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EXISTENCE AND UNIQUENESS FOR SEMILINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE

DELAY VIA RESOLVENT OPERATORS

M. BELMEKKI1, K. MEKHALFI AND S. K. NTOUYAS

Abstract. In this paper, we establish sufficient conditions for existence and

uniqueness of solutions for semilinear functional differential equations with in-
finite delay. Our approach is based on resolvent operators, the Banach contrac-
tion principle, the Leray-Schauder nonlinear alternative and Schaefer’s fixed

point theorem. For the illustration of the results, an example is also discussed.

1. Introduction

In the last few decades, the subject of fractional differential equations has become
a hot topic for the researchers due to its intensive development and applications in
the field of physics, mechanics, chemistry, engineering, etc. For a reader interested
in the systematic development of the topic, we refer the books [16, 17, 19, 21, 22, 24].
Differential equations with fractional order have recently proved to be valuable tools
for the description of hereditary properties of various materials and systems. For
more details, see [18]. For some recent developments on the subject, see for instance
[1, 3, 4, 15, 20] and references cited therein.

In the literature devoted to equations with finite delay, the phase space is much
of time the space of all continuous functions on [−r, 0], r > 0, endowed with the
uniform norm topology. When the delay is infinite, the notion of the phase space B
plays an important role in the study of both qualitative and quantitative theory, a
usual choice is a seminormed space satisfying suitable axioms, which was introduced
by Hale and Kato [12]. For detailed discussion on this topic, we refer the reader to
the books by Hino et al. [14]. For some recent developments on the subject, see for
instance [1, 5, 6, 8, 20] and references cited therein.

It is well known that one important way to introduce the concept of mild solu-
tions for fractional evolution equations is based on some probability densities and
Laplace transform. This method was initialed by El-Borai [11]. For some recent
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developments see the paper [26], [9], [2]. Another approach to treat abstract equa-
tions with fractional derivatives based on the well developed theory of resolvent
operators for integral equations [13]. Motivated by the approach in [13], Ye et al.
[25] studied the existence, uniqueness and continuous dependence of the mild solu-
tions for a class of fractional neutral functional differential equations with infinite
delay, by using the Krasnoselskki fixed point theorem and the theory of resolvent
operators. The fractional derivative in [25] is understood in the Caputo sense.

Recently in [7], motivated by the approach in [13], we studied fractional order
semilinear functional differential equations defined on a compact real interval with
finite delay. Existence and uniqueness of solutions are proved, based on the theory
of resolvent operators and Banach’s contraction principle and Leray-Schauder non-
linear alternative. We emphasize that in [7] the fractional derivative is understood
in the Riemann-Liouville sense.

In this paper we continue the study in [7] to cover the case of infinite delay. More
precisely this paper, motivated by [13] and [25], is concerned with fractional order
semilinear functional differential equations with infinite delay of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b], 0 < α < 1 (1)

y0 = ϕ ∈ B, (2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × B → E
is a continuous function, A : D(A) ⊂ E → E is a densely defined closed linear
operator on E, ϕ : B → E a given continuous function with ϕ(0) = 0 and (E, | · |) a
real Banach space. For any function y defined on (−∞, b] and any t ∈ J, we denote
by yt the element of B defined by

yt(θ) = y(t+ θ), θ ∈ (−∞, 0].

Here yt(·) represents the history of the state from time −∞ up to the present time
t and B is called a phase space.

The purpose of this paper is to study the existence and uniqueness of mild so-
lutions for (1)-(2) by virtue of resolvent operators. In Section 2 we recall some
definitions and preliminary facts which will be used in the sequel. In Section 3, we
give our main existence and uniqueness results by using Banach’s contraction prin-
ciple, the Leray-Schauder nonlinear alternative and Schaefer’s fixed point theorem.
An example is presented in Section 4 illustrating the abstract theory.

