Effect of Plant Spacing and N Fertilization Levels of Watermelon Relay Intercropping with Faba Bean in Relation to Yield Productivity

Ahmed M. Abd Allah ${ }^{1}$; Amira A. El-Mehy ${ }^{1}$; Ismail A.I. Mohammed ${ }^{2}$ and M. M. Abd Elsalam ${ }^{3}$
${ }^{1}$ Crop Intensification Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
${ }^{2}$ Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
${ }^{3}$ Horticulture Research Institute, Agricultural Research Center, Giza, Egypt

Received: 21/10/2022

Abstract

This study suggested growing faba beans in the watermelon cultivated area by relay intercropped melon with faba bean to reduce the faba bean production-consumption gap, maximize the productivity per unit area, reduce the use of nitrogen fertilizer and increase the income of farms. So, A field experiment was implemented during 2020/2021 and $2021 / 2022$ seasons at Ismailia Experiment Station, ARC, Ismailia Governorate, Egypt, to study the effect of plant spacing (50,75 and 100 cm) and N fertilization levels (40,60 and $80 \mathrm{~kg} / \mathrm{fad}$) of watermelon relay intercropping with faba bean on yield for both crops, land equivalent ratio (LER), and profitability per unit area. A split-plot design was used with three replications. Plant spacing of watermelon were assigned in main plots and N fertilization levels were arranged in sub-plots. Results indicated that growth, yield and its attributes of faba bean were insignificant effect by watermelon plant spacing and N fertilization levels of watermelon as well as their interaction. Contrary, plant spacing and N fertilization of watermelon relayed with faba bean significantly affected watermelon traits. Where, increasing plant spacing from 50 to 100 cm between hills with applied $80 \mathrm{~kg} \mathrm{~N} /$ fad significantly increased branch length, number of branches/plant, number of fruit and mean fruit weight. However, the highest fruit yield (25.2 ton/fad as average of both seasons) produced by planting watermelon spacing at 75 cm with applied $80 \mathrm{~kg} \mathrm{~N} /$ fad, but without significant differences with $60 \mathrm{~kg} / \mathrm{fad}$. Therefore, intercropping watermelon at plant spacing 75 cm with applied 60 or $80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$ had the highest LER 1.75, ATER 1.05 and the highest in both seasons. While, the highest net return $25511 \mathrm{~L} . \mathrm{E} / \mathrm{fad}$ was achieved with $60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$ and at par with the net return $25502 \mathrm{~L} . \mathrm{E} / \mathrm{fad}$ by $80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$. In conclusion, relay intercropping watermelon with faba bean at 75 cm plant spacing with applied $60 \mathrm{~kg} \mathrm{~N} /$ fad produced 24.9 ton/fad fruits of watermelon plus 8.3 ardab/fad of seed faba bean and increased net return by 80.2%, as well as saved land by 75% and N fertilizer by 25% compared to sole watermelon culture, as average of both seasons.

Keywords: Relay intercropping, N fertilization, land equivalent ratio (LER), ATER, net return

INTRODUCTION

Faba bean (Vicia faba L.) is one of the strategic crops; it is an important source of proteins and minerals for humans and animals (Khursheed et al., 2018). Since faba beans are a significant component of the Egyptian diet, increasing faba bean production and improving yield quality are the main goals in order to meet the demand of the expanding Egyptian population (Zeidan, 2003). In Egypt, the cultivated area of faba bean decreased in the last years from 107621 to 89256 fad (Bulletin, 2013, 2020). Therefore, there is a gap between production and consumption of faba bean. This is due to the strong competition between faba bean and other strategic winter season crops on the limited cultivated land. Therefore, intercropping faba bean with watermelon in cultivated areas of watermelon can contribute in reduce the food gap of faba bean by increasing the area of faba bean without the need for additional land area in newly reclaimed sandy soils.

A promising method to sustainably maintain or increase yields is intercropping. Over yielding can occur in relay intercropping due to resource complementarity, which occurs when two or more species of an intercrop acquire different resources or the same resources at different places underground (Li et al., 2018) or at different times (Zhang et al., 2017).

