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AN APPLICATION OF HOMOTOPY PERTURBATION

TRANSFORM METHOD TO FRACTIONAL HEAT AND

WAVE-LIKE EQUATIONS

JAGDEV SINGH, DEVENDRA KUMAR

Abstract. In this paper, we present an algorithm of the homotopy perturba-
tion transform method (HPTM) to solve fractional heat and wave-like equa-

tions. The fractional derivatives are described by Caputo sense. The HPTM is
combined form of the Laplace transform and homotopy perturbation method.
The proposed method finds the solution without any discretization or restric-
tive assumptions and avoids the round-off errors. Several examples are given to

verify the reliability and efficiency of the method. The fact that the proposed
technique solves nonlinear problems without using Adomian’s polynomials can
be considered as a clear advantage of this algorithm over the decomposition

method.

1. Introduction

Fractional differential equations have gained importance and popularity during
the past three decades or so, mainly due to its demonstrated applications in numer-
ous seemingly diverse fields of science and engineering. For example, the nonlinear
oscillation of earthquake can be modeled with fractional derivatives and the fluid-
dynamic traffic model with fractional derivatives can eliminate the deficiency arising
from the assumption of continuum traffic flow. The fractional differential equations
are also used in modeling of many chemical processes, mathematical biology and
many other problems in physics and engineering [4,5,8,9,19,21,22,23,24]. The im-
portance of obtaining the exact and approximate solutions of fractional differential
equations in physics and mathematics is still a significant problem that needs new
methods to discover exact and approximate solutions. In recent years, many re-
search workers have paid attention to study the solutions of fractional differential
equations by using various methods. Among these are Adomian decomposition
method (ADM) [2,5], homotopy analysis method (HAM) [17,18], variational itera-
tion method (VIM) [11,12], Laplace decomposition method (LDM) [14] and homo-
topy perturbation method (HPM) [10,24]. Most of these methods have their inbuilt
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deficiencies like the calculation of Adomian’s polynomials, the Lagrange multipli-
ers, divergent results, and huge computational work. Very recently, the homotopy
perturbation transform method (HPTM) is proposed by Khan and Wu [13] for han-
dling many linear and nonlinear problems. The homotopy perturbation transform
method (HPTM) has been successfully applied to solve fractional Black-Scholes
European option pricing equation [16].
In this paper, we will consider the fractional heat and wave-like equations of the
form:

∂αu

∂tα
= f(x, y, z)uxx + g(x, y, z)uyy + h(x, y, z)uzz,

0 < x < a, 0 < y < b, 0 < z < c, t > 0, (1)

subject to the Neumann boundary conditions:

ux(0, y, z, t) = f1(y, z, t), ux(a, y, z, t) = f2(y, z, t),

uy(x, 0, z, t) = g1(x, z, t), uy(x, b, z, t) = g2(x, z, t), (2)

uz(x, y, 0, t) = h1(x, y, t), uz(x, y, c, t) = h2(x, y, t),

and initial conditions:

u(x, y, z, 0) = ψ(x, y, z), ut(x, y, z, 0) = θ(x, y, z), (3)

where α is a parameter describing the fractional derivative. The general response
expression contains a parameter describing the order of the fractional derivative
that can be varied to obtain various responses. In the case of 0 < α ≤ 1, then
Eq. (1) reduces to a fractional heat-like equation with variable coefficients, and
to a wave-like equation with variable coefficients for 0 < α ≤ 2. In this paper,
further we apply the homotopy perturbation transform method (HPTM) to solve
fractional heat and wave-like equations. It is worth mentioning that this method is
an elegant combination of the Laplace transformation, the homotopy perturbation
method and He’s polynomials and is mainly due to Ghorbani [6,7]. The HPTM
provides the solution in a rapid convergent series which may lead to the solution
in a closed form. The advantage of this method is its capability of combining two
powerful methods for obtaining exact solutions for nonlinear equations. The plan
of our paper is as follows: Basic definitions of the fractional calculus and Laplace
transform are given in Section 2. The HPTM is presented in Section 3. In Section
4, six numerical examples are solved to illustrate the applicability of the considered
method. Conclusions are presented in Section 5.

