2, \alpha_3 \ (\alpha_3 \notin \mathbb{Z}_0^- = \{0, -1, -2, ...\})$,

$${}_{0}^{1}t^{\alpha_{2}-1}(1-t)^{\alpha_{3}-\alpha_{2}-1}(1-tz)^{-\alpha_{1}}dt = \frac{\Gamma(\alpha_{2})\Gamma(\alpha_{3}-\alpha_{2})}{\Gamma(\alpha_{3})} {}_{2}F_{1}(\alpha_{1},\alpha_{2};\alpha_{3};z) \quad (Re(\alpha_{3}) > Re(\alpha_{2}) > 0)$$
(5)

and

$${}_{2}F_{1}(\alpha_{1},\alpha_{2};\alpha_{3};z) = (1-z)^{-\alpha_{1}} {}_{2}F_{1}\left(\alpha_{1},\alpha_{3}-\alpha_{2};\alpha_{3};\frac{z}{z-1}\right).$$
(6)

2. MAIN RESULTS

Unless otherwise mentioned, we shall assume in the reminder of this paper that $b \in \mathbb{C} \setminus \mathbb{Z}^-$, $s \in \mathbb{C}$, $p, n \in \mathbb{N}$ and $z \in U$ and the powers are understood as principle values.

Theorem 1. Let h be a convex function in U with h(0) = 1. Let $f \in \mathcal{A}(p, n)$, $F(z) = I_{c,p}(f)(z) = \frac{c+1}{z^{c-p+1}} t^{c-p} f(t) dt$, $z \in U$, Rec > -1 and suppose that $\frac{\left(\aleph_{p,b}^s f(z)\right)'}{pz^{p-1}}$ is

univalent in U, $\frac{\left(\aleph_{p,b}^{s}F(z)\right)'}{pz^{p-1}} \in \mathcal{H}[1,n] \cap Q$ and

$$h(z) \prec \frac{\left(\aleph_{p,b}^{s} f(z)\right)'}{p z^{p-1}},\tag{7}$$

then

$$q(z) \prec \frac{\left(\aleph_{p,b}^s F(z)\right)}{pz^{p-1}},$$

where $q(z) = \frac{c+1}{nz^{\frac{c+1}{n}}} \int_{0}^{z} h(t) t^{\frac{c+1}{n}-1} dt$. The function q is convex and it is the best sub-ordinant.

Proof. We have

$$z^{c-p+1}F(z) = (c+1)_0^z t^{c-p} f(t)dt,$$
(8)

by differentiating (8) with respect to z, we obtain that

$$z^{c-p+1}F'(z) + (c-p+1)z^{c-p}F(z) = (c+1)z^{c-p}f(z)$$

that is, that

$$zF'(z) + (c - p + 1)F(z) = (c + 1)f(z)$$

and

$$z\left(\aleph_{p,b}^{s}F(z)\right)' + (c-p+1)\left(\aleph_{p,b}^{s}F(z)\right) = (c+1)\left(\aleph_{p,b}^{s}f(z)\right) \ (z \in U).$$
(9)

Differentiating (9) with respect to z, we have

$$z\left(\aleph_{p,b}^{s}F(z)\right)^{\prime\prime} + \left(\aleph_{p,b}^{s}F(z)\right)^{\prime} + (c-p+1)\left(\aleph_{p,b}^{s}F(z)\right)^{\prime} = (c+1)\left(\aleph_{p,b}^{s}f(z)\right)^{\prime}$$

then

$$z\left(\aleph_{p,b}^{s}F(z)\right)^{''} + (c-p+2)\left(\aleph_{p,b}^{s}F(z)\right)^{'} = (c+1)\left(\aleph_{p,b}^{s}f(z)\right)^{'}.$$
 (10)