Watermelon (Citrullus lanatus Thunb) is the most cultivated Cucurbitaceae species in the world, due to high nutritive value (Wehner, 2008). In Egypt, watermelon is cash crop and one of the important
vegetables crops. Its cultivated area was 45,029 ha in the summer season (FAO, 2020), and about 90% of this area was in newly reclaimed land. Watermelon rows spacious allow for successful intercropping farming, which allows shares of land resources and production inputs as well as increased productivity, land use efficiency and farmer income (Huang et al., 2015; Miller and Greene, 2018; Abd Allah et al., 2020). Management of intercrops to reach maximum complementarity and minimum competition between both crops includes agriculture different decisions as population density and nutrients requirements, especially nitrogen.

Plant density management of watermelon is essential to obtain a greater number of commercial fruits of watermelon, because plant a densing can lead to increase in productivity, but with decrease in the mean fruit mass (Goreta et al., 2005). Increased plant density usually raises biomass productivity to a certain limit, after which productivity remains equal or decreases (Campagnol et al., 2012). Reducing plant spacing from 2 to 0.5 m decreased number of fruits/plant, fruit weight and fruit yield/ha (Cecílio Filho et al., 2015). Total and marketable yields per ha were linearly decreased with an increase in plant spacing from 0.5 to 1.5 m , and the same was noticed with the total and marketable number of fruit per ha (Bellad and Umesh, 2018). However, several studies indicate that the plant density of the later sown crop, such as watermelon, did not have a significant effect on the early sown crop (as faba bean) in the relay intercropping system (Mao et al., 2014;

Bitew et al., 2014; Tilahun and Alemayehu, 2019; Fetene et al., 2020).

Watermelon repeated cultivation can generate soil and water degradation due to the excessive use of synthetic fertilizers due to nutrient depletion (Ding et al., 2021). Therefore, faba bean is the best companion crop, since it can increase the available N supply for other crops at low cost (Espinoza et al., 2015), increase soil organic matter, and improvement of soil structure (Watson et al., 2017). Intercropping faba bean can savings (up to $100-200 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$) in the amount of N fertilizer required to maximize the yield of other crops (Jensen et al., 2010). However, watermelon fertilization did not have a significant effect on the growth, yield and yield components of the faba bean, since it is a legume crop that can fix N from the air. Mueller et al. (2015) found that legume N -fixing plants can acquire 50 to 70% of the essential N needed from the air, resulting in a lack of competition for below-ground resources with co-crops. However, supply of N is associated with high photosynthetic activity, vigorous vegetative growth and a production of watermelon (John et al., 2004; Kacha et al., 2017). An application of $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ in watermelon significantly increased the fruit yield (Sabo et al., 2013; Bellad and Umesh, 2018), but at 200 kg N/ha it had no significant effect (Sabo et al., 2013). Kacha et al. (2017) found that maximum fruit yield/ hectare were registered under higher dose of nitrogen ($125 \mathrm{~kg} / \mathrm{ha}$), whereas,
maximum fruit number produce at $93 \mathrm{~kg} \mathrm{~N} /$ ha (Nowaki et al., 2017). To increase intercropping systems, agricultural management practices must optimize complementarity and decrease competition between intercrop components (Stomph et al., 2020). Thereby, this study was undertaken to study the effect of plant spacing and N fertilization levels of watermelon on productivity of both crops, land equivalent ratio and economic feasibility of faba bean/watermelon relay intercropping.

MATERIALS AND METHODS

A field experiment was implemented during two successive seasons of 2020/2021 and 2021/2022 at Ismailia Research Station, ARC, Ismailia Governorate, Egypt. Drip irrigation system was used in both growing seasons. Soil texture of experimental site was sand and pH value was 7.45 . Chemical and physical soil analyses ($0-30 \mathrm{~cm}$ in depth) were conducted by the standard methods described by Tan (1996) as shown in Table (1). The experiment was laid out in split-plot in randomized complete block design with three replicates. Plant spacing of watermelon (50,75 and 100 cm between hills) were assigned in main-plots and three N fertilization levels (40,60 and $80 \mathrm{~kg} \mathrm{~N} /$ fad) were allocated in sub-plots.

