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STOCHASTIC RESPONSE OF DUFFING OSCILLATOR WITH

FRACTIONAL OR VARIABLE-ORDER DAMPING

MOHAMED A. EL-BELTAGY AND AMNAH S. AL-JOHANI

Abstract. This paper introduces a numerical technique for the estimation

of stochastic response of the Duffing oscillator with fractional or variable or-
der damping and driven by white noise excitation. The Wiener-Hermite ex-

pansion is integrated with the Grunwald-Letnikov approximation in case of
fractional order damping and with Coimbra approximation in case of variable-

order damping. The numerical solver was tested and validated with the an-

alytic solution and with Monte-Carlo simulations. The developed technique
was shown to be efficient in simulating the stochastic non-linear differential

equations with fractional or variable order derivatives.

1. Introduction

In the last two decades, fractional derivative modeling of viscoelasticity has been
applied in numerous studies and, for its capability of describing complex material
behaviors at a macroscopic level, in form of equations involving a small number of
parameters it is now a well-established approach to viscoelastic media [1]. The frac-
tional order damping oscillator can be interpreted as an ensemble of non-identical
harmonic oscillators that differ in phase or it can be interpreted due to the non-
conservative nature of some forces (e.g. friction force), [2].
Variable order (V O) systems constitute a generalization of fractional order repre-
sentations to fractional order. In V O systems the order of the derivative changes
with respect to either the dependent or the independent variable (or both), or
parametrically with respect to an external fractional behavior [3]. Variable order
formulations have been utilized, among other applications, to describe the mechan-
ics of an oscillating mass subjected to a variable viscoelasticity damper and a linear
spring [4].
Recently, the research efforts are directed in estimating the response of fractional or
variable-order damping oscillators with stochastic excitations. In [5], the stochastic
stability of Duffing oscillator with fractional derivative damping under stochastic
excitation has been studied using the stochastic averaging technique. In [6], the
response of fractional oscillator to multiplicative trichotomous noise was estimated
using Lapace transform of the fractional derivatives. In [1], the stochastic response
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of the fractional-damped Duffing oscillator was estimated numerically by trans-
forming the fractional-order equation to equivalent ordinary system with additional
degrees of freedom instead of using the Grunwald-Letnikov (GL) approximation.
Other research efforts are done in [7] using GL approximation with the statistical
linearization, in [8] using the reduced Fokker-Plank-Kolmogorov equation with the
stochastic averaging technique and in [9] using Laplace transform with Monte-Carlo
simulations.

The main objective of this work is to develop a new numerical technique that com-
bines the Wiener-Hermite expansion (WHE) with the approximation schemes of
the fractional or varible-order derivatives. The Grunwald-Letnikov approximation
will be used in case of fractional order damping while the Coimbra approximation
will be used instead in case of variable-order damping. The developed numerical
schemes are used in estimating the response of the stochastic nonlinear systems with
fractional or variable-order derivatives. In particular, the response of the Duffing
oscillator with stochastic excitation and fractional or variable-order damping will
be considered.
This paper is organized as follows; in Section 2, the problem formulation is de-
scribed. In Section 3, the WHE is reviewed and the equivalent deterministic system
is derived. The suggested solution strategy of the fractional order damping will be
outlined in Section 4. Also, testing and validation of the developed solver against
the analytical and Monte-Carlo solutions are shown. In Section 5, the variable order
numerical scheme will be described and comparisons with the constant fractional
order damping are given.

2. Problem Formulation

Consider the model equation

L(x(t)) = −εxn + f(t) + g(t)N(t, w); t ∈ (0, T ] (1)

with the proper set of initial conditions which will be assumed deterministic. The
differential operator L is a general ordinary or non-ordinary (fractional or variable
order) linear operator. The nonlinearity is introduced as losses of degree n > 1
strengthened by a deterministic small parameter (ε). The uncertainty is introduced
through white noise N(t;w) intensified by a deterministic envelope function g(t).
The function f(t) is a deterministic excitation force.
The Duffing oscillator equation of motion in case of fractional damping and sto-
chastic excitation is a special case of equation (1) with n = 3. Particularly, it takes
the form:

mẍ(t) + Cα(Dα
t x)(t) + kx(t) + εx3(t) = f(t) + g(t)N(t;w); t ∈ (0, T ] (2)

where m is the mass, Cα is the fractional damping coefficient, k is the linear stiffness
of the spring. The term kx(t)+εx3(t) represents the restoring force of the nonlinear
spring while Cα(Dα

t x)(t) is the attenuation force of the viscoelastic damper. When
α = 0, the damping is purely elastic and for α = 1, the damping is purely viscous
[1]. We shall assume the fractional derivative to be in Caputo’s sense which is
defined as:

(Dα
t x)(t) =

1

Γ(1− α)

∫ t

0

x(j)(s)

