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ALTERNATIVE DERIVATION OF GENERALIZED FRACTIONAL

KINETIC EQUATIONS

R.K. SAXENA, J. RAM AND D. KUMAR

Abstract. In view of the usefulness and a great importance of the kinetic
equation in certain astrophysical problems the authors develop a new and
further generalized form of the fractional kinetic equation involving Mittag-

Leffler function and G-function. This new generalization can be used for the
computation of the change of chemical composition in stars like the sun. The
manifold generality of the Mittag-Leffler function and G-function is discussed
in terms of the solution of the above fractional kinetic equation. Saxena et

al. [23, 24] derived the solutions of generalized fractional kinetic equations
in terms of Mittag-Leffler functions by the application of Laplace transform
[8, 25]. The present work is extension of earlier work done by Saxena et al.
[24], and Chaurasia and Pandey [6].

1. Introduction and Preliminaries

Definition 1:- Sumudu Transform:
An integral transform, called the Sumudu transform was defined and studied by
G.K. Watugala [28] to facilitate the process of solving differential and integral
equations in the time domain, and for the use in various applications of system
engineering and applied physics. In [3, 4, 5, 28], some fundamental properties of
the Sumudu transform are established. It turns out that the Sumudu transform has
very special and useful properties and it is useful in solving problems of science and
engineering governing kinetic equations. The Sumudu transform has been shown to
be the theoretical dual of the Laplace transform. The Laplace transform is defined
by

F (p) = £ [f (t)] =

∫ ∞

0

e−pt f (t) dt, Re (p) > 0. (1)

The Sumudu transform is defined over the set of functions,

A =
{
f (t)

∣∣∣∃M, τ1, τ2 > 0, |f (t)| < M e|t|/τj if t ∈ (−1)
j × [0,∞)

}
, (2)
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by

G (u) = S (f (t)) =

∫ ∞

0

e−t f (ut) dt, u ∈ (−τ1, τ2) ; (3)

where M is a real finite number and τ1 and τ2 can be finite or infinite [28].
Hence, G(u) is called as the Sumudu transform of f(t). It is obvious that this is a
linear operator. It can be easily verified that in (3) the function G(u) keeps the same
units as f(t), for any real or complex number λ it gives that S[f(λt)] = G(λu).
The Sumudu and Laplace transforms exhibit a duality relation that may be ex-
pressed either as

(i) G

(
1

u

)
= u F (u) or G (u) =

1

u
F

(
1

u

)
, (4)

(ii) F

(
1

p

)
= p G (p) or F (p) =

1

p
F

(
1

p

)
. (5)

The Sumudu transform is connected to the p-multiplied Laplace transform (see
[18]).
Fractional kinetic equations:
Fractional kinetic equations have gained popularity during the past decade mainly
due to the discovery of their relation with the CTRW-theory in [15].
Hilfer [13, 14] have investigated fractional kinetic equations in order to determine
and deduce certain physical phenomena which govern such processes as diffusion
in porous media, reaction and relaxation in complex systems, anomalous diffusion,
and so on.
Saxena and Kalla [22] considered the following fractional kinetic equation:

N (t)−N0 f (t) = −cv
(
0D

−v
t N

)
(t) (Re (v) > 0) , (6)

where N (t) denotes the number density of a given species at time t, N0 = N (0) is
the number density of that species at time t = 0, c is a constant and f ∈ L (0,∞).
By applying the Laplace transform to (6), we have

£ [N (t)] (p) = N0
F (p)

1 + cv p−v
= N0

( ∞∑
n=0

(−cv)
n
p−nv

)
F (p)

(
n ∈ N0,

∣∣∣∣ cp
∣∣∣∣ < 1

)
.

(7)
Tomovski et al. [27] provided the corrected version of the obviously erroneous
solution of the fractional kinetic equation (6) given by Saxena and Kalla [[22], p.
508, Eqn. (3.2)] as follows:

N (t) = N0

(
f (t) +

∞∑
n=1

(−cv)
n

Γ (n v)

(
tnv−1 ∗ f (t)

))
, (8)

or

N (t) = N0

(
f (t) +

∞∑
n=1

(−cv)
n (

0D
−nv
t f

)
(t)

)
, (9)

where the relationship between the Laplace convolution and the Riemann-Liouville
fractional integral operator

(
0D

−v
t f

)
with a = 0, given as following :

tnv−1∗f (t) =

∫ t

0

(t− p)
nv−1

f (p) dp = Γ (nv)
(
0D

−nv
t f

)
(t) , (n ∈ N,Re (v) > 0) .