2. Basic Definitions of fractional calculus and Laplace transform

In this section, we give some basic definitions and properties of fractional calculus
theory which shall be used in this paper:
Definition 1 The Riemann-Liouville fractional integral operator of order α > 0,
of a function f(t) ∈ Cµ, µ ≥ −1is defined as [22]:

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, (α > 0), (4)
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J0f(t) = f(t). (5)

For the Riemann-Liouville fractional integral we have:

Jαtγ =
Γ(γ + 1)

Γ(γ + α+ 1)
tα+γ . (6)

Definition 2 The fractional derivative of f(t) in the Caputo sense is defined as [3]:

Dαf(t) = Jn−αDnf(t)

=
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, (7)

for n− 1 < α ≤ n, n ∈ N, x > 0.
Definition 3 The Laplace transform of a function f(t), t > 0 is defined as

L[f(t)] = F (s) =

∫ ∞

0

e−stf(t)dt, (8)

where f(t) is piecewise continuous and of the expontiantial order (i.e. |e−atf(t)| <
M) for some constants a, Mand complex parameter s.
Definition 4 The Laplace transform of the Caputo derivative is given by Caputo
[3]; see also Kilbas et al. [15] in the form

L [D
α
f(t)] = sα L[f(t)] −

n−1∑
r=0

sα−r−1 f(r)(0 + ), (n − 1 < α ≤ n) . (9)

Definition 5 The Mittag-Leffler is defined as [20]:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (α ∈ C, Re(α) > 0). (10)

3. Homotopy Perturbation Transform Method (HPTM)

To illustrate the basic idea of this method, we consider a general fractional
nonlinear nonhomogeneous partial differential equation with the initial conditions
of the form:

Dα
t u(x, t) +R u(x, t) +N u(x, t) = g(x, t), (11)

u(x, 0) = h(x), ut(x, 0) = f(x), (12)

where Dα
t u(x, t) is the Caputo fractional derivative of the function u(x,t), R is the

linear differential operator, N represents the general nonlinear differential operator
and g(x,t) is the source term. Taking the Laplace transform (denoted in this paper
byL) on both sides of Eq. (11), we get

L [Dα
t u(x, t)] + L [R u(x, t)] + L [N u(x, t)] = L [g(x, t)]. (13)

Using the property of the Laplace transform, we have

L [u(x, t)] =
h(x)

s
+
f(x)

s2
+

1

sα
L [g(x, t)]− 1

sα
L [R u(x, t)]− 1

sα
L [N u(x, t)]. (14)
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Operating with the Laplace inverse on both sides of Eq. (14) gives

u(x, t) = G(x, t)− L−1

[
1

sα
L [R u(x, t) +N u(x, t)]

]
, (15)

where G(x, t) represents the term arising from the source term and the prescribed
initial conditions. Now we apply the HPM

u(x, t) =

∞∑
n=0

pnun(x, t) (16)

and the nonlinear term can be decomposed as

N u(x, t) =
∞∑

n=0

pnHn(u), (17)

for some He’s polynomials Hn(u)[7] that are given by

Hn(u0, u1, ..., un) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2, 3, ... (18)

The first few components He’s polynomials are given by

H0 = N(u0),

H1 = N
′
(u0)u1,

H2 = N
′
(u0)u2 +N

′′
(u0)

u21
2!
, (19)

H3 = N
′
(u0)u3 +N

′′
(u0)u1u2 +N (3)(u0)

u31
3!
,

...

Substituting Eqs. (16) and (17) in Eq. (15), we get

∞∑
n=0

pnun(x, t) = G(x, t)− p

(
L−1

[
1

sα
L

[
R

∞∑
n=0

pnun(x, t) +
∞∑

n=0

pnHn(u)

]])
,

(20)
which is the coupling of the Laplace transform and the HPM using He’s polynomials.
Comparing the coefficients of like powers of p, the following approximations are
obtained.

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = −L−1

[
1

sα
L [R u0(x, t) +H0(u)]

]
,

p2 : u2(x, t) = −L−1

[
1

sα
L [R u1(x, t) +H1(u)]

]
, (21)
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p3 : u3(x, t) = −L−1

[
1

sα
L [R u2(x, t) +H2(u)]

]
,

...

Proceeding in this same manner, the rest of the components un(x, t) can be com-
pletely obtained and the series solution is thus entirely determined.
Finally, we approximate the analytical solution u(x, t) by truncated series

u(x, t) = Lim
N→∞

N∑
n=0

un(x, t). (22)

The above series solutions generally converge very rapidly. A classical approach of
convergence of this type of series is already presented by Abbaoui and Cherruault
[1].