Table (1): Physical and chemical properties of soil ($0-60 \mathrm{~cm}$ in depth) at experimental site in both seasons

Physical properties	Chemical properties				
Season	$\mathbf{2 0 2 0 / 2 0 2 1}$	$\mathbf{2 0 2 1 / 2 0 2 2}$	Season	$\mathbf{2 0 2 0 / 2 0 2 1}$	$\mathbf{2 0 2 1 / 2 0 2 2}$
Fine sand \%	19.35	19.65		Available NPK (ppm)	
Coarse sand \%	73.18	74.3	\mathbf{N}	19.25	20.84
Silt \%	2.64	2.13	\mathbf{P}	5.46	6.52
Clay \%	4.83	3.92	\mathbf{K}	65.93	72.10
Soil texture		Sand		$\mathbf{p H}$	7.86

Land preparation process started with ploughing by disk harrow, levelling, and division into terraces that were 2.40 m wide and 6 m long. Plot area was $43.2 \mathrm{~m}^{2}$, and comprised of 3 terraces. The drip irrigation network was distributed in experimental area, which consists of main line (4-inch diameter), sub lines (63 mm diameter), and drip lateral (16 mm diameter) that were parallel to watermelon beds. Drippers spacing were 50 between drippers. Under intercropping system 3 laterals (16 mm diameter) per terrace was used. Two laterals established on the top of the terrace at 80 cm spaced to irrigate faba bean plants (Fig, 1), while the third lateral staying on the one side of the terrace for watermelon. In sole system, 1 lateral on one side of terrace at 240 cm was established for watermelon. While, three laterals on the top of the terrace at 80 cm apart were established to irrigate faba bean (Fig 1).

Faba bean seeds Giza 716 cultivar were sowing on November $1^{\text {st }}$, and harvest date were on April $15^{\text {th }}$ and $18^{\text {th }}$ in first and second season, respectively, in sole and intercropping system. Faba bean seeds were sowing on the terrace (240 cm) in 6 rows at 40 cm between rows and one plant/hill at 15 cm in sole culture to give 70 thousand plants/fad, while seeds of intercropped faba bean were sowing on the terrace (240 cm) in 4 rows on the terrace at 40 cm , with left one plant/hill at 15 cm apart (faba bean pant density was 46.7 thousand plants/fad, it is 67% of its recommended) as shown in Fig (1). Transplants of watermelon Giza 1 cultivar in stage of 3-4 true leaves were transplanted on March $15^{\text {th }}$ on one side of the terrace (240 cm) and harvested on June $26^{\text {th }}$ and July $2^{\text {nd }}$ in first and second season, respectively, for both cultural system. Planting space of watermelon were 50,75 and 100 cm between hills, in intercropping system and at 75 cm in pure stand to give 2333 plants/fad (Fig 1).

Figure (1): Sole and intercropping system of faba bean and watermelon

Nitrogen, potassium and phosphorus fertilizers applied were in form ammonium nitrate ($33.5 \% \mathrm{~N}$), potassium sulphate ($48 \% \mathrm{~K}_{2} \mathrm{O}$) and phosphoric acid, respectively. Calcium superphosphate at $200 \mathrm{~kg} /$ fad was applied during soil preparation. For faba bean, ammonium nitrate at $20 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$, as booster dose to the soil, while potassium sulphate at $50 \mathrm{~kg} /$ fad were applied at 5 equal doses as soil dressing, every 10 days, beginning of the third irrigation. For watermelon, poultry manure at $20 \mathrm{~m}^{3} / \mathrm{fad}$ was added in ditch rows before transplanting. Phosphoric acid fertilizer at 10 L/fad was added as fertigation recommended. Meanwhile, potassium sulphate at $100 \mathrm{~kg} /$ fad and different levels of $\mathrm{N}(40,60$ and $80 \mathrm{~kg} \mathrm{~N} /$ fad $)$ were divided into five equal parts and applied as top dressing near the drippers, beginning of the first irrigation, and repeat every 10 days. The other cultural practices for growing each crop were as recommended according to the instruction laid down by the Egyptian Ministry of Agriculture.

