CERTAIN SPECIAL DIFFERENTIAL SUPERORDINATIONS USING LINEAR OPERATOR

R. M. EL-ASHWAH, M. K. AOUF AND S. M. EL-DEEB

Abstract

In this paper, we obtain special differential superordinations by using linear operator $\aleph_{p, b}^{s}$.

1. Introduction

Let $\mathcal{H}(U)$ denote the class of analytic functions in the open unit disk $U=\{z \in$ $\mathbb{C}:|z|<1\}$ and $\mathcal{H}[a, n]$ denote the subclass of functions $f \in \mathcal{H}(U)$ of the form:

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots \quad(a \in \mathbb{C} ; n \in \mathbb{N}=\{1,2, \ldots\})
$$

Also, let $\mathcal{A}(p, n)$ denote the subclass of functions $f \in \mathcal{H}(U)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{k+p} z^{k+p} \quad(n \in \mathbb{N}) \tag{1}
\end{equation*}
$$

If f and g are analytic functions in U, we say that f is subordinate to g (g is superordinate to f), written $f \prec g$ if there exists a Schwarz function w, which is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=$ $g(w(z))$. Furthermore, if the function g is univalent in U, then we have the following equivalence (see [1] and [3]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Let $\varphi(r, s ; z): \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and let h be analytic in U. If p and $\varphi\left(p(z), z p^{\prime}(z) ; z\right)$ are univalent in $U, p, h \in \mathcal{H}(U)$, let $p(z)$ satisfies the first order differential superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z) ; z\right) \tag{2}
\end{equation*}
$$

then $p(z)$ is a solution of the differential superordination (2). The analytic function $q(z)$ is called a subordinant of the solutions of the differential superordination, if $q(z) \prec p(z)$ for all the functions $p(z)$ satisfying (2). An univalent subordinant $\widetilde{q}(z)$ is said to be the best subordinant of (2) if $\widetilde{q}(z) \prec q(z)$ for all subordinant $q(z)$ (see [4]).

[^0]El-Ashwah [2] defined the linear operator $\aleph_{p, b}^{s} f(z): A(p, n) \rightarrow A(p, n)$ as follows:

$$
\begin{equation*}
\aleph_{p, b}^{s} f(z)=z^{p}+\sum_{k=n}^{\infty}\left(\frac{k+b+1}{b+1}\right)^{s} a_{k+p} z^{k+p}\left(b \in \mathbb{C} \backslash \mathbb{Z}^{-}=\{-1,-2, \ldots\} ; s \in \mathbb{C} ; p, n \in \mathbb{N} ; z \in U\right) \tag{3}
\end{equation*}
$$

We can easily verify from (3) that (see [2]):

$$
\begin{equation*}
z\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}=(b+1) \aleph_{p, b}^{s+1} f(z)-(b+1-p) \aleph_{p, b}^{s} f(z) \tag{4}
\end{equation*}
$$

We note that
(i) $\aleph_{p, b}^{0} f(z)=f(z)$;
(ii) $\aleph_{p, p-1}^{1} f(z)=z^{p}+\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right) a_{n+p} z^{n+p}=\frac{z f^{\prime}(z)}{p}$.

In order to prove our results, we shall need the following definition and lemmas. Definition 1 [4]. Let \mathcal{Q} be the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where $E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}$ and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 1 [3]. Let h be a convex function with $h(0)=a$, and let $\gamma \in \mathbb{C} \backslash\{0\}$ be a complex number with $\operatorname{Re} \gamma \geq 0$. If $p \in \mathcal{H}[a, n] \cap Q, p(z)+\frac{1}{\gamma} z p^{\prime}(z)$ is univalent in U and

$$
h(z) \prec p(z)+\frac{1}{\gamma} z p^{\prime}(z),
$$

then

$$
q(z) \prec p(z)
$$

where $q(z)={\frac{\gamma}{n z^{\frac{\gamma}{n}}}}_{0}^{z} h(t) t^{\frac{\gamma}{n}-1} d t, z \in U$. The function q is convex and is the best subordinant.
Lemma 2 [5]. For real or complex parameters $\alpha_{1}, \alpha_{2}, \alpha_{3}\left(\alpha_{3} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}\right)$,

$$
\begin{equation*}
{ }_{0}^{1} t^{\alpha_{2}-1}(1-t)^{\alpha_{3}-\alpha_{2}-1}(1-t z)^{-\alpha_{1}} d t=\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}-\alpha_{2}\right)}{\Gamma\left(\alpha_{3}\right)}{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \alpha_{3} ; z\right) \quad\left(\operatorname{Re}\left(\alpha_{3}\right)>\operatorname{Re}\left(\alpha_{2}\right)>0\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{2} ; \alpha_{3} ; z\right)=(1-z)^{-\alpha_{1}}{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{3}-\alpha_{2} ; \alpha_{3} ; \frac{z}{z-1}\right) . \tag{6}
\end{equation*}
$$