4. Examples

In this section, we apply the homotopy perturbation transform method (HPTM)
for solving fractional heat and wave-like equations.
Example 1. Consider the following one-dimensional fractional heat-like equation:

Dα
t u =

1

2
x2uxx, 0 < x < 1, 0 < α ≤ 1, t > 0, (23)

subject to the boundary conditions

u(0, t) = 0, u(1, t) = et, (24)

and the initial condition

u(x, 0) = x2. (25)

Applying the Laplace transform on both sides of Eq. (23) subject to the initial
condition, we have

L[u(x, t)] =
x2

s
+

1

2sα
x2L[uxx]. (26)

The inverse of Laplace transform implies that

u(x, t) = x2 +
1

2
x2L−1

[
1

sα
L[uxx]

]
. (27)

Now applying the HPM, we get

∞∑
n=0

pnun(x, t) = x2 + p

(
1

2
x2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, t)

)
xx

]])
. (28)

Comparing the coefficients of like powers of p, we have

p0 : u0(x, t) = x2,

p1 : u1(x, t) =
1

2
x2L−1

[
1

sα
[(u0)xx]

]
= x2

tα

Γ(α+ 1)
,
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p2 : u2(x, t) =
1

2
x2L−1

[
1

sα
[(u1)xx]

]
= x2

t2α

Γ(2α+ 1)
, (29)

...

pn : un(x, t) =
1

2
x2L−1

[
1

sα
[(un−1)xx]

]
= x2

tnα

Γ(nα+ 1)
,

...

Using the above iterations, the solution u(x, t) is given by

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t)

= x2
(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+ · · ·+ tnα

Γ(nα+ 1)
+ · · ·

)
= x2Eα[t

α]. (30)

If we select α = 1, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, t) converges to the exact solution u(x, t) = x2et. It is quite impor-

tant to notice that higher number of iteration and higher orders of p are needed to
gain more accuracy.
Example 2. Consider the following two-dimensional fractional heat-like equation:

Dα
t u = uxx + uyy, 0 < x, y < 2π, 0 < α ≤ 1, t > 0, (31)

subject to the boundary conditions

u(0, y, t) = 0, u(2π, y, t) = 0,
u(x, 0, t) = 0, u(x, 2π, t) = 0,

(32)

and the initial condition

u(x, y, 0) = sinx sin y. (33)

In a similar way as above, we have

∞∑
n=0

pnun(x, y, t) = sinx sin y + p

(
L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, t)

)
xx

]]

+L−1

 1

sα
L

( ∞∑
n=0

pnun(x, y, t)

)
yy

 . (34)

Comparing the coefficients of like powers of p, we have

p0 : u0(x, y, t) = sinx sin y,

p1 : u1(x, y, t) = −2 sinx sin y
tα

Γ(α+ 1)
,

p2 : u2(x, y, t) = 4 sinx sin y
t2α

Γ(2α+ 1)
, (35)
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...

pn : un(x, y, t) = (−2)n sinx sin y
tnα

Γ(nα+ 1)
,

...

Using the above iterations, the solution u(x, y, t) is given by

u(x, y, t) = lim
p→1

∞∑
n=0

pnun(x, y, t)

= sinx sin y

(
1− 2

tα

Γ(α+ 1)
+ 4

t2α

Γ(2α+ 1)
+ · · ·+ (−2)n

tnα

Γ(nα+ 1)
+ · · ·

)
= sinx sin yEα[−2tα]. (36)

If we select α = 1, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, y, t) converges to the exact solution u(x, y, t) = e−2t sinx sin y. It is

quite important to notice that higher number of iteration and higher orders of p
are needed to gain more accuracy.
Example 3. Consider the following three-dimensional inhomogeneous fractional
heat-like equation:

Dα
t u = x4y4z4 +

1

36
(x2uxx + y2uyy + z2uzz),

0 < x, y, z < 1, 0 < α ≤ 1, t > 0, (37)

subject to the boundary conditions

u(0, y, z, t) = 0, u(1, y, z, t) = y4z4(et − 1),
u(x, 0, z, t) = 0, u(x, 1, z, t) = x4z4(et − 1),
u(x, y, 0, t) = 0, u(x, y, 1, t) = x4y4(et − 1),