Denote

$$\phi(z) = \frac{\left(\aleph_{p,b}^s F(z)\right)}{pz^{p-1}} \ (z \in U)$$

then

$$pz^{p-1}\phi(z) = \left(\aleph_{p,b}^s F(z)\right)' \tag{11}$$

and differentiating (11) with respect to z, we obtain that

$$p(p-1)z^{p-1}\phi(z) + pz^{p}\phi'(z) = z\left(\aleph_{p,b}^{s}F(z)\right)''$$
(12)

using (10), (11) and (12), the differential superordination (2.1) becomes

$$h(z) \prec \phi(z) + \frac{1}{c+1} z \phi'(z),$$

by using Lemma 1 for $\gamma = c + 1$, we have

$$q(z) \prec \phi(z),$$

i.e.

$$q(z)\prec \frac{\left(\aleph_{p,b}^{s}F(z)\right)^{'}}{pz^{p-1}},$$

262

JFCA-2013/4(2)

where $q(z) = \frac{c+1}{nz^{\frac{c+1}{n}}} \int_{0}^{z} h(t) t^{\frac{c+1}{n}-1} dt$. The function q is convex and it is the best sub-ordinant.

Putting $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$ in Theorem 1, we obtain the following corollary. **Corollary 1.** Let $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$. Let $f \in \mathcal{A}(p,n)$, $F(z) = I_{c,p}(f)(z) = \frac{c+1}{z^{c-p+1}} t^{c-p} f(t) dt$, Rec > -1, $z \in U$ and suppose that $\frac{\left(\aleph_{p,b}^s f(z)\right)'}{pz^{p-1}}$ is univalent in U, $\frac{\left(\aleph_{p,b}^s F(z)\right)'}{pz^{p-1}} \in \mathcal{H}[1,n] \cap Q$ and

$$\frac{1+(1-2\beta)z}{1-z} \prec \frac{\left(\aleph_{p,b}^s f(z)\right)}{pz^{p-1}},\tag{13}$$

then

$$q(z) \prec \frac{\left(\aleph_{p,b}^s F(z)\right)}{pz^{p-1}},$$

where q is given by $q(z) = (2\beta - 1) + 2(1 - \beta) {}_2F_1\left(1, \frac{c+1}{n}; \frac{c+1}{n} + 1; z\right)$. The function q is convex and it is the best subordinant.

Theorem 2. Let h be a convex function in U with h(0) = 1. Let $f \in \mathcal{A}(p, n)$, suppose that $\frac{\left(\aleph_{p,b}^{s}f(z)\right)'}{\left(1 + \frac{1}{2}\right)'}$ is univalent in U, $\frac{\aleph_{p,b}^{s}f(z)}{\left(1 + \frac{1}{2}\right)'} \in \mathcal{H}[1, n] \cap Q$. If

hat
$$\frac{\langle P, p \rangle}{pz^{p-1}}$$
 is univalent in $U, \frac{p, b \langle V \rangle}{z^p} \in \mathcal{H}[1, n] \cap Q$. If
$$h(z) \prec \frac{\left(\aleph_{p, b}^s f(z)\right)'}{pz^{p-1}},$$
(14)

then

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p},\tag{15}$$

where $q(z) = \frac{p}{nz^{\frac{p}{n}}} {}^{z}_{0} h(t) t^{\frac{p}{n}-1} dt$. The function q is convex and it is the best subordinant.

Proof. consider

$$\phi(z) = \frac{\aleph_{p,b}^s f(z)}{z^p} = \frac{z^p + \sum_{k=n}^{\infty} \left(\frac{k+b+1}{b+1}\right)^s a_{k+p} z^{k+p}}{z^p} = 1 + \phi_n z^n + \phi_{n+1} z^{n+1} + \dots (z \in U)$$
(16)

Differentiating (16) with respect to z, we obtain

$$(\aleph_{p,b}^{s}f(z))' = pz^{p-1}\phi(z) + z^{p}\phi'(z),$$

that is, that

$$\frac{\left(\aleph_{p,b}^{s}f(z)\right)^{'}}{pz^{p-1}}=\phi(z)+\frac{1}{p}z\phi^{'}(z).$$

Then, the differential superordination (14) becomes

$$h(z) \prec \phi(z) + \frac{1}{p} z \phi^{'}(z).$$

By using Lemma 1 for $\gamma = p$, we have

$$q(z) \prec \phi(z),$$

i.e.