2. Preliminaries

In this section, we recall some definitions and propositions of fractional calculus,
phase space and resolvent operators. Let E be a Banach space. By C(J,E) we
denote the Banach space of continuous functions from J into E with the norm

∥y∥∞ = sup{|y(t)| : t ∈ J},
and B(E) denotes the Banach space of bounded linear operators from E into E,
with norm

∥T∥B(E) = sup{|T (y)| : |y| = 1}.
L1(J,E) denotes the Banach space of measurable functions y : J → E which are

Bochner integrable, normed by

∥y∥L1 =

∫ b

0

|y(t)|dt.



JFCA-2013/4(2) SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 269

Definition 2.1. [16, 22] The Riemann-Liouville fractional primitive of order α ∈
R+ of a function h : (0, b] → E is defined by

Iα0 h(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds,

provided the right hand side exists pointwise on (0, b], where Γ is the gamma func-
tion.

Definition 2.2. [16, 22] The Riemann-Liouville fractional derivative of order 0 <
α < 1 of a continuous function h : (0, b] → E is defined by

dαh(t)

dtα
=

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αh(s)ds

=
d

dt
I1−α
0 h(t).

In all this paper, we assume that the phase space (B, | · |) is a seminormed linear
space of functions mapping (−∞, 0] into E, and satisfying the following axioms
introduced at first by Hale and Kato in [12]:

(A1) If y : (−∞, b] → E, b > 0, is continuous on J and y0 ∈ B, then for every
t ∈ J the following conditions hold:
(i) yt ∈ B,
(ii) |y(t)| ≤ H∥yt∥B,
(iii) ∥yt∥B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)∥y0∥B,
where H > 0 is a constant, K,M : R+ → R+ with K is continuous and M
is locally bounded and H, K, M are independent of y(·).

(A2) For the function y(·) in (A1), yt is a B-valued continuous function on [0, b].
(A3) The space B is complete.

Hereafter are some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al. [14].

Example 2.3. The spaces BC, BUC, C∞ and C0. Let

• BC the space of bounded continuous functions defined from (−∞, 0] to E,
• BUC the space of bounded uniformly continuous functions defined from
(−∞, 0] to E,

• C∞ = {ϕ ∈ BC : limθ→−∞ ϕ(θ) exists in E},
• C0 = {ϕ ∈ BC : limθ→−∞ ϕ(θ) = 0}, endowed with the uniform norm

∥ϕ∥ = sup{|ϕ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1) − (A3). BC
satisfies (A2), (A3) but (A1) is not satisfied.

Example 2.4. The spaces Cg, UCg, C0
g and C∞

g . Let g be a positive continuous
function on (−∞, 0]. We define:

• Cg = {ϕ ∈ C((−∞, 0], E) : (ϕ(θ)/g(θ)) is bounded on (−∞, 0]},
• C0

g = {ϕ ∈ Cg : limθ→−∞(ϕ(θ)/g(θ)) = 0} endowed with the uniform norm

∥ϕ∥ = sup
{ |ϕ(θ)|
g(θ)

: −∞ < θ ≤ 0
}
.



270 M. BELMEKKI, K. MEKHALFI AND S. K. NTOUYAS JFCA-2013/4(2)

We consider the following condition on the function g.

(G) : sup
0≤t≤a

sup
{g(θ + t)

g(θ)
: −∞ < θ ≤ −t

}
<∞ for all a > 0.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). They satisfy

conditions (A1) and (A2) if (G) holds.

Consider the fractional differential equation

Dαy(t) = Ay(t) + f(t), t ∈ J, 0 < α < 1, y(0) = 0, (3)

where A is a closed linear unbounded operator in E and f ∈ C(J,E). Equation (3)
is equivalent to the following integral equation [16]

y(t) =
1

Γ(α)
A

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ J. (4)

This equation can be written in the following form of integral equation

y(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Ay(s)ds, t ≥ 0, (5)

where

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds. (6)

Examples where the exact solution of (3) and the integral equation (4) are the same,
are given in [4]. Let us assume that the integral equation (5) has an associated
resolvent operator (S(t))t≥0 on E.

Next we define the resolvent operator of the integral equation (5).

