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MAJORIZATION FOR CERTAIN CLASS OF MULTIVALENT

FUNCTIONS DEFINED BY DIFFERENTIAL OPERATOR

A. O. MOSTAFA

Abstract. In this paper, we obtain majorization results for certain class of

multivalent functions defined by a differential operator .

1. Introduction

Let A(p, j) be the class of functions which are analytic and p-valent in the unit
disc U = {z ∈ C : |z| < 1} of the form:

f(z) = zp +

∞∑
k=p+j

akz
k (p, j ∈ N = {1, 2, ...}). (1)

For g(z) ∈ A(p, j), given by g(z) = zp +
∞∑

k=p+j

bkz
k, the Hadamard product (or

convolution) of f(z) and g(z) is defined by

(f ∗ g)(z) = zp +
∞∑

k=p+j

akbkz
k = (g ∗ f)(z). (2)

For f(z) ∈ A(p, j), we have (see [6]):

f (q)(z) = δ(p, q)zp−q +
∞∑

k=p+j

δ(k, q)akz
k−q (q ∈ N0 = N ∪ {0}; p > q), (3)

where

δ(x, y) =
x!

(x− y)!
=

{
1 ( y = 0)
x(x− 1)...(x− y + 1) (y ̸= 0)

.

For f(z) ∈ A(p, j), Aouf ([3] and [4]) defined the operator Dm
p f (q)(z) as follows:

D0
pf

(q)(z) = f (q)(z);

D1
pf

(q)(z) = Dpf
(q)(z) =

z

(p− q)
(f (q)(z))′ =

z

(p− q)
f (1+q)(z)
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and ( in general):

Dm
p f (q)(z) = Dp(D

(m−1)
p f (q)(z))

= δ(p, q)zp−q +

∞∑
k=p+j

δ(k, q)

(
k − q

p− q

)m

akz
k−q

(p, j ∈ N;m, q ∈ N0; p > q).4 (1)

We note that, for q = 0, Dm
p f (0)(z) = Dm

p f(z), where the operator Dm
p was

introduced and studied by Kamali and Orhan [9] and Aouf and Mostafa [5] which
for p = 1 reduces to the Salagean operator Dm (see [15]).

From (4), one can easily verify that:

z
(
Dm

p f (q)(z)
)′

= (p− q)Dm+1
p f (q)(z). (5)

For two analytic functions f , g ∈ A(p, j), we say that f is subordinate to g,
written f(z) ≺ g(z) if there exists a Schwarz function w(z), which (by definition)
is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that f(z) =
g(w(z)), z ∈ U. Furthermore, if the function g(z) is univalent in U, then we have
the following equivalence ( see [11]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

If f(z) and g(z) are analytic functions in U , then f(z) is majorized by g(z) in U
and written

f(z) << g(z) (z ∈ U), (6)

if there exists a function ϕ(z), analytic in U , such that ( see [10]):

|ϕ(z)| ≤ 1 and f(z) = ϕ(z)g(z) (z ∈ U). (7)

It is noted that the notation of majorization is closely related to the concept of
quasi-subordination between analytic functions.
Definition 1. For γ ∈ C∗ = C\{0},−1 ≤ B < A ≤ 1, p ∈ N ,m,q ∈ N0, p > q
and |γ(A−B) +B| ≤ p − q,a function f(z) ∈ A(p, j) is said to be in the class
Sp,j,q(m,A,B, γ) of p-valently functions in U , if and only if

1 +
1

γ

(
Dm+1

p f (q)(z)

Dm
p f (q)(z)

− 1

)
≺ 1 +Az

1 +Bz
, (it8)

where Dm
p f (q)(z) is given by (4).

Specializing the parameters m,n, p, q, A,B and γ, we have the following classes:

i) Sp,j,0(m,A,B, γ) = Sp,j(m,A,B, γ) =

{
f ∈ A(p, j) : 1 + 1

γ

(
Dm+1

p f(z)

Dm
p f(z)

− 1

)
≺ 1+Az

1+Bz

}
;

ii) Sp,j,q(m, 1,−1, γ) = Sp,j,q(m, γ) =

{
f ∈ A(p, j) : Re

[
1 + 1

γ

(
Dm+1

p f(q)(z)

Dm
p f(q)(z)

− 1

)]
> 0

}
;

iii) Sp,j,0(m, 1,−1, (1− α
p ) cosλe

−iλ) = Sλ
p,j(m,α)

=
{
f ∈ A(p, j) : Re

(
eiλ

Dm+1
p f(z)

