
Journal of Fractional Calculus and Applications,

Vol. 4(2) July 2013, pp. 303-311.

ISSN: 2090-5858.

http://www.fcaj.webs.com/

————————————————————————————————

NUMERICAL APPROXIMATION FOR SPACE FRACTIONAL

DIFFUSION EQUATIONS VIA CHEBYSHEV FINITE

DIFFERENCE METHOD

H. AZIZI, G. B. LOGHMANI

Abstract. In this paper, we discuss the numerical solution of space fractional
diffusion equations. The method of solution is based on using Chebyshev
polynomials and finite difference with Gauss-Lobatto points. The validity and
reliability of this scheme is tested by its application in various space fractional

diffusion equations. The obtained results reveal that the proposed method is
more accurate and efficient.

1. Introduction

In recent years, there has been a growing interest in the field of fractional calcu-
lus. Oldham and Spanier [9], Miller and Ross [8], Samko et al. [13] and Podlubny
[10] provided the history and an extensive treatment of this subject. Many phe-
nomena in physics, chemistry, engineering and other sciences can be explained very
successfully by models using mathematical tools from fractional calculus, i.e., the
theory of derivatives and integral of fractional order.

Also, the use of fractional partial differential equations in mathematical models
has become increasingly popular in recent years. Different models using fractional
partial differential equation have been suggested and there has been important in-
terest in developing numerical methods for their solution.

Roughly speaking, fractional partial differential equations can be arranged into
two important types: space-fractional partial differential equations (SFPDEs) and
time-fractional partial differential equations (TFPDEs). One of the simplest exam-
ples of the former is fractional order diffusion equation, which is the generalization
of classical diffusion equations, treating super diffusive flow processes. Much of
the work published to date has been concerned with this kind of fractional partial
differential equations, for example see [5], [7] and [16].

We describe some necessary definition and mathematical preliminaries of the
fractional calculus theory required for our subsequent development.
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Definition 1 The fractional derivative of f(x) in the Caputo sense is defined as
[10]

Dα
∗ f(x) =

1

Γ(m− α)

∫ x

0

(x− s)m−α−1f (m)(s)ds,

for m− 1 < α ≤ m,m ∈ N, x > 0 .
We have the following properties when m− 1 < α ≤ m,x > 0:
Dα

∗ k = 0, (k is a constant),

Dα
∗ x

n =

{
0 for n ∈ W and n < [α],
Γ(n+1)

Γ(n+1−α)x
n−α for n ∈ W, and n ≥ [α],

where function [α] to denote the smallest integer greater than or equal to α and
W = {0, 1, 2, ...}. Note that for α ∈ W, the Caputo differential operator agrees with
the usual differential operator of integer order.

In this paper, we consider the one-dimensional space fractional diffusion equation
of the form

∂u(x, t)

∂t
= d(x)

∂αu(x, t)

∂xα
+ p(x, t), 0 < x < 1, 0 ≤ t ≤ T, 1 < α ≤ 2, (1)

with initial condition

u(x, 0) = f(x), 0 < x < 1, (2)

and boundary conditions

u(0, t) = g0(t), 0 < t ≤ T, (3)

u(1, t) = g1(t), 0 < t ≤ T. (4)

The function p(x, t) is a source term and note that for α = 2, Eq.(1) is the classical
diffusion equation

∂u(x, t)

∂t
= d(x)

∂2u(x, t)

∂x2
+ p(x, t).

In [4] the author used Chebyshev collocation method to discretize Eq.(1) to ob-
tain a linear system of ordinary differential equations and used the finite difference
method to solve the resulting system. Saadatmandi and Dehghan used tau ap-
proach to solve Eq.(1) [11]. Also in [14] Sousa applied splines and finite difference
to solve space fractional diffusion equation.

The main idea of the current work is to apply non-uniform finite difference
method with Chebyshev polynomials and Gauss-Lobato points. Application of this
method for Eq.(1) leads to solve an algebraic system.
Cebyshev finite difference methd (ChFDM) has been used in the numerical solu-
tion of Fredholm integro-differential equations, boundary value problems, bound-
ary layer equations and nonlinear system of second-order boundary value problems
[1, 2, 3, 12].

2. Chebyshev series expansion

Definition 2 [6] The well-known Chebyshev polynomials of the first kind of
degree n are defined on the interval [−1, 1] as

Tn(x) = cos(n arccos(x)),

obviously T0(x) = 1, T1(x) = x and they satisfy the recurrence relations:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, · · ·.
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In order to use these polynomials on the interval x ∈ [0, 1] we define the so called
shifted Chebyshev polynomials by introducing the change of variable z = 2x − 1.
The shifted Chebyshev polynomials are defined as: T ∗

n(x) = Tn(2x− 1).
The function u(x, t) may be expressed in terms of shifted Chebyshev polynomials
as:

u(x, t) =
N∑

n=0

N∑
m=0

rnmT ∗
n(x)T

∗
m(t), (5)

where the coefficients rnm are given by

rnm =
4

N2cncm

N∑
k=0

′′
N∑
l=0

′′
u(xk, tl)T

∗
n(xk)T

∗
m(tl), n,m = 0, 1, ..., N, (6)

xk =
cos( kπ

N )+1

2 , k = 0, 1, ..., N , tl =
T (cos( lπ

N )+1)

2 , l = 0, 1, ..., N are Gauss-Lobatto
points where shifted to interval [0, 1], [0, T ] and c0 = 2, ci = 1 for i = 1, 2, ..., N .
The summation symbol with double primes denotes a sum with both the first and
last terms halved.