2. MAIN RESULTS

Unless otherwise mentioned, we shall assume in the reminder of this paper that $b \in \mathbb{C} \backslash \mathbb{Z}^{-}, s \in \mathbb{C}, p, n \in \mathbb{N}$ and $z \in U$ and the powers are understood as principle values.
Theorem 1. Let h be a convex function in U with $h(0)=1$. Let $f \in \mathcal{A}(p, n), F(z)=$ $I_{c, p}(f)(z)=\frac{c+1}{z^{c-p+1}}{ }^{z} t^{c-p} f(t) d t, z \in U, \operatorname{Rec}>-1$ and suppose that $\frac{\left(\aleph_{p, b}^{s} f(z)\right)}{p z^{p-1}}$ is
univalent in $U, \frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}} \in \mathcal{H}[1, n] \cap Q$ and

$$
\begin{equation*}
h(z) \prec \frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}, \tag{7}
\end{equation*}
$$

then

$$
q(z) \prec \frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}},
$$

 ordinant.

Proof. We have

$$
\begin{equation*}
z^{c-p+1} F(z)=(c+1)_{0}^{z} t^{c-p} f(t) d t \tag{8}
\end{equation*}
$$

by differentiating (8) with respect to z, we obtain that

$$
z^{c-p+1} F^{\prime}(z)+(c-p+1) z^{c-p} F(z)=(c+1) z^{c-p} f(z)
$$

that is, that

$$
z F^{\prime}(z)+(c-p+1) F(z)=(c+1) f(z)
$$

and

$$
\begin{equation*}
z\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}+(c-p+1)\left(\aleph_{p, b}^{s} F(z)\right)=(c+1)\left(\aleph_{p, b}^{s} f(z)\right) \quad(z \in U) \tag{9}
\end{equation*}
$$

Differentiating (9) with respect to z, we have

$$
z\left(\aleph_{p, b}^{s} F(z)\right)^{\prime \prime}+\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}+(c-p+1)\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}=(c+1)\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}
$$

then

$$
\begin{equation*}
z\left(\aleph_{p, b}^{s} F(z)\right)^{\prime \prime}+(c-p+2)\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}=(c+1)\left(\aleph_{p, b}^{s} f(z)\right)^{\prime} \tag{10}
\end{equation*}
$$

Denote

$$
\phi(z)=\frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}}(z \in U)
$$

then

$$
\begin{equation*}
p z^{p-1} \phi(z)=\left(\aleph_{p, b}^{s} F(z)\right)^{\prime} \tag{11}
\end{equation*}
$$

and differentiating (11) with respect to z, we obtain that

$$
\begin{equation*}
p(p-1) z^{p-1} \phi(z)+p z^{p} \phi^{\prime}(z)=z\left(\aleph_{p, b}^{s} F(z)\right)^{\prime \prime} \tag{12}
\end{equation*}
$$

using (10), (11) and (12), the differential superordination (2.1) becomes

$$
h(z) \prec \phi(z)+\frac{1}{c+1} z \phi^{\prime}(z),
$$

by using Lemma 1 for $\gamma=c+1$, we have

$$
q(z) \prec \phi(z),
$$

i.e.

$$
q(z) \prec \frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}},
$$

where $q(z)={\frac{c+1}{n z^{\frac{c+1}{n}}} 0}^{z} h(t) t^{\frac{c+1}{n}-1} d t$. The function q is convex and it is the best subordinant.

Putting $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Theorem 1, we obtain the following corollary.
Corollary 1. Let $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$. Let $f \in \mathcal{A}(p, n), F(z)=$ $I_{c, p}(f)(z)={\frac{c+1}{z^{c-p+1}}}^{z} t^{c-p} f(t) d t, \operatorname{Rec}>-1, z \in U$ and suppose that $\frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}$ is univalent in $U, \frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}} \in \mathcal{H}[1, n] \cap Q$ and

$$
\begin{equation*}
\frac{1+(1-2 \beta) z}{1-z} \prec \frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}} \tag{13}
\end{equation*}
$$