Definition 2.5. [23, Definition 1.1.3] A one parameter family of bounded linear
operators (S(t))t≥0 on E is called a resolvent operator for (4) if the following con-
ditions hold:

(a) S(·)x ∈ C([0,∞), E) and S(0)x = x for all x ∈ E;
(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and every t ≥ 0;
(c) for every x ∈ D(A) and t ≥ 0,

S(t)x = x+
1

Γ(α)

∫ t

0

(t− s)α−1AS(s)xds. (7)

Here and hereafter we assume that the resolvent operator (S(t))t≥0 is ana-
lytic [23, Chapter 2], and there exist a function φA ∈ L1

loc([0,∞),R+) such that
∥S′(t)x∥ ≤ φA(t)∥x∥[D(A)] for all t > 0 and each x ∈ D(A).

We have the following concept of solution using Definition 1.1.1 in [23].

Definition 2.6. A function u ∈ C(J,E) is called a mild solution of the integral

equation (5) on J if
∫ t

0
(t− s)α−1u(s)ds ∈ D(A) for all t ∈ J, h(t) ∈ C(J,E) and

u(t) =
A

Γ(α)

∫ t

0

(t− s)α−1u(s)ds+ h(t), ∀t ∈ J.

The next result follows from [23, Proposition I.1.2, Theorem II.2.4, Corollary
II.2.6].

Lemma 2.7. Under the above conditions the following properties are valid.
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(i) If u(·) is a mild solution of (5) on J, then the function t→
∫ t

0
S(t−s)h(s)ds

is continuously differentiable on J, and

u(t) =
d

dt

∫ t

0

S(t− s)h(s)ds, ∀t ∈ J.

(ii) If h ∈ Cβ(J,E) for some β ∈ (0, 1), then the function defined by

u(t) = S(t)(h(t)− h(0)) +

∫ t

0

S′(t− s)[h(s)− h(t)]ds+ S(t)h(0), t ∈ J,

is a mild solution of (5) on J.
(iii) If h ∈ C(J, [D(A)]) then the function u : J → E defined by

u(t) =

∫ t

0

S′(t− s)h(s)ds+ h(t), t ∈ J,

is a mild solution of (5) on J.

3. Main Results

Consider the following space

Ω = {y : (−∞, b] → E : y|J ∈ C(J,E) and y0 ∈ B}
where y|J is the restriction of y to J . Let ∥ · ∥b be the seminorm in Ω defined by:

∥y∥b = ∥y0∥B + sup{|y(s)| : 0 ≤ s ≤ b}, y ∈ Ω.

In this section we give our main existence results for problem (1)-(2). This problem
is equivalent to the following integral equation

y(t) =


ϕ(t), t ∈ (−∞, 0],

A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.

Motivated by Lemma 2.7 and the above representation, we introduce the concept
of mild solution.

Definition 3.1. One says that a function y ∈ Ω is a mild solution of problem
(1)-(2) if:

(1)

∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

(2) y0 = ϕ ∈ B and

(3) y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.

Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the
function f is continuous. Then by Lemma 2.7 (iii), if y : Ω → Ω is a mild solution
of (1)-(2), then

y(t) =



ϕ(t), t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ J.
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Our first existence result for problem (1)-(2) is based on the Banach’s contraction
principle.

Theorem 3.2. Let f : J ×B → E be continuous and there exists a constant L > 0
such that

|f(t, u)− f(t, v)| ≤ L∥u− v∥B, for t ∈ J and u, v ∈ B.

If

LKbb
α

Γ(α+ 1)
(1 + ∥φA∥L1) < 1, (8)

where Kb = sup{|K(t)| : t ∈ [0, b]}, then the problem (1)-(2) has a unique mild
solution on (−∞, b].

Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the
operator A : Ω → Ω defined by:

A(y)(t) =



ϕ(t), t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ

)
ds, t ∈ J.

Let x(·) : (−∞, b] → E be the function defined by:

x(t) =

{
ϕ(t), if t ∈ (−∞, 0];
0, if t ∈ J .

Then x0 = ϕ. We denote by z the function defined by

z̄(t) =

{
0, if t ∈ (−∞, 0];
z(t), if t ∈ J .