Dm
p f(z)

)
> α

p cosλ
}

(|λ| < π
2 ; 0 ≤ α < p);

iv) Sp,j,0(0, 1,−1, (1− α
p ) cosλe

−iλ) = Sλ
p,j(α)

=
{
f ∈ A(p, j) : Re

(
eiλ zf ′(z)

f(z)

)
> α

p cosλ
}
(|λ| < π

2 ; 0 ≤ α < p) ( see Srivas-

tava et al. [16] with j = 1);
v) Sp,j,0(1, 1,−1, (1− α

p ) cosλe
−iλ) = Cλ

p,j(α)
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=

{
f ∈ A(p, j) : Re

{
eiλ(1 +

zf ′′(z)

f ′(z)
)

}
> α

p cosλ (|λ| < π
2 ; 0 ≤ α < p)

}
(

see Srivastava et al. [16] with j = 1);
vi) Sp,0(m, 1,−1, γ) = Sm(p, γ) ( see Akbulut et al. [2]);
vii) S1,1,0(0, 1,−1, γ) = S(γ) ( see Nasr and Aouf [12]);
viii) S1,1,0(1, 1,−1, γ) = S(γ) ( see Nasr and Aouf [12]) and Wiatrowski [17];
ix) S1,1,0(0, 1,−1, 1− α) = S∗(α) (0 ≤ α < 1) (see Robertson [14]).
Majorization problems for the class S∗ = S∗(0) had been investigated by Mac-

Gregor [10], recently Altintas et al. [1] investigated a majorization problem for the
class S(γ). Very recently Goyal and Goswami [8] generalized these results for the
fractional operator (see also Goswami and Aouf [7]). In this peper we investigated
a majorization problem for the class Sp,j,q(m,A,B, γ) and its special subclasses.

2. Main Results

Unless otherwcise mentioned, we assume that γ ∈ C∗,−1 ≤ B < A ≤ 1, p ∈ N ,
m, q ∈ N0 and p > q.
Theorem 1. Let the funtion f(z) ∈ A(p, j) and g(z) ∈ Sp,j,q(m,A,B, γ). If

Dm
p f (q)(z) is majorized by Dm

p g(q)(z) in U , then∣∣∣Dm+1
p f (q)(z)

∣∣∣ ≤ ∣∣∣Dm+1
p g(q)(z)

∣∣∣ (|z| ≤ r0), (it9)

where r0 = r0(p, q, γ, A,B) is the smallest root of the equation:

|γ(A−B) +B| (p−q)r3−[p−q+2 |B|]r2−[2+(p−q) |γ(A−B) +B|]r+p−q = 0.
(it10)

Proof. Since g(z) ∈ Sp,j,q(m,A,B, γ), then it follows from (8) that:

1 +
1

γ

(
Dm+1

p g(q)(z)

Dm
p g(q)(z)

− 1

)
=

1 +Aw(z)

1 +Bw(z)
, (11)

where w(z) = c1z + c2z
2 + ... ∈ P, P denotes the well known class of bounded

analytic functions in U which satisfy w(0) = 0 and |w(z)| ≤ 1.
From (11) we have:

Dm+1
p g(q)(z)

Dm
p g(q)(z)

=
1 + [γ(A−B) +B]w(z)

(1 +Bw(z))
. (12)

Hence ∣∣∣Dm
p g(q)(z)

∣∣∣ ≤ (1 + |B| |z|)
1− |γ(A−B) +B| |z|

∣∣∣Dm+1
p g(q)(z)

∣∣∣ . (13)

Since, Dm
p f (q)(z) is majorized by Dm

p g(q)(z) in U , then we have:

Dm
p f (q)(z) = ϕ(z)Dm

p g(q)(z). (14)

Differentiating (14) with respect to z and then multiplying z, we get:

z
(
Dm

p f (q)(z)
)′

= zϕ′(z)Dm
p g(q)(z) + ϕ(z)z

(
Dm

p g(q)(z)
)′

. (15)
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Noting that the Schwarz function ϕ(z) satisfies ( see [13]):

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− |z|2
, (16)

and using (5) , (13) and (16) in (15), we have:∣∣∣Dm+1
p f (q)(z)

∣∣∣ ≤ {|ϕ(z)|+ |z|(1−|ϕ(z)|2)
(p−q)(1−|z|2)

(1+|B||z|)
[1−|γ(A−B)+B||z|]

} ∣∣∣Dm+1
p g(q)(z)

∣∣∣ . (17)