then

$$
q(z) \prec \frac{\left(\aleph_{p, b}^{s} F(z)\right)^{\prime}}{p z^{p-1}},
$$

where q is given by $q(z)=(2 \beta-1)+2(1-\beta){ }_{2} F_{1}\left(1, \frac{c+1}{n} ; \frac{c+1}{n}+1 ; z\right)$. The function q is convex and it is the best subordinant.
Theorem 2. Let h be a convex function in U with $h(0)=1$. Let $f \in \mathcal{A}(p, n)$, suppose that $\frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}$ is univalent in $U, \frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \in \mathcal{H}[1, n] \cap Q$. If

$$
\begin{equation*}
h(z) \prec \frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}, \tag{14}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \tag{15}
\end{equation*}
$$

where $q(z)=\frac{p^{z}}{n z^{\frac{p}{n}}} 0$ z $h(t) t^{\frac{p}{n}-1} d t$. The function q is convex and it is the best subordinant.
Proof. consider
$\phi(z)=\frac{\aleph_{p, b}^{s} f(z)}{z^{p}}=\frac{z^{p}+\sum_{k=n}^{\infty}\left(\frac{k+b+1}{b+1}\right)^{s} a_{k+p} z^{k+p}}{z^{p}}=1+\phi_{n} z^{n}+\phi_{n+1} z^{n+1}+. .(z \in U)$.
Differentiating (16) with respect to z, we obtain

$$
\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}=p z^{p-1} \phi(z)+z^{p} \phi^{\prime}(z)
$$

that is, that

$$
\frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}=\phi(z)+\frac{1}{p} z \phi^{\prime}(z)
$$

Then, the differential superordination (14) becomes

$$
h(z) \prec \phi(z)+\frac{1}{p} z \phi^{\prime}(z) .
$$

By using Lemma 1 for $\gamma=p$, we have

$$
q(z) \prec \phi(z)
$$

i.e.

$$
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}
$$

where $q(z)={\frac{p}{n z^{\frac{p}{n}}}}_{0}^{z} h(t) t^{\frac{p}{n}-1} d t$. The function q is convex and it is the best subordinant.

Putting $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Theorem 2, we obtain the following corollary.
Corollary 2. Let $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$. Let $f \in \mathcal{A}(p, n)$, suppose that $\frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}}$ is univalent in $U, \frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \in \mathcal{H}[1, n] \cap Q$. If

$$
\begin{equation*}
\frac{1+(1-2 \beta) z}{1-z} \prec \frac{\left(\aleph_{p, b}^{s} f(z)\right)^{\prime}}{p z^{p-1}} \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \tag{18}
\end{equation*}
$$

where q is given by $q(z)=(2 \beta-1)+2(1-\beta){ }_{2} F_{1}\left(1, \frac{p}{n} ; \frac{p+n}{n} ; z\right)$. The function q is convex and it is the best subordinant.
Theorem 3. Let h be a convex function in U with $h(0)=1$. Let $f \in \mathcal{A}(p, n)$, suppose that $\frac{1}{p z^{p-1}}\left(\frac{z^{p} \aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}\right)^{\prime}$ is univalent in U and $\frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)} \in \mathcal{H}[1, n] \cap Q$. If

$$
\begin{equation*}
h(z) \prec \frac{1}{p z^{p-1}}\left(\frac{z^{p} \aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}\right), \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}, \tag{20}
\end{equation*}
$$

where $q(z)=\frac{p^{z}}{n z^{\frac{p}{n}}} 0$ ($\left.h\right) t^{\frac{p}{n}-1} d t$. The function q is convex and it is the best subordinant.
Proof. consider

$$
\phi(z)=\frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}=\frac{z^{p}+\sum_{k=n}^{\infty}\left(\frac{k+b+1}{b+1}\right)^{s+1} a_{k+p} z^{k+p}}{z^{p}+\sum_{k=n}^{\infty}\left(\frac{k+b+1}{b+1}\right)^{s} a_{k+p} z^{k+p}}
$$

we have $\frac{z}{p} \phi^{\prime}(z)+\phi(z)=\frac{1}{p z^{p-1}}\left(\frac{z^{p} \aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}\right)^{\prime}$. Then, the differential superordination (19) becomes

$$
h(z) \prec \phi(z)+\frac{z}{p} \phi^{\prime}(z) .
$$

By using Lemma 1 for $\gamma=p$, we have

$$
q(z) \prec \phi(z)
$$

i.e.

$$
q(z) \prec \frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}
$$

where $q(z)=\frac{p^{z}}{n z^{\frac{p}{n}}} 0$. $h(t) t^{\frac{p}{n}-1} d t$. The function q is convex and it is the best subordinant.