If y(·) satisfies

y(t) =
1

Γ(α)

∫ t

0

(t−s)α−1f(s, ys)ds+

∫ t

0

S′(t−s)
(

1

Γ(α)

∫ s

0

(s−τ)α−1f(τ, yτ )dτ

)
ds

we can decompose it as y(t) = z̄(t) + x(t), t ∈ J which implies yt = z̄t + xt, t ∈ J
and the function z(·) satisfies z0 = 0 and

z(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds.

Let

Ω0 = {z ∈ Ω such that z0 = 0},

and let ∥ · ∥b be the seminorm in Ω0 defined by

∥z∥b = ∥z0∥B + sup{|z(s)| : 0 ≤ s ≤ b} = sup{|z(s)| : 0 ≤ s ≤ b}, z ∈ Ω0.
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Then (Ω0, ∥ · ∥b) is a Banach space. Let the operator F : Ω0 → Ω0 be defined by

F (z)(t) =



0, t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds, t ∈ J.

We need to prove that F has a fixed point, which is a unique mild solution of (1)-(2)
on (−∞, b]. We shall show that F is a contraction. Let z, z∗ ∈ Ω0. Then we have
for each t ∈ J

|F (z)(t)− F (z∗)(t)|

=

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1[f(s, z̄s + xs)− f(s, z̄∗s + xs)]ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ τ

0

(s− τ)α−1
[
f(τ, z̄τ + xτ )− f(τ, z̄∗τ + xτ )

]
dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, z̄s + xs)− f(s, z̄∗s + xs)|ds

+

∫ t

0

φA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|f(τ, z̄τ + xτ )− f(τ, z̄∗τ + xτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1L∥zs − z∗s∥Bds

+
1

Γ(α)

∫ t

0

φA(t− s)

∫ τ

0

(s− τ)α−1L∥zτ − z∗τ∥Bdτds

≤ L

Γ(α)

∫ t

0

(t− s)α−1Kb sup
s∈[0,t]

|z(s)− z∗(s)|ds

+
L

Γ(α)

∫ t

0

φA(t− s)

∫ τ

0

(s− τ)α−1dτKb sup
s∈[0,t]

|z(s)− z∗(s)|ds

≤ LKbt
α

Γ(α+ 1)
∥z − z∗∥b +

∥φA∥L1LKbt
α

Γ(α+ 1)
∥z − z∗∥b.

Taking the supremum over t we get

∥F (z)− F (z∗)∥b ≤ LKbb
α

Γ(α+ 1)
(1 + ∥φA∥L1)∥z − z∗∥b.

By (8) F is a contraction and thus, by the contraction mapping theorem, we deduce
that F has a unique fixed point z. Then y(t) = z̄(t) + x(t), t ∈ (−∞, b] is a fixed
point of the operator A, which gives rise to a unique mild solution of (1)-(2). �

Our second existence result is based on Leray-Schauder nonlinear alternative.

Lemma 3.3. (Nonlinear alternative for single valued maps)[10, p.135]. Let E be
a Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U.
Suppose that F : U → C is a continuous, compact (that is, F (U) is a relatively
compact subset of C) map. Then either

(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).
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Theorem 3.4. Let f : J × B → E be continuous. Assume that:

(A1) S(t) is compact for all t > 0;
(A2) there exist a function p ∈ C(J,R+), and a nondecreasing function ψ : R+ →

R+ such that

|f(t, x)| ≤ p(t)ψ(∥x∥B), ∀(t, x) ∈ J × B;

(A3) there exists a constant M > 0 such that

M

Kb∥p∥∞ψ(M)
bα

Γ(α+ 1)
(1 + ∥φA∥L1) +Mb∥ϕ∥B

> 1.

Then, the problem (1)-(2) has at least one mild solution on (−∞, b].

Proof. Transform the problem (1)-(2) into a fixed point problem. Consider the
operator F : Ω0 → Ω0 defined in Theorem 3.2, namely,

F (z)(t) =



0, t ∈ (−∞, 0],

1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds, t ∈ [0, b].