(38)

and the initial condition

u(x, y, z, 0) = 0. (39)

In a similar way as above, we have

∞∑
n=0

pnun(x, y, z, t) = x4y4z4
tα

Γ(α+ 1)

+p

(
1

36
x2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, z, t)

)
xx

]]

+
1

36
y2L−1

 1

sα
L

( ∞∑
n=0

pnun(x, y, z, t)

)
yy


+

1

36
z2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, z, t)

)
zz

]])
. (40)
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Comparing the coefficients of like powers of p, we have

p0 : u0(x, y, z, t) = x4y4z4
tα

Γ(α+ 1)
,

p1 : u1(x, y, z, t) = x4y4z4
t2α

Γ(2α+ 1)
,

p2 : u2(x, y, z, t) = x4y4z4
t3α

Γ(3α+ 1)
, (41)

...

pn : un(x, y, z, t) = x4y4z4
t(n+1)α

Γ{(n+ 1)α+ 1}
,

...

Using the above iterations, the solution u(x, y, z, t) is given by

u(x, y, z, t) = lim
p→1

∞∑
n=0

pnun(x, y, z, t)

= x4y4z4
(

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+ · · ·+ t(n+1)α

Γ{(n+ 1)α+ 1}
+ · · ·

)
= x4y4z4[Eα(t

α)− 1]. (42)

If we select α = 1, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, y, z, t) converges to the exact solution u(x, y, z, t) = x4y4z4 (et − 1).

It is quite important to notice that higher number of iteration and higher orders of
p are needed to gain more accuracy.
Example 4. Consider the following one-dimensional fractional wave-like equation:

Dα
t u =

1

2
x2uxx, 0 < x < 1, 0 < α ≤ 2, t > 0, (43)

subject to the boundary conditions

u(0, t) = 0, u(1, t) = 1 + sinh t, (44)

and the initial conditions

u(x, 0) = x, ut(x, 0) = x2. (45)

In a similar way as above, we have

∞∑
n=0

pnun(x, t) = x+ x2t+ p

(
1

2
x2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, t)

)
xx

]])
. (46)

Comparing the coefficients of like powers of p, we have

p0 : u0(x, t) = x+ x2t,
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p1 : u1(x, t) = x2
tα+1

Γ(α+ 2)
,

p2 : u2(x, t) = x2
t2α+1

Γ(2α+ 2)
, (47)

...

pn : un(x, t) = x2
tnα+1

Γ(nα+ 2)
,

...

Using the above iterations, the solution u(x, t) is given by

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t)

= x+ x2
(
t+

tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
+ · · ·+ tnα+1

Γ(nα+ 2)
+ · · ·

)
= x+ x2tEα,2[t

α]. (48)

If we select α = 2, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, t) converges to the exact solution u(x, t) = x + x2 sinh t. It is quite

important to notice that higher number of iteration and higher orders of p are
needed to gain more accuracy.
Example 5. Consider the following two-dimensional fractional wave-like equation:

Dα
t u =

1

12
(x2uxx + y2uyy), 0 < x, y < 1, 0 < α ≤ 2, t > 0, (49)

subject to the boundary conditions

u(0, y, t) = 0, u(1, y, t) = 4 cosh t,
u(x, 0, t) = 0, u(x, 1, t) = 4 sinh t,

(50)

and the initial conditions

u(x, y, 0) = x4, ut(x, y, 0) = y4 . (51)

In a similar way as above, we have

∞∑
n=0

pnun(x, y, t) = x4 + y4t+ p

(
1

12
x2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, t)

)
xx

]]

+
1

12
y2L−1

 1

sα
L

( ∞∑
n=0

pnun(x, y, t)

)
yy

 . (52)

Comparing the coefficients of like powers of p, we have

p0 : u0(x, y, t) = x4 + y4t,
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p1 : u1(x, y, t) = x4
tα

Γ(α+ 1)
+ y4

tα+1

Γ(α+ 2)
,

p2 : u2(x, y, t) = x4
t2α

Γ(2α+ 1)
+ y4

t2α+1

Γ(2α+ 2)
, (53)

...

pn : un(x, y, t) = x4
tnα

Γ(nα+ 1)
+ y4

tnα+1

Γ(nα+ 2)
,

...