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p}$$

where $q(z) = \frac{p}{nz^{\frac{p}{n}}} {}^{z}_{0} h(t) t^{\frac{p}{n}-1} dt$. The function q is convex and it is the best subordinant.

Putting $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$ in Theorem 2, we obtain the following corollary. **Corollary 2.** Let $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$. Let $f \in \mathcal{A}(p,n)$, suppose that $\frac{\left(\aleph_{p,b}^{s}f(z)\right)'}{pz^{p-1}}$ is univalent in $U, \frac{\aleph_{p,b}^{s}f(z)}{z^{p}} \in \mathcal{H}[1,n] \cap Q$. If $\frac{1+(1-2\beta)z}{1-z} \prec \frac{\left(\aleph_{p,b}^{s}f(z)\right)'}{pz^{p-1}}$, (17)

then

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p},\tag{18}$$

where q is given by $q(z) = (2\beta - 1) + 2(1 - \beta) {}_2F_1\left(1, \frac{p}{n}; \frac{p+n}{n}; z\right)$. The function q is convex and it is the best subordinant. **Theorem 3.** Let h be a convex function in U with h(0) = 1. Let $f \in \mathcal{A}(p, n)$, suppose

that
$$\frac{1}{pz^{p-1}} \left(\frac{z^p \aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \right)' \text{ is univalent in } U \text{ and } \frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \in \mathcal{H}[1,n] \cap Q. \text{ If}$$
$$h(z) \prec \frac{1}{pz^{p-1}} \left(\frac{z^p \aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \right), \tag{19}$$

then

$$q(z) \prec \frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)},\tag{20}$$

where $q(z) = \frac{p}{nz^{\frac{p}{n}}} {}^{z}_{0} h(t) t^{\frac{p}{n}-1} dt$. The function q is convex and it is the best subordinant.

Proof. consider

$$\phi(z) = \frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^{s} f(z)} = \frac{z^p + \sum_{k=n}^{\infty} \left(\frac{k+b+1}{b+1}\right)^{s+1} a_{k+p} z^{k+p}}{z^p + \sum_{k=n}^{\infty} \left(\frac{k+b+1}{b+1}\right)^s a_{k+p} z^{k+p}}$$

JFCA-2013/4(2)

we have $\frac{z}{p}\phi'(z) + \phi(z) = \frac{1}{pz^{p-1}} \left(\frac{z^p\aleph_{p,b}^{s+1}f(z)}{\aleph_{p,b}^sf(z)}\right)'$. Then, the differential superordination (19) becomes h

$$h(z) \prec \phi(z) + \frac{z}{p} \phi'(z).$$

By using Lemma 1 for $\gamma = p$, we have

i.e.

$$q(z) \prec \frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^{s} f(z)},$$

 $q(z) \prec \phi(z),$

where $q(z) = \frac{p}{nz_n^{\frac{p}{n}}} h(t) t^{\frac{p}{n}-1} dt$. The function q is convex and it is the best subordinant.

Putting $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$ in Theorem 3, we obtain the following corollary. $L_{at} h(z) = \frac{1 + (1 - 2\beta)z}{1 + (1 - 2\beta)z}$ (0 < β < 1) Let f

Corollary 3. Let
$$h(z) = \frac{1+(1-2\beta)z}{1-z}$$
 $(0 \le \beta < 1)$. Let $f \in \mathcal{A}(p,n)$, suppose that
 $\frac{1}{pz^{p-1}} \left(\frac{z^p \aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \right)'$ is univalent in U and $\frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \in \mathcal{H}[1,n] \cap Q$. If
 $\frac{1+(1-2\beta)z}{1-z} \prec \frac{1}{pz^{p-1}} \left(\frac{z^p \aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)} \right)'$,
then

tnen

$$q(z) \prec \frac{\aleph_{p,b}^{s+1} f(z)}{\aleph_{p,b}^s f(z)},$$

where q is given by $q(z) = (2\beta - 1) + 2(1 - \beta) {}_2F_1\left(1, \frac{p}{n}; \frac{p+n}{n}; z\right)$. The function q is convex and it is the best subordinant.