In order to prove that F is completely continuous, we divide the operator F into
two operators:

F1(z)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds,

and

F2(z)(t) =

∫ t

0

S′(t− s)F1(z)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition
(A1) implies that S′(t) is compact for all t > 0 (see [13, Lemma 2.2]).

Step 1: F1 is completely continuous.

At first, we prove that F1 is continuous. Let {zn} be a sequence such that zn → z
in Ω0 as n→ ∞. Then for t ∈ [0, b] we have

|F1(zn)(t)− F1(z)(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, z̄ns + xs)− f(s, z̄s + xs)

∣∣∣∣ds
≤ 1

Γ(α)
∥f(·, z̄n. + x.)− f(·, z̄. + x.)∥∞

∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
∥f(·, z̄n. + x.)− f(·, z̄. + x.)∥∞.

Since f is a continuous function, we have

∥F1(zn)− F1(z)∥b → 0 as n→ ∞.

Thus F1 is continuous.
Next, we prove that F1 maps bounded sets into bounded sets in Ω0. Indeed, it is
enough to show that for any ρ > 0, there exists a positive constant δ such that for



JFCA-2013/4(2) SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 275

each z ∈ Bρ = {z ∈ Ω0 : ∥z∥b ≤ ρ} one has F1(z) ∈ Bδ. Let z ∈ Bρ. Since f is a
continuous function, we have for each t ∈ [0, b]

|F1(z)(t)| =

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, z̄s + xs)

∣∣ds
≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(∥z̄s + xs∥B)ds

≤ bαψ(ρ∗)∥p∥∞
Γ(α+ 1)

= δ <∞,

where

∥z̄s + xs∥B ≤ ∥z̄s∥B + ∥xs∥B
≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)∥z0∥B

+K(t) sup{|x(t)| : 0 ≤ s ≤ t}+M(t)∥x0∥B
≤ K(t) sup{|z(t)| : 0 ≤ s ≤ t}+M(t)∥x0∥B
≤ Kbρ+Mb∥ϕ∥B = ρ∗,

and Mb = sup{|M(t)| : t ∈ [0, b]}.
Then, ∥F1(z)∥b ≤ δ, and hence F1(z) ∈ Bδ.
Now, we prove that F1 maps bounded sets into equicontinuous sets of Ω0. Let

τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set. Let z ∈ Bρ. Then if ϵ > 0 and
ϵ ≤ τ1 ≤ τ2 we have

|F1(z)(τ2)− F1(z)(τ1)|

=

∣∣∣∣ 1

Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, z̄s + xs)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤

∣∣∣∣ 1

Γ(α)

∫ τ1−ϵ

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ1

τ1−ϵ

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, z̄s + xs)ds

∣∣∣∣
+

∣∣∣∣ 1

Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ ∥p∥∞ψ(ρ∗)

Γ(α)

(∫ τ1−ϵ

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+

∫ τ1

τ1−ϵ

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+

∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ϵ sufficiently small, the right-hand side of the above inequality
tends to zero. By Arzelá-Ascoli theorem it suffices to show that F1 maps Bρ into a
precompact set in E.

Let 0 < t < b be fixed and let ϵ be a real number satisfying 0 < ϵ < t. For
z ∈ Bρ we define

F1ϵ(z)(t) =
1

Γ(α)

∫ t−ϵ

0

(t− s− ϵ)α−1f(s, z̄s + xs)ds.
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Note that the set{
1

Γ(α)

∫ t−ϵ

0

(t− s− ϵ)α−1f(s, z̄s + xs)ds : z ∈ Bρ

}
is bounded since ∣∣∣∣ 1

Γ(α)

∫ t−ϵ

0

(t− s− ϵ)α−1f(s, z̄s + xs)ds

∣∣∣∣
≤ ∥p∥∞ψ(ρ∗)

∣∣∣∣ 1

Γ(α)

∫ t−ϵ

0

(t− s− ϵ)α−1ds

∣∣∣∣
≤ ∥p∥∞ψ(ρ∗)

Γ(α+ 1)
(t− ϵ)α.