(t− s)α
ds; j − 1 < α < j; j = dαe (3)
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Equation (2) when divided by m will give;

ẍ(t) + cα(Dα
t x)(t) + ω2x(t) + ε0x

3(t) = f0(t) + g0(t)N(t;w) (4)

where ω =
√

k
m is the natural frequency, cα = Cα

m and ε0 = ε
m . We shall assume

initially, a quiescent system (i.e., x(0) = x∗o(0) = 0)

3. Description of the WHE Technique

The solution of stochastic PDEs (SPDEs) using WHE has the advantage of
converting the problem into a system of deterministic equations that can be solved
efficiently using the standard deterministic methods. The main statistics, such
as the mean, covariance, and higher order statistical moments, can be calculated
by simple formulae involving only the deterministic WHE coefficients [10]. In the
WHE technique, the stochastic response function x(t;w) is expanded as:

x(t;w) =

∞∑
k=0

∫
Rk
x(k)(t; t1, t2, · · · , tk)H(k)(t1, t2, · · · , tk)dτk (5)

where x(k)(t, t1, t2, · · · , tk) is the kth deterministic kernel of x(t;w), dτk = dt1dt2 · · · dtk
and

∫
Rk

is a k-dimensional integral over the variables t1, t2, · · · , tk. The functional

H(k)(t1, t2, · · · , tk) is kth order Wiener-Hermite functional which is defined for 1D
continuous problem as [11];

H(k)(t1, t2, · · · , tk) = δn/2(0)e
1
2

∑k
i=1 ξ

2(xi)
k∏
j=1

(
−∂

∂ξ(xj)

)
e

1
2

∑k
i=1 ξ

2(xi) (6)

and they constitute a complete set. The set {ξk} is a denumerable set of indepen-
dent Gaussian random variables with zero mean and unit variance, and δ is the
Dirac delta function.
The WHE technique for general nonlinear exponent (n) and general order (M)
follow the steps [10]:

1. Truncate the expansion (5) to contain only M + 1 kernals x(j); 0 ≤ j ≤M,

i.e., x(t;w) = x(0)(t) +
∑M
j=1

∫
Rj
x(j)H(j)dτj , and then

2. Substitute into equation (1)
3. Use the multinomial theorem to expand the nonlinear term xn;n = 3,
4. Multiply by H(j); 0 ≤ j ≤M and then apply the ensemble average.

This will lead to (M + 1) equations in the deterministic kernels x(j) : 0 ≤ j ≤M as

(j!)L(x(j))+ε0
∑
f

cf

∫
Rz

(
M∏
i=0

[x(i)]k
i
j

)
Ejfdτz = δj0 f0(t)+δjl g0(t)δ(t−t1); 0 ≤ j ≤M

(7)

The expectations Ejf are computed as Ejf =< H(j)
∏m
i=0(H(i))k

j
f > . It was ex-

plained in [10] how to get Ejf in terms of the Dirac delta functions and then used to
reduce the order of integration. The Kronecker delta function δjl is zero expect with
j = l. The counter f, in the summation in the left hand side of (7) runs over all the(
n+m
n

)
combinations of the positive integers k0

f , k
l
f , · · · , kMf such that

∑M
i=0 k

i
f = n.

After solving for the kernels, the expectation and variance are obtained as;

E[x(t)] = x(0)
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V ar[x(t)] =

M∑
k=l

(k!)

∫
Rk

[x(k)]2dτk (8)

For first order (Gaussian) solution, the following deterministic system is obtained
after applying the above described WHE technique with M = 1 :

L(x(0)) + ε0x
(0)

(
[x(0)]2 + 3

∫
R

[x(1)(t1)]2dt1

)
= f0(t)

L(x(1)) + 3ε0x
(1)(t1)

(
[x(0)]2 +

∫
R

[x(1)(t1)]2dt1

)
= g0(t)δ(t− t1) (9)

This means that we have two simultaneous integro-differential equation in the de-
terministic kernels (x(0) and x(1)). Higher-order solutions can be obtained similarly.
Many solution methods can be used to solve equations (9). Two of them are Pi-
card’s successive approximation and the WHEP technique [10]. In the current work.
Picard’s successive approximation technique will be considered.
As in Theorem (1) in [10], when using the Picard’s successive approximation tech-
nique, the solution of Equation (1), if exists, will be a power series in ε0, i.e.,
x(t) =

∑∞
i=0 ε

i
0xi(t). The proof is introduced in [10] for ordinary linear operator

L and extension to non-ordinary linear operator is straightforward. This theorem
tells us that there is a condition on ε0 to get a convergent solution using Picard’s
successive technique. Particularly, we should have:

ε0 ≤
∣∣∣∣ xixi+1

∣∣∣∣ .
This means that ε0 should obey an upper bound condition after which divergent
solution is obtained. To solve (9) for larger values of ε0, a different technique should
be considered (e.g. using Newton’s approximation). Practically, ε0 has small values.
Solution of the Duffing oscillator with integer-order damping using technique similar
to Picard’s approximation was considered in [2]. The numerical Picard’s successive
approximation technique will take the form

L(x(0))
∣∣
k+1

= f0(t)− ε0x(0)

(
[x(0)]2 + 3

∫
R

[x(1)(t1)]2dt1

) ∣∣
k

L(x(1))
∣∣
k+1

= g0(t)δ(t−t1)−3ε0x
(1)(t1)

(
[x0)]2 +

∫
R

[x(1)(t1)]2dt1

) ∣∣
k
; k = 0, 1, 2, · · ·

(10)
The computations will be repeated until the convergence criterion decreases below
a certain value. The convergence criterion in the current work is taken as:

err =

M∑
j=0

∥∥∥x(j)
k+1 − x

(j)
k

∥∥∥
4. Numerical Fractional-Order Scheme

We need to develop a numerical solver for a model equation in the form

L(x(t)) = h(t) (11)

With the non-ordinary operator L be:

L =
d2

dt2
+ a1D

α
t + a0
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where a1 and a0 are assumed to be constants. This form of the model equation can
be easily observed from Equation (10) for the different (M+1) kernels. We can use
any difference scheme to discretize (11), but as we have a white noise excitation,
the Dirac delta function δ(t− τ) appears in the equarions of some kernels. So, an
integral numerical scheme such as FEM or FVM will be more suitable. Integration
of the Dirac delta function is easier to be handled. In the current work, the FVM
will be applied. The time axis where t ∈ [0, T ] will be divided into Ni equal
intervals of size ∆t. The interval extends from ti−1 to ti is taken as the control
volume. Integrating Dα

t x(t) over the control volume from ti−1 to t1 and using the
trapezoidal rule, to get∫ ti

ti−1

Dα
t x(t)dt =

∆t

2
[Dα

t xi +Dα
t xi−1] (12)

The fractional derivative terms, Dα
t xi and Dα

t xi−1, can be discretized using the
Grunwald-Letnikov approximation as [13]:

Dα
t xi ' lim

∆t→0
(∆t)α

i∑
j=0

wj x(ti − j∆t) (13)

where the coefficients wj ; 0 ≤ j ≤ i are calculated as:

w0 = 1; wj =

(
1− α− 1

j

)
wj−1; j > 0

Integrating equation (11) along the control volume and using (13) to get

xi =
2Fi−1∆t+ (4− a0(∆t)2)xi−1 − 2xi−2 − a1(∆t)2−α∑i

j=1(wj + wj−1)xi−j

2 + a1(∆t)2−α + a0(∆t)2

(14)

where Fi−1 =
∫ t1
ti−1

h(t)dt = 0.5(hi−1 + hi)∆t. If the Dirac delta function appears

in the right hand side, a special treatment for Fi−1 is considered. In this case

Fi−1 =
∫ ti
ti−1

q(t)δ(t − t1)dt = q(ti) when ti = t1 and Fi−1 = 0 when ti 6= t1. The

FVM numerical scheme (14) can be validated with the analytical solution that can
be obtained in some special cases (e.g. h(t) = 1; Heaviside unit step function). The
analytical solution can be obtained using the fractional Green’s functions for three
term fractional D. E. with constant coefficients as [13]:

x(t) =

∫ t

0

G3(t− τ)h(τ)dt (15)

G3(t) =
1

a0

∞∑
j=0

(−a1)j
∞∑
k=0

(−1)k(a0)k+1 (j + k)!t2j+2k+1−αj

j!k!Γ(2j + 2k + 2− αj)
(16)

For x0 = X∗0 = 0, a1 = a0 = h(t) = 1, the analytical solution will be

x(t) =

∞∑
j=0

∞∑
k=0

(−1)j+k
(j + k)!t2(j+k+1)−αj

j!k!Γ(2j + 2k + 3− αj)
. (17)

With T = 15 and ∆t = 0.01, the comparison in Figure (1, left) shows that the
numerical solution has a good accuracy compared with the analytical solution.
The convergence order of the developed FVM fractional solver is tested numerically
as shown also in Figure (1, right). The scheme converges with O(∆t), i.e., it is a
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first order accurate scheme. This is a known property of the GL approximation.
Higher order schemes can also be derived [13].