The studied characters

- Faba bean:

At harvest, plant height (cm), number of branches/plant (No.), number of pods/plant (No.), seeds yield/plant (g) and 100 seed weight (g) were estimated according ten plants were randomly chosen. Seed yield (ardab/fad) was measured as all harvested plants from each experimental unit were weighted then threshed to assess seed yield/fad.

- Watermelon:

Harvesting was carried out upon fruit maturity symptoms. Five fruits from each sub-plot were collected to measure main branch length (cm), branches number/plant (No.), fruits number/plant (No.) and mean fruit weight (kg). Fruits weight of each sub-plot was weighted to calculated total yield/fad (ton).

Competitive relationships:

- Land equivalent ratio (LER) was determined according to (Willey, 1979), by the following formula: $\operatorname{LER}=(\mathrm{Yab} / \mathrm{Yaa})+(\mathrm{Yba} / \mathrm{Ybb})$
Where Yaa and $\mathrm{Ybb}=$ Pure stand yield of crop a (watermelon), and crop b (faba bean), Yab and $\mathrm{Yba}=$ Intercrop yield of crop a (watermelon) and crop b (faba bean), respectively.
Area Time Equivalent Ratio (ATER): ATER provides more realistic comparison of the yield advantage of intercropping over solid cropping than LER in terms of time taken by component crops in the intercropping systems. ATER was calculated by formula developed by Hiebsch (1980):
$\mathrm{ATER}=\left[\left(\frac{Y a b}{Y a a} \mathrm{X} \mathrm{Ta}\right)+\left(\frac{Y b a}{Y b b} \mathrm{X} \mathrm{Tb}\right)\right] / \mathrm{T}$
Ta and $\mathrm{Tb}=$ duration (in days) of watermelon and faba bean crop, respectively. $\mathrm{T}=$ total duration of the intercropping system in days.
- Aggressivity (Ag): Its values were determined according to Mc-Gilchrist (1965):
$\mathrm{Ag} \mathrm{a}=[\mathrm{Yab} /(\mathrm{YaaxZab})]-[\mathrm{Yba} /(\mathrm{YbbxZba})] \quad \mathrm{Ag} \mathrm{b}=$ [Yba/(YbbxZba)] - [Yab/(YaaxZab)]
where: Ag a and $\mathrm{Ag} \mathrm{b}=$ aggressivity value for watermelon and faba bean, respectively.
Zab and Zba: sown proportion of watermelon and faba bean in intercropping system, respectively.

Economic evaluation:

The total return per feddan was calculated for each treatment in Egyptian pounds, using the average market price for both years. The farm prices were 1938 and 2015 L.E/ardab for seed faba bean and 1500 and 1700 L.E / ton for watermelon in 2020/2021 and 2021/2022season, respectively.
Net return $=$ Total return - total cost (total cost of watermelon + variable cost of faba bean)

The Statistical Analysis:

The data of all characters were studied subjected to statistical analysis of variance technique using MSTATC statistical package (Freed, 1991). The treatment differences were tested by "F" test of significance according to Gomez and Gomez (1984). Duncan Multiple Range Test (DMRT) at 5\% level of probability was used to compare treatment means.