The derivatives of the Chebyshev function are formed as the following[6]:

T ′
n(t) =

n−1∑
k=0

(n+k)odd

2n

ck
Tk(t), (7)

T ′′
n (t) =

n−2∑
k=0

(n+k)even

n

ck
(n2 − k2)Tk(t). (8)

From equations (7) and (8) we get

∂u(x, t)

∂t
=

4

N2

N∑
n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′
m−1∑
i=0

(m+i)odd

2m

cicncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(x)T

∗
i (t), (9)

∂2u(x, t)

∂x2
=

4

N2

N∑
n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′
n−2∑
i=0

(n+i)even

n(n2 − i2)

cicncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(x)T

∗
i (t).

(10)

We see from equations (9) and (10) the derivatives of the function u(x, t) at any
point from shifted Guass-Lobatto nodes are expanded as linear combination of the
values of the function at these points.

3. Numerical scheme

In this section, the space fractional diffusion equation (1) is solved. In order to
find the solution u(x, t) in equation (1), we first calculated Eq.(1) in shifted Gauss-
Lobatto nods (xj , th) for j = 1, 2, ..., N − 1 and h = 1, 2, ..., N and using equations
(9) and (10) and definition 1 we obtain

4

N2

N∑
n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′
m−1∑
i=0

(m+i)odd

2m

cicncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(xj)T

∗
i (th)



306 H. AZIZI, G. B. LOGHMANI JFCA-2013/4(2)

= d(xj)
1

Γ(2− α)

4

N2

N∑
n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′
n−2∑
i=0

(n+i)even

n(n2 − i2)

cicncm
u(xk, tl)T

∗
n(xk)

T ∗
m(tl)T

∗
i (th)

∫ xj

0
(xj − s)1−α T ∗

n(s) ds+p(xj , th). (11)

Initial condition (2) for i = 1, 2, ..., N − 1 and from boundary conditions (3) and
(4) for j = 0, 1, ..., N is used to obtain

u(xi, 0) =
N∑

n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′ 4

N2cncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(xi)T

∗
m(0)

= f(xi), (12)

u(0, tj) =
N∑

n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′ 4

N2cncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(0)T

∗
m(tj)

= g0(tj), (13)

u(1, tj) =
N∑

n=0

N∑
m=0

N∑
k=0

′′
N∑
l=0

′′ 4

N2cncm
u(xk, tl)T

∗
n(xk)T

∗
m(tl)T

∗
n(1)T

∗
m(tj)

= g1(tj). (14)

Thus equations (11)-(14) create a set of (N + 1)2 algebraic equations, which
the unknowns u(xk, tl) for k = 0, 1, ..., N and l = 0, 1, ..., N obtain by solving it.
Therefore u(x, t) in equation (5) can be calculated.

4. Stability and convergent

The system that created in previous section can be written as the following
matrix form:

A[u] = [b].

The square matrix A is usually dense matrix but for solve this system we used
maple 13 and in test problems that use this paper, A is non-singular matrix and
the spectral radius of matrix A−1 is the less than one therefore the proposed method
has unique solution and is unconditionally stable [15]. Unconditionally stable for
the general case is open problem.

5. Numerical examples

In this section, for the sake of comparison, we have selected some examples where
the exact solutions already exist, which will ultimately show the simplicity, effec-
tiveness and exactness of the proposed method.

Example 1 Consider the following space fractional differential equation

∂u(x, t)

∂t
= d(x)

∂1.5u(x, t)

∂x1.5
+ p(x, t),

on a finite domain 0 < x < 1, 0 ≤ t ≤ 1, with the diffusion coefficient

d(x) = Γ(0.5)
4 x0.5,
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the source function
p(x, t) = 2t+ x,
the initial condition
u(x, 0) = x2, 0 < x < 1,
and the boundary conditions
u(0, t) = t2, u(1, t) = 1 + t2.
The exact solution of this problem is
u(x, t) = x2 + t2.
We applied present method with N = 2 for this problem and we obtained the exact
solution.

Example 2 [11] In this example, we consider (1) with α = 1.8, of the form:

∂u(x, t)

∂t
= Γ(1.2)x1.8 ∂1.8u(x, t)

∂x1.8
+ 3x2(2x− 1)e−t,

with the initial condition
u(x, 0) = x2 − x3,
and zero Dirichlet conditions.
The exact solution of this problem is u(x, t) = x2(1− x)e−t.
We solved this problem by applying the present method. In Table 1 the absolute
errors between the exact solution and the approximate solution of the new method
with the Chebyshev collocation method given in [4] and the Tau method by Le-
gendre polynomials given in [11] are compared.
From Table 1, can be seen our results are in good agreement with the methods
introduced in [4] and [11].