(10)
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The solution (9) provides the new version of the equation (6) by applying a tech-
nique which was employed earlier by Al. Saqabi and Tuan [2] for solving fractional
differintegral equations.
The general fractional kinetic differintegral equation given as following:

a
(
Dα, β

0+ N
)
(t)−N0 f (t) = b

(
0D

−v
t N

)
(t) , (11)

under the initial condition(
0D

−[(1−β) (1−α)]
t f

)
(0+) = c , (12)

where a, b and c are constant and f ∈ L (0,∞).
Tomovski et al. [27] provided explicit solution of the fractional kinetic differintegral
equation (11) with the initial condition (12) as follows:

N (t) =
N0

a

∞∑
n=0

(
b

a

)n (tα+n(v+α)−1 ∗ f (t)
)

Γ (α+ n (v + α))

+ c
∞∑

n=0

(
b

a

)n (
tα−β(1−α)+n(v+α)−1

)
Γ (α− β (1− α) + n (v + α))

(α ̸= 0) , (13)

or, equivalently, by

N (t) =
N0

a

∞∑
n=0

(
b

a

)n (
0D

−[α+n(v+α)]
t f

)
(t)

+ c

∞∑
n=0

(
b

a

)n (
tα−β(1−α)+n(v+α)−1

)
Γ (α− β (1− α) + n (v + α))

(α ̸= 0) , (14)

where a, b and c are constant and f ∈ L (0,∞).

2. Generalized Mittag-Leffler function

In 1903, the Swedish mathematician Gosta Mittag-Leffler [19, 20] introduced the
function Eα (z), defined by

Eα (z) =
∞∑

n=0

zn

Γ (αn+ 1)
, (α ∈ C, Re (α) > 0) . (15)

The Mittag-Leffler function Eα(z) was studied by Wiman [29] who defined the
function Eα,β(z) as follows

Eα,β (z) =
∞∑

n=0

zn

Γ (αn+ β)
, (α, β ∈ C, Re (α) > 0, Re (β) > 0) . (16)

The function Eα,β(z) is now known as Wiman function, which was later studied by
Agarwal [1] and others. The generalization of (16) was introduced by Prabhakar
[21] in terms of the series representation

Eγ
α,β (z) =

∞∑
n=0

(γ)n zn

Γ(αn+ β) n!
, (α, β, γ ∈ C, Re (α) > 0, Re (β) > 0) . (17)

where (γ)n is Pochammer’s symbol, defined by

(γ)n =
Γ (γ + n)

Γ (γ)
=

{
1, (n = 0, γ ̸= 0)
γ (γ + 1) . . . (γ + n− 1) , (n ∈ N, γ ∈ C)

. (18)
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It is an entire function of order [21] ρ = [Re (α)]
−1

. Some special cases of (17) are

Eα (z) = E1
α,1 (z) , Eα,β (z) = E1

α,β (z) , ϕ (β, γ; z) = 1F1 (β, γ; z) = Γ (γ)Eβ
1,γ (z) ,

(19)
where ϕ (β, γ; z) is Kummer’s confluent hypergeometric function [12]. Mellin-Barnes
integral representation for the function (17) is given by [24]:

Eγ
α,β (z) =

1

2πiΓ (γ)

∫
Ω

Γ (−s) Γ (γ + s) (−z)
s

Γ (β + sα)
ds , (20)

where i =
√
−1 .