RESULTS AND DISCUTIONS

I- Faba bean

Effect of plant spacing of watermelon:

Results presented in Table (2) confirm that plant spacing of watermelon did not show a significant effect on plant height, number of branches/plant, number of pods/plant, seed yield/plant, 100 -seed weight and seed yield/fad of faba bean in both seasons. This might be due to the full mature of faba bean that watermelon crop was not able to create an inter-specific competition to reduce the yield and its components of faba bean. Where watermelon was planted when the faba bean plants reached later maturity stage before watermelon plants become a strong competitor for faba bean plants. This is in agreement with the work of Mao et al. (2014) who stated that plant densities (plant spacing) of cotton were $3.0,4.5,6.0$ and 7.5 plants m^{-2}, had no significant effect on grain yield of wheat in relay intercropping system. Intercropping of lupine with different spacing did not show a significant effect on the biomass yield of barley (Bitew et al., 2014). Similarly, parameters of tef
did not affect significantly by intra-row spacing of safflower in relay intercropping system (Tilahun and Alemayehu, 2019) or intar-row spacing of lupine relay intercropping (Fetene et al., 2020).

Effect of \mathbf{N} fertilization levels of watermelon:

Concerning N fertilization levels of watermelon had no significant effect on growth, yield components and seed yield/fad of faba bean as shown in Table (2). A probable reason for irresponsibility of growth and yield characters to N fertilization levels, is applied N fertilizer of watermelon when faba bean reach to mature stage. This result in line with Huang et al. (2015) the intercropped watermelon had no effect on the growth of wheat in relay intercropping system. Another interpretation, faba bean has the ability to air N -fixation, this N is an important resource for the other intercrops. These results are in agree with those obtained by Mueller et al. (2015) found that legume N -fixing plants can acquire 50 to 70% of the essential N needed from the air, resulting in a lack of competition for belowground resources with co-crops.

Interaction effects:

Interaction between plant spacing and N fertilization levels of watermelon had no significant effect on growth, yield and its components of faba bean in both season (Table 2). This result in line with Abd Allah et al. (2020) reported that interaction of studied factors of watermelon did not show any significant effect on wheat.

Table (2): Effect of watermelon plant spacing, N fertilization levels and their interaction on faba bean characters in both seasons

Trait Treatment	Plant height (cm)		Number of branches/pl		Number of pods/pl		Seed yield/pl (g)		100- seed wt. (g)		Seed yield (ard./fad)	
	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \prime \\ & 2022 \end{aligned}$	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$	$\begin{aligned} & \hline 2020 / \\ & 2021 \end{aligned}$	$\begin{aligned} & \hline 2021 / \\ & 2022 \end{aligned}$
Plant spacing A												
50 cm	95.50	102.89	3.64	3.41	12.93	13.27	33.55	30.55	87.51	84.56	8.44	7.82
75 cm	94.90	104.17	3.56	3.43	13.56	12.71	34.26	29.36	88.23	84.78	8.35	8.00
100 cm	95.01	101.46	3.54	3.44	14.48	12.89	34.00	30.31	87.44	86.17	8.41	7.98
F test	n.s											
\mathbf{N} fertilization B												
$40 \mathrm{~kg} / \mathrm{fad}$	94.79	103.78	3.59	3.46	13.50	13.30	33.56	30.61	86.59	84.50	8.24	7.93
$60 \mathrm{~kg} / \mathrm{fad}$	95.07	101.16	3.62	3.43	14.29	12.77	34.20	29.64	88.40	85.16	8.45	7.95
$80 \mathrm{~kg} / \mathrm{fad}$	95.54	103.57	3.53	3.38	13.18	12.80	34.04	29.96	88.20	85.83	8.50	7.91
F test	n.s											
Interaction AxB												
$50 \quad 40$	97.00	103.16	3.90	3.43	13.32	14.43	32.74	32.97	86.27	83.83	8.26	7.80
60	93.23	101.00	3.60	3.46	13.60	12.67	37.37	29.40	88.10	85.17	8.50	7.76
80	96.27	104.50	3.43	3.33	11.87	12.70	30.53	29.27	88.17	84.67	8.56	7.90
7540	994.20	105.83	3.73	3.43	13.13	12.37	34.63	28.37	87.10	84.50	8.23	7.90
cm 60	95.23	101.67	3.63	3.43	14.00	12.83	31.27	29.47	89.30	84.17	8.43	8.10
cm 80	95.27	105.00	3.60	3.43	13.53	12.93	36.87	30.23	88.30	85.67	8.40	7.99
10040	93.17	102.35	3.43	3.53	14.03	13.10	33.30	30.50	86.40	85.24	8.23	8.10
100 cm	96.77	100.82	3.63	3.40	15.27	12.80	33.97	30.07	87.80	86.17	8.43	8.00
cm 80	95.10	101.20	3.57	3.40	14.13	12.77	34.72	30.37	88.13	87.10	8.56	7.83
F test	n.s											
Sole faba	104.50	112.00	2.40	2.80	10.60	9.80	27.70	25.60	85.70	82.50	11.40	10.80