Putting $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Theorem 3, we obtain the following corollary.
Corollary 3. Let $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$. Let $f \in \mathcal{A}(p, n)$, suppose that $\frac{1}{p z^{p-1}}\left(\frac{z^{p} \aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}\right)$ is univalent in U and $\frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)} \in \mathcal{H}[1, n] \cap Q$. If

$$
\frac{1+(1-2 \beta) z}{1-z} \prec \frac{1}{p z^{p-1}}\left(\frac{z^{p} \aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}\right)^{\prime}
$$

then

$$
q(z) \prec \frac{\aleph_{p, b}^{s+1} f(z)}{\aleph_{p, b}^{s} f(z)}
$$

where q is given by $q(z)=(2 \beta-1)+2(1-\beta){ }_{2} F_{1}\left(1, \frac{p}{n} ; \frac{p+n}{n} ; z\right)$. The function q is convex and it is the best subordinant.
Theorem 4. Let h be a convex function in U with $h(0)=1$. Let $f \in \mathcal{A}(p, n)$, suppose that $(b+1) \frac{\aleph_{p, b}^{s+1} f(z)}{z^{p}}-b \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}$ is univalent in U and $\frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \in \mathcal{H}[1, n] \cap Q$. If

$$
\begin{equation*}
h(z) \prec(b+1) \frac{\aleph_{p, b}^{s+1} f(z)}{z^{p}}-b \frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}, \tag{22}
\end{equation*}
$$

where $q(z)={\frac{1}{n z^{\frac{1}{n}}} 0}^{z} h(t) t^{\frac{1}{n}-1} d t$. The function q is convex and it is the best subordinant.
Proof. consider

$$
\phi(z)=\frac{\aleph_{p, b}^{s} f(z)}{z^{p}}=1+\sum_{k=n}^{\infty}\left(\frac{k+b+1}{b+1}\right)^{s} a_{k+p} z^{k}
$$

we obtain

$$
\phi(z)+z \phi^{\prime}(z)=(b+1) \frac{\aleph_{p, b}^{s+1} f(z)}{z^{p}}-b \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}
$$

Then, the differential superordination (21) becomes

$$
h(z) \prec \phi(z)+z \phi^{\prime}(z) .
$$

By using Lemma 1 for $\gamma=1$, we have

$$
q(z) \prec \phi(z),
$$

i.e.

$$
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}
$$

where $q(z)={\frac{1}{n z^{\frac{1}{n}}} 0}^{z} h(t) t^{\frac{1}{n}-1} d t$. The function q is convex and it is the best subordinant.

Putting $h(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ in Theorem 4, we obtain the following corollary.
Corollary 4. Let $h(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1)$. Let $f \in \mathcal{A}(p, n)$, suppose that $(b+1) \frac{\aleph_{p, b}^{s+1} f(z)}{z^{p}}-b \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}$ is univalent in U and $\frac{\aleph_{p, b}^{s} f(z)}{z^{p}} \in \mathcal{H}[1, n] \cap Q$. If

$$
\frac{1+(1-2 \beta) z}{1-z} \prec(b+1) \frac{\aleph_{p, b}^{s+1} f(z)}{z^{p}}-b \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}
$$

then

$$
q(z) \prec \frac{\aleph_{p, b}^{s} f(z)}{z^{p}}
$$

where q is given by $q(z)=(2 \beta-1)+2(1-\beta){ }_{2} F_{1}\left(1, \frac{1}{n} ; \frac{1+n}{n} ; z\right)$. The function q is convex and it is the best subordinant.

References

[1] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[2] R. M. El-Ashwah, Majorization properties for subclass of analytic p-valent functions defined by linear operator, Int. J. Open Problems Complex Analysis, 4(2012), no. 3, 43-50.
[3] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[4] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
[5] E. T. Whittaker and G. N. Watson, A course on Modern Analysis: An Introduction to the General Theory of infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridige Univ. pree, Cambridge, 1927.
R. M. El-Ashwah, Faculty of Science, Damietta University, New Damietta, Egypt

E-mail address: r_elashwah@yahoo.com
M. K. Aouf, Faculty of Science, Mansoura University, Mansoura, Egypt

E-mail address: mkaouf127@yahoo.com
S. M. El-Deeb, Faculty of Science, Damietta University, New Damietta, Egypt

E-mail address: shezaeldeeb@yahoo.com

[^0]: Key words and phrases. p-Valent functions, differential superordination. 2000 Mathematics Subject Classification: 30C45.

 Submitted April 11, 2013.