Remark 1 A detailed account of Mittag-Leffler functions and their Applications
can be found in the monograph by Haubold, Mathai and Saxena [12].
The following integral gives the Sumudu transform of Eγ

α,β(z):∫ ∞

0

e−t (ut)β−1Eγ
α,β

(
w (ut)

α
)
dt = uβ−1 (1− wuα)

−γ
, (21)

where Re(u) > |w|−1/Re(α)
, Re(β) > 0, Re(u) > 0, u ∈ (−τ1, τ2), |f(t)| < Me|t|/τj

which can be established by means of the Gamma function∫ ∞

0

e−ttx−1 = Γ(x), Re(x) > 0, (22)

and the binomial formula

(1− z)
−a

=

∞∑
n=0

(a)n zn

n!
(23)

The Laplace transform of Eγ
α,β (at

α) is as follows [24]:∫ ∞

0

e−pt tβ−1Eγ
α,β(at

α)dt = p−β
(
1− ap−α

)−γ
. (24)

If we set γ = 1, (21) reduces to∫ ∞

0

e−t (ut)β−1Eα,β

(
w (ut)

α
)
dt = uβ−1 (1− wuα)

−1
, (25)

where |u| > |w|−1/Re(α)
, Re(β) > 0, Re(u) > 0, u ∈ (−τ1, τ2), |f(t)| < Me|t|/τj .

Now, we recall the definition of Riemann-Liouville integral operator [26] of order
α ∈ C .

aD
−α
x f(t) =

1

Γ(α)

∫ x

a

(x− t)
α−1

f(t)dt, x > a, Re(α) > 0 , (26)

in the form

0D
−v
t f(t) =

1

Γ(v)

∫ t

0

(t− s)
v−1

f(s)ds, t > 0, Re(v) > 0 , (27)

with aD
0
t f(t) = f(t).

Fractional derivative for α > 0 is defined as

0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(u)du

(t− u)α−n+1
, n = [Re(α)] + 1;

where [Re(α)] stand for the integral part of Re(α).
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If we apply convolution theorem for Sumudu transform [3, 4, 5], we observe that
(27) can be written in the following form:

S
{
0D

−v
t f(t)

}
= S

{
tv−1

Γ(v)

}
.S {f(t)} = uvG(u) (28)

In the following, we present the solution of generalized fractional kinetic equations.
The results are obtained in terms of generalized Mittag-Leffler functions in a com-
pact form and can be worked out easily. A detailed account of the fractional integral
operators and their applications is available in Ref. [26].

3. Solution of fractional kinetic equations

Theorem 1 If c > 0, v > 0, µ > 0, γ > 0, for the solution of the equation

N(t)−N0t
µ−1Eγ

v,µ (−cvtv) = −cv 0D
−v
t N(t) , (29)

there holds the formula

N(t) = N0t
µ−2Eγ+1

v,µ−1 (−cvtv) , (30)

where Eγ
v,µ(z) is the generalized Mittag-Leffler function.

Proof Applying the Sumudu transform to the both sides of (29) and using (28),
we get

S [N(t)] = N0 S
[
tµ−1Eγ

v,µ (−cvtv)
]
− cv S

[
0D

−v
t N(t)

]
,

N∗(u) = N0

[
uµ−1

[1 + (uc)v]γ

]
− cv uv N∗(u) ,

and we have the following:

N∗(u) = N0

[
uµ−1

[1 + (uc)v]γ+1

]
. (31)

Using the relation S−1 {uv} = tv−1

Γ(v) , Re(v) > 0, Re(u) > 0, and taking the Sumudu

inverse of (31), we have,

S−1 {N∗(u)} = N0 S−1

[
uµ−1

[1 + (uc)v]γ+1

]
= N0 S−1

[ ∞∑
n=0

(−1)n(γ + 1)nu
µ−1 (uc)vn

n!

]

= N0

∞∑
n=0

(−1)n(γ + 1)n cvn

n!
S−1

{
uµ+vn−1

}
,

N(t) = N0

∞∑
n=0

(−1)n(γ + 1)n cvn

n!

tµ+vn−2

Γ(µ+ vn− 1)
= N0 tµ−2Eγ+1

v,µ−1(−cvtv) .