Then for t > 0, the set

Zϵ(t) = {F1ϵ(z)(t) : z ∈ Bρ}
is precompact in E for every ϵ, 0 < ϵ < t. Moreover∣∣∣F1(z)(t)− F1ϵ(z)(t)

∣∣∣
≤ ∥p∥∞ψ(ρ∗)

Γ(α)

(∫ t−ϵ

0

[(t− s)α−1 − (t− s− ϵ)α−1]ds+

∫ t

t−ϵ

(t− s)α−1ds

)
≤ ∥p∥∞ψ(ρ∗)

Γ(α+ 1)

(
tα − (t− ϵ)α

)
.

Therefore, the set Z(t) = {F1(z)(t) : z ∈ Bρ} is precompact in E. Hence the
operator F1 is completely continuous.

Step 2: F2 is completely continuous.

The operator F2 is continuous, since S′(·) ∈ C(J,B(E)) and F1 is continuous as
proved in Step 1.
Now, let Bρ be a bounded set as in Step 1. For z ∈ Bρ we have

|F2(z)(t)| ≤
∫ t

0

|S′(t− s)||F1(z)(s)|ds

≤
∫ t

0

φA(t− s)∥F1(z)(s)∥[D(A)]ds

≤ ∥φA∥L1bα∥p∥∞ψ(ρ∗)
Γ(α+ 1)

= δ′.

Thus, there exists a positive number δ′ such that ∥F2(z)∥b ≤ δ′. This means that
F2(z) ∈ Bδ′ .
Next, we shall show that F2 maps bounded sets into equicontinuous sets in Ω0. Let
τ1, τ2 ∈ J , τ2 > τ1 and let Bρ be a bounded set as in Step 1. Let z ∈ Bρ. Then if
ϵ > 0 and ϵ ≤ τ1 ≤ τ2 we have

|F2(z)(τ2)− F2(z)(τ1)|

=

∣∣∣∣ ∫ τ2

0

S′(τ2 − s)F1(z)(τ2)ds−
∫ τ1

0

S′(τ1 − s)F1(z)(τ1)ds

∣∣∣∣
≤ bα∥p∥∞ψ(ρ∗)

Γ(α+ 1)

(∫ τ1−ϵ

0

|S′(τ2 − s)− S′(τ1 − s)| ds
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+

∫ τ1

τ1−ϵ

|S′(τ2 − s)− S′(τ1 − s)| ds+
∫ τ2

τ1

|S′(τ2 − s)|ds
)
.

As τ1 → τ2 and ϵ sufficiently small, the right-hand side of the above inequality
tends to zero. By Arzelá-Ascoli theorem it suffices to show that F2 maps Bρ into a
precompact set in E.

Let 0 < t < b be fixed and let ϵ be a real number satisfying 0 < ϵ < t. For
z ∈ Bρ we define

F2ϵ(z)(t) = S′(ϵ)

∫ t−ϵ

0

S′(t− s− ϵ)F1(z)(s)ds.

Since S′(t) is a compact operator for t > 0, the set

Zϵ(t) = {F2ϵ(z)(t) : z ∈ Bρ}

is precompact in E for every ϵ, 0 < ϵ < t. Moreover∣∣∣F2(z)(t)− F2ϵ(z)(t)
∣∣∣ ≤ ∥φA∥L1∥p∥∞ψ(ρ∗)

Γ(α+ 1)

(
tα − (t− ϵ)α

)
.

Then Z(t) = {F2(z)(t) : z ∈ Bρ} is precompact in E. Hence the operator F2 is
completely continuous.

Step 3: We show there exists an open set U ⊂ C(J,E) with z ̸∈ λF (z) for λ ∈ (0, 1)
and y ∈ ∂U.

Let λ ∈ (0, 1) and

z(t) = λF (z)(t) = λ
1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+λ

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds.

Then

|z(t)| ≤
∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1f(s, z̄s + xs)ds

+

∫ t

0

S′(t− s)

(
1

Γ(α)

∫ s

0

(s− τ)α−1f(τ, z̄τ + xτ )dτ

)
ds

∣∣∣∣
≤
∫ t

0

1

Γ(α)
(t− s)α−1|f(s, z̄s + xs)|ds

+

∫ t

0

φA(t− s)

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, z̄τ + xτ )|dτds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(∥z̄s + xs∥B)ds

+
1

Γ(α)

∫ t

0

φA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(∥z̄s + xs∥B)dτds.