Theorem 4. Let h be a convex function in U with h(0) = 1. Let $f \in \mathcal{A}(p, n)$, suppose that $(b+1)\frac{\aleph_{p,b}^{s+1}f(z)}{z^p} - b\frac{\aleph_{p,b}^sf(z)}{z^p}$ is univalent in U and $\frac{\aleph_{p,b}^sf(z)}{z^p} \in \mathcal{H}[1,n] \cap Q$. If

$$h(z) \prec (b+1) \frac{\kappa_{p,b}^{s+1}f(z)}{z^p} - b \frac{\kappa_{p,b}^{s}f(z)}{z^p},$$
 (21)

then

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p},\tag{22}$$

where $q(z) = \frac{1}{nz_n^{\frac{1}{n}}} h(t) t^{\frac{1}{n}-1} dt$. The function q is convex and it is the best subordinant.

Proof. consider

$$\phi(z) = \frac{\aleph_{p,b}^s f(z)}{z^p} = 1 + \sum_{k=n}^{\infty} \left(\frac{k+b+1}{b+1}\right)^s a_{k+p} z^k.$$

we obtain

$$\phi(z) + z\phi'(z) = (b+1)\frac{\aleph_{p,b}^{s+1}f(z)}{z^p} - b\frac{\aleph_{p,b}^{s}f(z)}{z^p}.$$

Then, the differential superordination (21) becomes

$$(z) \prec \phi(z) + z\phi'(z).$$

By using Lemma 1 for $\gamma = 1$, we have

$$q(z) \prec \phi(z)$$

i.e.

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p},$$

where $q(z) = \frac{1}{nz_{\frac{1}{n}}^{\frac{1}{n}}} h(t)t^{\frac{1}{n}-1}dt$. The function q is convex and it is the best subordinant.

Putting $h(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$ in Theorem 4, we obtain the following corollary. $1 + (1 - 2\beta)$

Corollary 4. Let
$$h(z) = \frac{1+(1-2\beta)z}{1-z}$$
 $(0 \le \beta < 1)$. Let $f \in \mathcal{A}(p,n)$, suppose that
 $(b+1)\frac{\aleph_{p,b}^{s+1}f(z)}{z^p} - b\frac{\aleph_{p,b}^sf(z)}{z^p}$ is univalent in U and $\frac{\aleph_{p,b}^sf(z)}{z^p} \in \mathcal{H}[1,n] \cap Q$. If
 $\frac{1+(1-2\beta)z}{1-z} \prec (b+1)\frac{\aleph_{p,b}^{s+1}f(z)}{z^p} - b\frac{\aleph_{p,b}^sf(z)}{z^p}$,
then
 $a(z) \preceq \frac{\aleph_{p,b}^sf(z)}{z^p}$.

$$q(z) \prec \frac{\aleph_{p,b}^s f(z)}{z^p},$$

where q is given by $q(z) = (2\beta - 1) + 2(1 - \beta) {}_2F_1\left(1, \frac{1}{n}; \frac{1+n}{n}; z\right)$. The function q is convex and it is the best subordinant.

References

- [1] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [2] R. M. El-Ashwah, Majorization properties for subclass of analytic p-valent functions defined by linear operator, Int. J. Open Problems Complex Analysis, 4(2012), no. 3, 43-50.
- [3] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [4] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
- [5] E. T. Whittaker and G. N. Watson, A course on Modern Analysis: An Introduction to the General Theory of infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge Univ. pree, Cambridge, 1927.

R. M. EL-ASHWAH, FACULTY OF SCIENCE, DAMIETTA UNIVERSITY, NEW DAMIETTA, EGYPT E-mail address: r_elashwah@yahoo.com

M. K. AOUF, FACULTY OF SCIENCE, MANSOURA UNIVERSITY, MANSOURA, EGYPT E-mail address: mkaouf127@yahoo.com

S. M. EL-DEEB, FACULTY OF SCIENCE, DAMIETTA UNIVERSITY, NEW DAMIETTA, EGYPT E-mail address: shezaeldeeb@yahoo.com