This completes the proof of Theorem 1.
Now, if we follow the definition of Eγ

α,β(z) given by (17) and set γ = 1, then, we
arrive at the following result:
Corollary 1.1 If c > 0, v > 0, µ > 0 then for the solution of

N(t)−N0t
µ−1Ev,µ (−cvtv) = −cv 0D

−v
t N(t) , (32)

there holds the relation

N(t) =
N0t

µ−2

v
[Ev,µ−2 (−cvtv) + (2 + v − µ)Ev,µ−1 (−cvtv)] . (33)
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Proof Applying the Sumudu transform to the both sides of (32) and using (28),
we get

S [N(t)] = N0 S
[
tµ−1Ev,µ (−cvtv)

]
− cvS

[
0D

−v
t N(t)

]
N∗(u) = N0

[
uµ−1

[1 + (uc)v]

]
− cvuvN∗(u),

or

N∗(u) = N0

[
uµ−1

[1 + (uc)v]2

]
. (34)

Using the relation S−1 {uv} = tv−1

Γ(v) , Re(v) > 0, Re(u) > 0, and taking the Sumudu

inverse of (34), we have,

S−1 {N∗(u)} = N(t) = N0

∞∑
n=0

(−1)n(2)nc
vn

n!
S−1

{
uµ+vn−1

}
= N0t

µ−2
∞∑

n=0

(−1)n(n+ 1)(ct)vn

Γ(µ+ vn− 1)

= N0 tµ−2
∞∑

n=0

(−1)n
[
1
v {(nv + µ− 2) + (2 + v − µ)}

]
(ct)vn

Γ(µ+ vn− 1)

= N0
tµ−2

v

[ ∞∑
n=0

(−cvtv)n

Γ(µ+ vn− 2)
+ (2 + v − µ)

∞∑
n=0

(−cvtv)n

Γ(µ+ vn− 1)

]

=
N0t

µ−2

v
[Ev,µ−2 (−cvtv) + (2 + v − µ)Ev,µ−1 (−cvtv)] .

This completes the proof of (33).
If we set γ = 2 in Theorem 1, then we obtain the following:
Corollary 1.2 If c > 0, v > 0, µ > 0 then for the solution of

N(t)−N0t
µ−1E2

v,µ (−cvtv) = −cv 0D
−v
t N(t) , (35)

there holds the relation

N(t) =
N0t

µ−2

2v2
[Ev,µ−3 (−cvtv) + {3v − 2µ+ 5}Ev,µ−2 (−cvtv)

+
{
2
(
v2 + µ2 − 2µ+ 1

)
+ 6v − 2µ− 3vµ+ 3

}
Ev,µ−1 (−cvtv)] . (36)

Proof Applying the Sumudu transform to the both sides of (35) and using (28),
we get

S [N(t)] = N0 S
[
tµ−1E2

v,µ (−cvtv)
]
− cvS

[
0D

−v
t N(t)

]
N∗(u) = N0

[
uµ−1

[1 + (uc)v]2

]
− cvuvN∗(u) ,

or

N∗(u) = N0

[
uµ−1

[1 + (uc)v]3

]
. (37)

Using the relation S−1 {uv} = tv−1

Γ(v) , Re(v) > 0, Re(u) > 0, and taking the Sumudu

inverse of (37), we have,

S−1 {N∗(u)} = N(t) = N0

∞∑
n=0

(−1)n(3)nc
vn

n!
S−1

{
uµ+vn−1

}
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= N0

∞∑
n=0

(−1)n(n+ 1)(n+ 2)cvn

2(n)!

tµ+vn−1

Γ(µ+ vn− 1)

=
N0t

µ−2

2v2
[Ev,µ−3 (−cvtv) + {3v − 2µ+ 5}Ev,µ−2 (−cvtv)

+
{
2
(
v2 + µ2 − 2µ+ 1

)
+ 6v − 2µ− 3vµ+ 3

}
Ev,µ−1 (−cvtv)].

This completes the proof of (36).