Setting |z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1), (17) reduces to∣∣∣Dm+1
p f (q)(z)

∣∣∣ ≤ Ψ(ρ)

(p− q)(1− r2) [p− q − |γ(A−B) +B| r]

∣∣∣Dm+1
p g(q)(z)

∣∣∣ , (18)

where

Ψ(ρ) = ρ(p− q)(1− r2) [1− |γ(A−B) +B| r] + r(1− ρ2)(1 + |B| r)
takes its maximum value at ρ = 1 with r = r0(p, q, γ, A,B) given by (10). Further-
more, if 0 ≤ σ ≤ r0(p, q, γ, A,B), the the function Φ(ρ) defined by

Φ(ρ) = ρ(p− q)(1− σ2) [1− |γ(A−B) +B|σ] + σ(1− ρ2)(1 + |B|σ)
is an increasing function on 0 ≤ ρ ≤ 1, so that

Φ(ρ) ≤ Φ(1) = (p− q)(1− σ2) [1− |γ(A−B) +B|σ] ,
0 ≤ ρ ≤ 1; 0 ≤ σ ≤ r0(p, q, γ, A,B).

Then, setting ρ = 1 in (18), we conclude that (9) holds true for |z| ≤ r0(p, q, γ, A,B).
This completes the proof of Theorem 1.

Putting q = 0 in Theorem 1, we have the following corollary:
Corollary 1. Let the function f(z) ∈ A(p, j) and g(z) ∈ Sp,j(m,A,B, γ). If
Dm

p f(z) is majorized by Dm
p g(z) in U , then∣∣Dm+1

p f(z)
∣∣ ≤ ∣∣Dm+1

p g(z)
∣∣ (|z| ≤ r1),

where r1 = r1(p, γ,A,B) is the smallest root of the equation:

|γ(A−B) +B| pr3 − (p+ 2 |B|)r2 − [2 + p |γ(A−B) +B|]r + p = 0.

Putting A = 1 and B = −1, in Theorem 1, (10) becomes

|2γ − 1| (p− q)r3 − (2 + p− q)r2 − [2 + |2γ − 1| (p− q)]r + p− q = 0, (19)

which has r = −1 one of its roots and the other two roots are given by

|2γ − 1| (p− q)r2 − [|2γ − 1| (p− q) + 2 + p− q]r + p− q = 0.

Wemay find the smallest postive root of (19).Hence, we have the following corollary:
Corollary 2. Let the function f(z) ∈ A(p, j) and g(z) ∈ Sp,j,q(m, γ). If Dm

p f (q)(z)

is majorized by Dm
p g(q)(z) in U , then∣∣∣Dm+1

p f (q)(z)
∣∣∣ ≤ ∣∣∣Dm+1

p g(q)(z)
∣∣∣ (|z| ≤ r2),

where r2 = r2(p, q, γ) is given by

r2 =
η − {η2 − 4(p− q)2 |2γ − 1|} 1

2

2(p− q) |2γ − 1|
,

where η = (p− q) |2γ − 1|+ 2 + p− q.
Putting γ = (1− α

p ) cosλe
−iλ(|λ| < π

2 , 0 ≤ α < p) and q = 0 in Corollary 2, we

have the following corollary:
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Corollary 3. Let the function f(z) ∈ A(p, j) and g(z) ∈ Sλ
p,j(m,α) (|λ| < π

2 ). If
Dm

p f(z) is majorized by Dm
p g(z) in U , then∣∣Dm+1

p f(z)
∣∣ ≤ ∣∣Dm+1

p g(z)
∣∣ (|z| ≤ r3),

where r3 = r3(p, λ, α) is given by

r3 =
δ −

{
δ2 − 4p2

∣∣∣2(1− α
p ) cosλe

−iλ − 1
∣∣∣} 1

2

2p
∣∣∣2(1− α

p ) cosλe
−iλ − 1

∣∣∣ , (it20)

where δ = p
∣∣∣2(1− α

p ) cosλe
−iλ − 1

∣∣∣+ 2 + p.

Putting m = 0 in Corollary 3, we have the following corollary:
Corollary 4. Let the function f(z) ∈ A(p, j) and g(z) ∈ Sλ

p,j(α) (|λ| < π
2 ). If f(z)

is majorized by g(z) in U , then

|f ′(z)| ≤ |g′(z)| (|z| ≤ r3),

where r3 = r3(p, λ, α) is given by (20).
Remark. Specializing the parameters m, q,A,B and γ in Theorem 1, we obtain
the majorization results for the corresponding classes defined in the introduction.
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