(9)

But

∥z̄s + xs∥B ≤ Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb∥ϕ∥B
as proved in Step 1. If we let w(t) be the right-hand side of the above inequality
then we have that

∥z̄s + xs∥B ≤ w(t), t ∈ J,
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and therefore (9) becomes

|z(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(w(s))ds

+
1

Γ(α)

∫ t

0

φA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(w(s))dτds.

(10)

Using (10) in the definition of w, we have

w(t) = Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb∥ϕ∥B

≤ Kb
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ψ(w(s))ds

+Kb
1

Γ(α)

∫ t

0

φA(t− s)

∫ s

0

(s− τ)α−1p(s)ψ(w(s))dτds+Mb∥ϕ∥B.

Then

∥w∥ ≤ Kb∥p∥∞ψ(∥w∥)
bα

Γ(α+ 1)
+Kb∥p∥∞ψ(∥w∥)

bα

Γ(α+ 1)
∥φA∥L1 +Mb∥ϕ∥B

and consequently

∥w∥

Kb∥p∥∞ψ(∥w∥)
bα

Γ(α+ 1)
(1 + ∥φA∥L1) +Mb∥ϕ∥B

≤ 1.

Thus, by (A3), there exists M such that ∥w∥ ̸=M . Let us set

U = {x ∈ C(J,E) : ∥y∥ < M}.

From the choice of U , there is no y ∈ ∂U such that y = λF (y) for some λ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma 3.3),
we deduce that F has a fixed point x ∈ U which is a solution of (1)-(2) on (−∞, b].
This completes the proof. �

Finally, we give an existence result based upon Schaefer’s fixed point theorem.

Theorem 3.5. (Schaefer’s fixed point theorem) [27, p.29]. Let E a Banach space,
and F : E → E be a completely continuous operator. Then either

(a) F has a fixed point, or
(b) The set E = {x ∈ U : x = λF (x), 0 < λ < 1} is unbounded.

Theorem 3.6. Let f : J × B → E be continuous. Assume that:

(B1) S(t) is compact for all t > 0;
(B2) there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)∥u∥B, t ∈ J and u ∈ B.

Then, the problem (1)-(2) has at least one mild solution on (−∞, b], provident that

bαKb∥q∥∞
Γ(α+ 1)

(1 + ∥φA∥L1) < 1.

Proof. Define F as in the proof of Theorem 3.2. As in Theorem 3.4 we can prove
that F is completely continuous. Here we prove that the set

E = {z ∈ Ω0 : z = λF (z), 0 < λ < 1}
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is bounded.
Let z ∈ E be any element. Then, for each t ∈ [0, b] ,

|z(t)| ≤ 1

Γ(α)

(∫ t

0

p(s)(t− s)α−1ds+

∫ t

0

(t− s)α−1q(s)
[
Kb∥z∥b +Mb∥ϕ∥B

]
ds

)
+

1

Γ(α)

∫ t

0

φA(t− s)

∫ s

0

(s− τ)α−1

(
p(s) + q(s)

[
Kb∥z∥b +Mb∥ϕ∥B

])
dτds

≤ bα∥p∥∞
Γ(α+ 1)

+
bα∥q∥∞
Γ(α+ 1)

[
Kb∥z∥b +Mb∥ϕ∥B

]
+
bα∥φA∥L1∥p∥∞

Γ(α+ 1)

+
bα∥φA∥L1∥q∥∞

Γ(α+ 1)

[
Kb∥z∥b +Mb∥ϕ∥B

]
=

bα

Γ(α+ 1)

[
∥p∥∞(1 + ∥φA∥L1) + ∥q∥∞∥ϕ∥BMb(1 + ∥φA∥L1)

]

+
bαKb∥q∥∞
Γ(α+ 1)

(1 + ∥φA∥L1)∥z∥b

=
bα

Γ(α+ 1)
(1 + ∥φA∥L1)(∥p∥∞ + ∥q∥∞∥ϕ∥BMb)

+
bαKb∥q∥∞
Γ(α+ 1)

(1 + ∥φA∥L1)∥z∥b

and consequently

∥z∥b ≤
bα

Γ(α+ 1)
(1+∥φA∥L1)(∥p∥∞+∥q∥∞∥ϕ∥BMb)

{
1−b

αKb∥q∥∞
Γ(α+ 1)

(1+∥φA∥L1)

}−1

.