Theorem 2 If c > 0, d > 0, v > 0, µ > 0, Re(u) > |d|v/α , c ̸= d, for the solution of
the equation

N(t)−N0t
µ−1Ev,µ (−dvtv) = −cv 0D

−v
t N(t) , (38)

there holds the formula

N(t) =
N0

cv − dv
tµ−v−2 [Ev,µ−v−1 (−dvtv)− Ev,µ−v−1 (−cvtv)] , (39)

where Ev,µ(z) is the generalized Mittag-Leffler function (also known as Agarwal
function [1]).
Proof Applying the Sumudu transform to the both sides of (38) and using (28),
we get

S [N(t)] = N0 S
[
tµ−1Ev,µ (−dvtv)

]
− cvS

[
0D

−v
t N(t)

]
,

N∗(u) = N0

[
uµ−1

[1 + (du)v] [1 + (cu)v]

]
=

N0

cv − dv
uµ−v−1

[ ∞∑
n=0

(−1)
n
(du)

vn −
∞∑

n=0

(−1)
n
(cu)

vn

]
. (40)

Using the relation S−1 {uv} = tv−1

Γ(v) , Re(v) > 0, Re(u) > 0, and taking the Sumudu

inverse of (40), we have,

S−1 {N∗(u)} =
N0

cv − dv

[ ∞∑
n=0

(−1)
n
(d)

vn
S−1

{
uµ−v+vn−1

}
−

∞∑
n=0

(−1)
n
(c)

vn
S−1

{
uµ−v+vn−1

}]

=
N0

cv − dv

[ ∞∑
n=0

(−1)ndvn tµ−v+vn−2

Γ(µ+ vn− v − 1)
−

∞∑
n=0

(−1)ncvn tµ−v+vn−2

Γ(µ+ vn− v − 1)

]

N(t) =
N0

cv − dv
tµ−v−2 [Ev,µ−v−1 (−dvtv)− Ev,µ−v−1 (−cvtv)] .

This completes the proof of Theorem 2.
When µ = v + 2, Theorem 2 reduces to

Corollary 2.1 If c > 0, d > 0v > 0, µ > 0, Re(u) > |d|v/α , c ̸= d, for the solution
of

N(t)−N0t
v+1Ev,v+2 (−dvtv) = −cv 0D

−v
t N(t) , (41)

the following result holds

N(t) =
N0

cv − dv
[Ev (−dvtv)− Ev (−cvtv)] . (42)

On the other hand if d → 0 in Theorem 2, we arrive at the following result:

Corollary 2.2 If c > 0, v > 0, µ > 0, Re(u) > |d|v/α , then for the solution of

N(t)− N0 tµ−1

Γ(µ)
= −cv 0D

−v
t N(t) , (43)
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the following result holds

N(t) =
N0 tµ−v−2

cv

[
1

Γ(µ− v − 1)
− Ev,µ−v−1 (−cvtv)

]
. (44)

4. The G-function and its relationship with other special functions

The generalized function for the fractional calculus Gv,µ,δ(a, c, t) was introduced
by Lorenzo and Hartley [16], defined as

Gv,µ,δ(a, c, t) =
∞∑

n=0

(δ)n an (t− c)(n+δ)v−µ−1

n! Γ ((n+ δ) v − µ)
, [Re(vδ − µ) > 0] , Re(s) > 0,

∣∣∣ a
sv

∣∣∣ < 1 .

(45)
Particularly at c = 0, the above G-function reduces in to the following useful form:

Gv,µ,δ(a, 0, t) = Gv,µ,δ(a, t) =
∞∑

n=0

(δ)n an t(n+δ)v−µ−1

n! Γ ((n+ δ) v − µ)
. (46)

The G-function readily yields the following relationships with various special func-
tions.

Mittag-Leffler function [19, 20]:

Gv,v−1,1(−a, t) = Ev(−atv) =
∞∑

n=0

(−a)n tnv

Γ (nv + 1)
. (47)

Agarwal’s function [1]:

Gv,v−µ,1(1, t) = Ev,µ(t
v) =

∞∑
n=0

tnv+µ−1

Γ (nv + µ)
. (48)

Erdélyi’s function [26]:

Gv,v−µ,1(1, t) = tµ−1Ev,µ(t
v) = tµ−1

∞∑
n=0

tnv

Γ (nv + µ)
, v > 0, µ > 0 . (49)

Robotnov and Hartley function [16]:

Gv,0,1(−a, t) = Fv(−a, t) =
∞∑

n=0

(−a)n t(n+1)v−1

Γ ((n+ 1) v)
. (50)

Miller and Ross’s function:

G1,−µ,1(a, t) = Et(µ, a) =
∞∑

n=0

an tn+µ

Γ (n+ µ+ 1)
. (51)

Generalized Mittag-Leffler function [12]:

Gv,µ,1(a, t) = tv−µ−1Ev,v−µ(at
v) =

∞∑
n=0

an t(n+1)v−µ−1

Γ ((n+ 1) v − µ)
. (52)

New generalized Mittag-Leffler function [21]:

Gv,µ,δ(a, t) = tvδ−µ−1Eδ
v,vδ−µ(at

v) = tvδ−µ−1
∞∑

n=0

(δ)na
n tvn

n!Γ ((n+ δ) v − µ)
. (53)
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R-function [16]:

Gv,µ,1(a, t) = Rv,µ(a, t) =
∞∑

n=0

an t(n+1)v−µ−1

Γ ((n+ 1) v − µ)
, v > 0, µ > 0, (v − µ) > 0 .

(54)
Wright function [17]:

Gv,µ,δ(a, t) =
tvδ−µ−1

Γ(δ)
1Ψ1

[
(δ,1)

(vδ − µ, v) ; atv

]
, (55)

where 1Ψ1(t) is special case of the Wright’s generalized hypergeometric function

pΨq(t).
H function [17]:

Gv,µ,δ(a, t) =
tvδ−µ−1

Γ(δ)
H1,1

1,2

[
−atv

∣∣∣∣∣ (1−δ,1)

(0, 1), (1− vδ + µ, v)

]
. (56)

H function [17]:

Gv,µ,δ(a, t) =
tvδ−µ−1

Γ(δ)
H

1,1

1,2

[
−atv

∣∣∣∣∣ (1−δ,1;1)

(0, 1), (1− vδ + µ, v; 1)

]
, (57)

Next, we obtain the solution of generalized fractional kinetic equations in terms
of G-functions in a compact form and can be worked out easily.

5. Solution of generalized fractional kinetic equations

First of all we give the Sumudu transform of G-function.

S [Gv,µ,δ(a, c, t)] =

∞∑
n=0

(δ)n
n!Γ ((n+ δ) v − µ)

∫ ∞

0

e−t(ut− c)(n+δ)v−µ−1

=

∞∑
n=0

(δ)na
n

n!Γ ((n+ δ) v − µ)

∫ ∞

0

e−tu(n+δ)v−µ−1
(
t− c

u

)(n+δ)v−µ−1

dt

=
∞∑

n=0

(δ)na
ne

−c
u u(n+δ)v−µ−1

n!Γ ((n+ δ) v − µ)

∫ ∞

0

e−(t−
c
u )
(
t− c

u

)(n+δ)v−µ−1

dt .

Now, by using Gamma function formula Γ(x) =
∫∞
0

e−ttx−1dt,

S [Gv,µ,δ(a, c, t)] =
e

−c
u uvδ−µ−1

(1− auv)
δ

. (58)

Taking c = 0 in (58), then we have

S [Gv,µ,δ(a, 0, t)] = S [Gv,µ,δ(a, t)] =
uvδ−µ−1

(1− auv)
δ
. (59)

Theorem 3 If c > 0, v > 0, b ≥ 0, µ > 0, δ > 0, (δv−µ) > 0 then for the solution
of the equation

N(t)−N0 Gv,µ,δ (−cv, b, t) = −cv 0D
−v
t N(t) , (60)
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where 0D
−v
t is well known standard Riemann-Liouville integral operator, there

holds the formula

N(t) = N0 Gv,µ+v+1,δ+1 (−cv, b, t) . (61)

Proof Taking Sumudu transform to the both sides of (60) and using (28), we get

S [N(t)] = N0 S [Gv,µ,δ (−cv, b, t)]− cv S
[
0D

−v
t N(t)

]
, (62)

by the application of the convolution theorem of the Sumudu transform in (62), we
have

N∗(u) = N0
e

−b
u uvδ−µ−1

(1 + cvuv)
δ
− cvuvN∗(u)

= N0
e

−b
u uvδ−µ−1

(1 + cvuv)
δ+1

. (63)

Now taking inversve Sumudu transform both sides of (63), we obtain

N(t) = S−1 [N∗(u)] = S−1

[
N0

e
−b
u uvδ−µ−1

(1 + cvuv)
δ+1

]
,

N(t) = N0 S−1

[
e

−b
u uvδ−µ−1(−cvuv)n(δ + 1)n

n!