Table 1: Comparison of absolute errors for u(x, 2) from example 1.

x Method [4] with m=5 Method [11] with m=5 present method(N=5)

0.0 2.74× 10−5 0.0 0.0
0.1 4.20× 10−5 4.47× 10−6 1.40× 10−7

0.2 3.76× 10−5 2.78× 10−7 9.06× 10−7

0.3 8.44× 10−5 5.81× 10−6 3.25× 10−8

0.4 3.27× 10−5 1.02× 10−5 6.55× 10−8

0.5 3.61× 10−5 1.17× 10−5 1.02× 10−8

0.6 1.94× 10−5 1.08× 10−5 7.38× 10−9

0.7 2.95× 10−5 8.54× 10−6 1.64× 10−7

0.8 4.92× 10−5 6.06× 10−6 2.75× 10−8

0.9 2.83× 10−5 3.67× 10−6 1.32× 10−7

1.0 7.73× 10−5 0.0 0.0

Example 3 [11] Consider the following space fractional differential equation

∂u(x, t)

∂t
= d(x)

∂1.5u(x, t)

∂x1.5
+ p(x, t),

on a finite domain 0 < x < 1, with the diffusion coefficient
d(x) = Γ(1.5)x0.5,
the source function
p(x, t) = (x2 + 1) cos(t+ 1)− 2x sin(t+ 1),
with the initial condition
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u(x, 0) = (x2 + 1) sin(1),
and the boundary conditions
u(0, t) = sin(t+ 1), u(1, t) = 2 sin(t+ 1), for

t > 0.
The exact solution of this problem is u(x, t) = (x2 + 1) sin(t+ 1).

We applied the proposed method and the comparison of our method with the
method in [11] which are shown in Table 2. Also, figure 1 shows the absolute error
function |u(x, t) − uapprox(x, t)| obtained by the present method with T = 1 and
N = 7. Note that from Table 2 and figure 1 can be seen our method achieve a good
approximation for the above equation.

Table 2: Comparison of present method for u(x, 1) with the tau method [11] for exa. 3.

x Method [11] with m=7 present method with N=7

0.1 4.66× 10−5 1.86× 10−8

0.2 7.74× 10−5 1.23× 10−8

0.3 5.00× 10−5 6.94× 10−9

0.4 2.30× 10−5 1.26× 10−8

0.5 2.74× 10−5 1.86× 10−8

0.6 4.38× 10−5 1.24× 10−8

0.7 3.87× 10−5 6.29× 10−10

0.8 1.01× 10−5 1.01× 10−8

0.9 3.35× 10−6 4.82× 10−8

Example 4 [14] Consider the problem (1) with initial condition
u(x, 0) = x4, 0 < x < 1
and boundary conditions
u(0, t) = 0, u(1, t) = e−t.

Let d(x) = 1
24Γ(5 − α)xα and p(x, t) = −2e−tx4. The exact solution for this

problem is u(x, t) = e−tx4.
We solved the problem by applying the technique described in section 3. In Table
3, the maximum errors between the exact solution and the approximate solution
for different values of N and α in finite domain 0 ≤ x, t ≤ 1 is obtained.
Figure 2 shows the absolute error function |u(x, t)− uapprox(x, t)| obtained by the
present method with T = 1 and N = 6 for α = 1.2.

Table 3: The absolute errors for different values of N and α for example 4.

α N=2 N=3 N=4 N=5 N=6

1.2 0.1 1.5× 10−2 3× 10−5 1.6× 10−6 7× 10−8

1.4 0.1 1.4× 10−2 3.2× 10−5 1.8× 10−6 8× 10−8

1.5 0.1 1.5× 10−2 3× 10−5 2× 10−6 9× 10−8

Note that in [14] this problem has been solved by finite difference method and
splines. Maximum errors for α = 1.2, α = 1.4 and α = 1.5 with ∆x = 1

30 are

0.3566× 10−3, 0.24616× 10−3 and 0.2067× 10−3, respectively. Therefore from our
method we obtain a good approximation for this problem.
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Figure 1. plot of error function |u(x, t)−uapprox(x, t)| with N =
7 from example 3.

6. Conclusion

In this paper, we proposed an effective and convenient method to solve space
fractional diffusion equations. The various examples were presented to numerically
determine whether the new method leads to higher accuracy and simplicity, which in
all cases was in an excellent performance. From the comparison with other methods
we found that our method achieved a good approximation for space fractional
diffusion equations.
For example in [4] fractional diffusion equation reduce to a system of ordinary
differential equations, which solved by the finite difference method and if compared
with proposed method, ChFD method is more accurate because the approximation
of the derivatives is defined over the whole domain while the finite difference method

produce a second-order accurate derivative with the error decreasing as
1

m2
(m

being the number of grid points).
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