Hence the set E is bounded. As a consequence of Theorem 3.5 we deduce that F
has at least a fixed point, then the operator A has one, which gives rise to a mild
solution of (1)-(2) on (−∞, b]. �

4. An example

As an application of our results we consider the following fractional time partial
functional differential equation of the form

∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +

∫ 0

−∞
P (θ)g

(
t, u(t+ θ, x)

)
dθ,

x ∈ [0, π], t ∈ [0, b], 0 < α < 1, (11)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (12)

u(t, x) = u0(t, x), x ∈ [0, π], t ∈ (−∞, 0], (13)

where P : (−∞, 0] → R, g : R → R and u0 : (−∞, 0] × [0, π] → R are continuous
functions. To study this system, we take E = L2[0, π] and let A be the operator
given by Aw = w′′ with domain D(A) = {w ∈ E,w,w′ are absolutely continuous,
w′′ ∈ E,w(0) = w(π) = 0}.

Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),
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where (·, ·) is the inner product in L2 and wn(x) =

(
2

π

) 1
2

sin(nx), n = 1, 2, . . . is

the orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal
generator of an analytic semigroup (T (t))t≥0 on E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact
semigroup, so that R(λ,A) = (λ−A)−1 is compact operator for all λ ∈ ρ(A).

From [23, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα −A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0}
for some θ ∈ (π, π2 ). S(t) is differentiable (Proposition 2.15 in [3]) and there exists
a constant M > 0 such that ∥S′(t)x∥ ≤M∥x∥, for x ∈ D(A) t > 0.

For the phase space B, we choose the well-known space BUC(R−, E) of uniformly
bounded continuous functions equipped with the following norm:

∥φ∥ = sup
θ≤0

|φ(θ)| for φ ∈ B.

To represent the system (11)-(13) in the abstract form (1)-(2) we consider φ ∈
BUC(R−, E), x ∈ [0, π] and introduce the functions

y(t)(x) = u(t, x), t ∈ [0, b], x ∈ [0, π],

ϕ(θ)(x) = u0(θ, x), −∞ < θ ≤ 0, x ∈ [0, π],

f(t, φ)(x) =

∫ 0

−∞
P (θ)g

(
t, φ(θ)(x)

)
dθ, −∞ < θ ≤ 0, x ∈ [0, π].

Then the problem (11)-(13) takes the following abstract form:{
Dαy(t) = Ay(t) + f(t, yt), t ∈ J = [0, b], 0 < α < 1;
y0 = ϕ ∈ B. (14)

We assume the following assumptions:

(i) P is integrable on (−∞, 0].
(ii) There exist a continuous increasing function ψ : [0,∞) → [0,∞) such that

|g(t, v)| ≤ ψ(|v|), for v ∈ R.

By the dominated convergence theorem of Lebesgue, we can show that f is a
continuous function of B in E. On the other hand, we have for φ ∈ B and x ∈ [0, π]

|f(t, φ)(x)| ≤
∫ 0

−∞
|P (θ)|g

(
t, |φ(θ)(x)|

)
dθ.
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Since the function ψ is increasing, we have

|f(t, φ)| ≤
∫ 0

−∞
|P (θ)|dθψ

(
∥φ∥B

)
for φ ∈ B.

Choose b such that
Lbα

Γ(α+ 1)
(1 +M) < 1.

Since the conditions of Theorem 3.2 are satisfied, there is a function u ∈ C((−∞, b],
L2[0, π]) which is a mild solution of (11)-(13).
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