]

= N0

∞∑
n=0

(−cv)n(δ + 1)n
n!

S−1
[
e

−b
u uvδ+vn−µ−1

]
.

N(t) = N0

∞∑
n=0

(−cv)n(δ + 1)n
n!

(t− b)
vδ+vn−µ−2

Γ(vδ + vn− µ− 1)

= N0Gv,µ+v+1,δ+1(−cv, b, t).

This completes the proof of Theorem 3.

6. Special cases of Theorem 3

Corollary 3.1 If c > 0, v > 0, b = 0, µ > 0, δ > 0, (δv − µ) > 0 and using (59),
then we have the solution of the equation

N(t)−N0Gv,µ,δ (−cv, t) = −cv 0D
−v
t N(t) , (64)

there holds the formula

N(t) = N0Gv,µ+v+1,δ+1 (−cv, t) , (65)

provided that each side of (65) exists.
Remark 2 By using the relations (55)-(57), we can obtain the solution of (64) in
terms of Wright function, H-function, and H-function.
Corollary 3.2 If δ = 1, b ≥ 0, c > 0, v > 0, µ > 0, and (δv − µ) > 0, then we have
the solution of the equation

N(t)−N0Gv,µ,1 (−cv, b, t) = −cv 0D
−v
t N(t) , (66)

there holds the formula

N(t) = N0Gv,µ+v+1,2 (−cv, b, t) , (67)



332 R.K. SAXENA, J. RAM AND D. KUMAR JFCA-2013/4(2)

provided that each side of (67) exists.
If we set b = 0 in Theorem 3 and use the relation (53), then we arrive at the
following:
Corollary 3.3 If v > 0, c > 0, δ > 0, µ > 0, and (δv− µ) > 0, then for the solution
of the equation

N(t)−N0 tvδ−µ−1Eδ
v,vδ−µ (−cvtv) = −cv 0D

−v
t N(t) , (68)

where Eδ
v,vδ−µ (at

v) is well known new generalized Mittag-Leffler function [21], there
holds the formula

N(t) = N0 tvδ−µ−2Eδ+1
v,vδ−µ−1 (−cvtv) . (69)

Remark 3 If we set µ = vδ − µ and b = 0 in Theorem 3, then we obtain Theorem
1.
Corollary 3.4 If c > 0, v > 0, b ≥ 0, µ > 0, v > µ+ 1, then for the solution of the
equation

N(t)−N0Rv,µ (−cv, b, t) = −cv 0D
−v
t N(t) , (70)

where Rv,µ (−cv, b, t) is a generalization of the F -function is presented by Lorenzo
and Hartley [16, 24], there holds the formula

N(t) =
N0(t− b)v−µ−2

v
[Ev,v−µ−2 [−cv(t− b)v] + (µ+ 2)Ev,v−µ−1 [−cv(t− b)v]] .

(71)

For b = 0, it gives the following:
Corollary 3.5 If c > 0, v > 0, b = 0, µ > 0, and v > µ+ 1, then for the solution of
the equation

N(t)−N0Rv,µ (−cv, t) = −cv 0D
−v
t N(t) , (72)

there holds the formula

N(t) =
N0t

v−µ−2

v
[Ev,v−µ−2 (−cvtv) + (µ+ 2)Ev,v−µ−1 (−cvtv)] . (73)

7. Conclusion

In this paper we have studied a new fractional generalization of the standard
kinetic equation and derived solutions for the same. It is not difficult to obtain
several further analogues fractional kinetic equations and their solutions as those
exhibited here by Theorem 3 and its Corollaries, involving the generalized function
for the fractional calculus Gv,µ,δ(−cv, b, t), by specializing the parameters v, µ, δ and
b. Moreover, by the use of close relationships of the G-function with the R-function,
the generalized Mittag-Leffler functions, the Robotnov and Hartley function etc.,
we can easily construct various known and new fractional kinetic equations.
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