Figure 1. Comparison between the FVM solver and the analyti-
cal solution for α = 0.5 (left) and Convergence order of the devel-
oped FVM (right)

The stochastic response of the developed FVM solver can be obtained using a
numerical stochastic integration technique (e.g. [14]). The stochastic response for
first order (Gaussian) solution, can be obtained as:

x(t;w) = x(0)(t) +

∫
R

x(1)(t; t1)H(1)(t1)dt1

= x(0)(t) +

∫
R

x(1)(t, t1)dW = x(0)(t) +

Nj∑
j=1

x(1)(t; t1)∆Wj (18)

where ∆Wj is an independent Gaussian random variable in the form
√

∆tNG(0, 1),
with NG(0, 1) is the standard Gaussian random variable of zero mean and unit
variance. The stochastic response along the time axis for α = 0.5 and f0(t) = 0
is shown in Figure (2) at different values of the noise intensity g0(t) which will be
assumed constant, i.e. g0(t) = S. The noise intensity affects the convergence rate
of the solution as shown in Figure (3). As the noise intensity increases, the solu-
tion converges in a slower rate and requires more interations to reach the required
accuracy,

Comparison with the Monte-Carlo (MC) simulations was done to test the de-
veloped solver. An arbitrary sample of the white noise N(t;w) is built on the
well-known spectral representation [1]:

N(t, w) =

Mω∑
j=1

√
4S0∆ω cos(ωjt+ φj) (19)

Where ∆ω is a constant step on the frequency axis, ωj are Mω equally spaced
frequencies and φj are Mω random phases uniformly distributed in the interval
[0, 2π]. In this work, we set ∆ω = 0.05 and Mω = 500. Figure (4) shows the
stochastic response and a comparison between the FVM solver with the solution
obtained with 10000MC simulations. The solution at each Monte-Carlo sample is
computed as:
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Figure 2. Response x(t) for α = 0.5, δ0 = 0.25, Noise intensity S
= 0.1 (left) and S= 1.0 (right)

Figure 3. The convergence of FVM solver for different noise in-
tensities; S=0.1 and S=1

L(x(t))
∣∣
k+1

= −εx3
∣∣
k

+ f(t) + g0(t)Ni(t) (20)

where Ni(t) is the ith Monte-Carlo sample of the white noise.

Figure 4. The stochastic response (left), mean response (right)
for α = 0.5, ε0 = 0.25, noise intensity S = 0.1, f(t) = 1; 0 < t < 1.0,
10,000 MC simulations.
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The effect for different values of the fractional order α was tested at ε0 = 0.25
as shown in Figure (5). We can notice that as the fractional order α increases the
stcady state variance decreases

Figure 5. Variance obtained by FVM at different values of α

5. The Variable-Order Numerical Scheme

The VO derivative is defined, due to Coimbra [4], as:

D
α(t)
i x(t) =

1

Γ(1− α(t))

∫ t

0+

(t− s)−α(t) dx(s)

ds
ds+

(x(0+)− x(0−))t−α(t)

Γ(1− α(t))
(21)

For zero initial conditions, we can write it in discrete form as [15]:

Dαi
i xi =

(∆t)2−αi

Γ(2− αi)

i−1∑
j=0

(bj,i − xi−j−2) (22)

Where xi = x(ti), αi = α(ti) and bj,i = (j + 1)1−αi − (j)1−αi . This discretization is
also first order i.e., O(∆t), [15]. The above developed FVM solver (14) is adopted
using the variable order discretization (22) to get:

xi =
2Fi−1∆t+ (4− a0(∆t)2)xi−1 + a1i

∑i−2
j=1 bj,i(xi−j − xi−j−2)

2 + a1i + a0(∆t)2
(23)

where a1i = a1(∆t)2−αi

Γ(2−αi) . Two different linear variable-order variations are used to

test the new VO solver. The two different variations are taken as

V O − 1 : α1(t) = {α0+0.8 t
T ; 0≤t≤35

1 ; t>35

V O − 2 : α2(t) = {α0+1.2 t
T ; 0≤t≤17.5

1 ; t>17.5

The deterministic excitation f0(t) is taken to be zero except in the interval t ∈ [0, 1],
it will be unity. The expectation and variance are shown in Figure (6) for ε0 = 0.25
and α0 = 0.3.

Comparison between the constant fractional order damping and variable-order
damping (VO-1) is shown in Figure (7). We can notice that the variable-order
responcse has a different behavior than the constant fractional order damping.
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Figure 6. The expectation (left) and variance (right) for the two
variable-order variations

Figure 7. The expectation (left) and variance (right) of the vari-
able order damping compared with the constant fractional order
damping

6. Summary and Conclusions

In the current work, the response of the Duffing oscillator with fractional and
variable-order damping under stochastic excitation is estimated. The GL approxi-
mation was combined with the WHE in the framework of a FVM to estimate the
response of the Duffing oscillator. In case of variable-order damping the Coimbra
approximation is combined with the WHE. The solver convergence was shown nu-
merically and the expection and variance of the response are given. The developed
solvers are first order accurate but can be extended easily to higher orders. The
developed solvers are shown to be efficient in estimating the stochastic response of
differential equations with fractional order or variable-order derivatives.
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