Using the above iterations, the solution u(x, y, t) is given by

u(x, y, t) = lim
p→1

∞∑
n=0

pnun(x, y, t)

= x4
(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+ · · ·+ tnα

Γ(nα+ 1)
+ · · ·

)
+y4

(
t+

tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
+ · · ·+ tnα+1

Γ(nα+ 2)
+ · · ·

)
= x4Eα[t

α] + y4tEα,2[t
α]. (54)

If we select α = 2, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, y, t) converges to the exact solution u(x, y, t) = x4 cosh t + y4 sinh t.

It is quite important to notice that higher number of iteration and higher orders of
p are needed to gain more accuracy.
Example 6. Consider the following three-dimensional fractional wave-like equa-
tion:

Dα
t u = x2 + y2 + z2 +

1

2
(x2uxx + y2uyy + z2uzz),

0 < x, y, z < 1, 0 < α ≤ 2, t > 0, (55)

subject to the boundary conditions

u(0, y, z, t) = y2(et − 1) + z2(e−t − 1), u(1, y, z, t) = (1 + y2)(et − 1) + z2(e−t − 1),
u(x, 0, z, t) = x2(et − 1) + z2(e−t − 1) , u(x, 1, z, t) = (1 + x2)(et − 1) + z2(e−t − 1),
u(x, y, 0, t) = (x2 + y2)(et − 1), u(x, y, 1, t) = (x2 + y2)(et − 1) + (e−t − 1),

(56)
and the initial conditions

u(x, y, z, 0) = 0, ut(x, y, z, 0) = x2 + y2 − z2. (57)

In a similar way as above, we have

∞∑
n=0

pnun(x, y, z, t) = (x2 + y2 + z2)
tα

Γ(α+ 1)
+ (x2 + y2 − z2)t
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+p

(
1

2
x2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, z, t)

)
xx

]]

+
1

2
y2L−1

 1

sα
L

( ∞∑
n=0

pnun(x, y, z, t)

)
yy


+
1

2
z2L−1

[
1

sα
L

[( ∞∑
n=0

pnun(x, y, z, t)

)
zz

]])
. (58)

Comparing the coefficients of like powers of p, we have

p0 : u0(x, y, z, t) = (x2 + y2 + z2)
tα

Γ(α+ 1)
+ (x2 + y2 − z2)t,

p1 : u1(x, y, z, t) = (x2 + y2 + z2)
t2α

Γ(2α+ 1)
+ (x2 + y2 − z2)

tα+1

Γ(α+ 2)
,

p2 : u2(x, y, z, t) = (x2 + y2 + z2)
t3α

Γ(3α+ 1)
+ (x2 + y2 − z2)

t2α+1

Γ(2α+ 2)
, (59)

...

pn : un(x, y, z, t) = (x2 + y2 + z2)
t(n+1)α

Γ{(n+ 1)α+ 1}
+ (x2 + y2 − z2)

tnα+1

Γ(nα+ 2)
,

...

Using the above iterations, the solution u(x, y, z, t) is given by

u(x, y, z, t) = lim
p→1

∞∑
n=0

pnun(x, y, z, t)

= (x2+y2+z2)

(
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ · · · t(n+1)α

Γ{(n+ 1)α+ 1}
+ · · ·

)

+(x2 + y2 − z2)

(
t+

tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
+ · · ·+ tnα+1

Γ(nα+ 2)
+ · · ·

)

= (x2 + y2 + z2) [Eα(t
α)− 1] + (x2 + y2 − z2)tEα,2(t

α). (60)

If we select α = 2, then clearly, we can conclude that the obtained solution∑∞
n=0 un(x, y, z, t) converges to the exact solution u(x, y, z, t) = (x2+y2) et+z2e−t

−(x2+ y2+ z2). It is quite important to notice that higher number of iteration and
higher orders of p are needed to gain more accuracy.
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5. Conclusions

In this paper, the homotopy perturbation transform method (HPTM) is applied
to derive solutions of the fractional differential equations. We choose the fractional
heat and wave-like equations with initial and boundary conditions to illustrate our
method. As results, we obtain the exact solutions of fractional heat and wave-like
equations. The obtained results demonstrate the reliability of the algorithm and
its wider applicability to linear and nonlinear fractional differential equations. It is
obvious to see that the HPTM is a very powerful, easy and efficient technique for
solving various kinds of fractional problems in science and engineering and without
many assumptions and restrictions.
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