ns: means not significant at 5% probability

Results in Table (2) clearly indicated that intercropped faba bean superiority in number of branches/plant and yield component over than pure stand of faba bean in both seasons. Whereas the highest values of plant height and seed yield/fad were recorded with pure stand of faba bean compared to intercropping system. Improved performance of individual faba bean plants in intercrops is mainly attributed to the greater light capture per plant over sole culture.

This result is consistent with other studies on faba bean/wheat intercropping (Abdel-Wahab and El Manzlawy, 2016). Notably number of faba bean rows per unit area and band-width between terraces could be related to the proportion of solar radiation that reaches faba bean plants during growth and development of faba bean. Similar results were obtained by Abd Allah et al. (2020), note that yield components of wheat intercropping with watermelon were higher than sole wheat, irrespective of wheat cultivar. However, the reduction of seed yield of intercropped faba bean could be attributed to plant density of faba bean in intercropping culture reached 67% of sole culture. This result is in accordance with those obtained by AbdelWahab and El Manzlawy (2016) and Abd Allah et al. (2020).

II- Watermelon

Effect of plant spacing of watermelon:

Watermelon yield and its components characters had significantly affect by plant spacing, N fertilization levels and their interaction in both seasons as shown in (Table 3). Increasing plant spacing from 50 to 100 cm between hills of watermelon plants gradually increased branch length, number of branches/plant, number of fruits/plant and mean fruit weight (g). A probable reason for responsibility of watermelon characters is the low intra-specific competition on water, nutrient and light between watermelon plants. These results are supported by the work done by Sabo et al. (2013) who reported an increase in watermelon vine length, number of branches and fruit weight with an increase in spacing. Cecílio Filho et al. (2015) they found that reducing plant spacing from 2.0 to 0.5 m decreased number of fruits/plant, and fruit weight.

However, the highest fruit yield per fad 23.97 and 23.79 ton /fad were produce with plant spacing 75 cm between hills as shown in Table (3). While the lowest fruit yield 22.48 and 22.35 ton/fad were obtained with plant spacing 50 cm apart. The authors claim that as plant spacing decreased, solar radiation incidence on the interior of the canopy shortage and individual leaf area on the mid and upper parts of the plant reduced. This resulted in less solar radiation interception and carbon dioxide absorption by the plant, which decreased solar radiation incidence and led to smaller mean fruit weight and fruit yield/fad. Corroborating the results obtained by Campagnol et al. (2012) who reported that increased plant density (by decreased plant spacing) usually, for most species, raises biomass productivity to a certain limit, after which productivity remains equal or decreases. Opposite trend reported by Bellad and Umesh (2018) they found that total and marketable
yields/ ha were linearly decreased with an increase in plant spacing from 0.5 to 1.5 m .

Effect of \mathbf{N} fertilization levels of watermelon:

Significant effect of N fertilization levels on watermelon characters in both seasons (Table, 3). Increasing N fertilization levels from 40 up to 80 kg $\mathrm{N} /$ fad gradually increased growth, yield components and fruit yield/fad. Sufficient supply of N is associated with high photosynthetic activity and vigorous vegetative growth and also helpful for the production of female flowers (John et al., 2004). Application of 80 kg $\mathrm{N} /$ fad increased yield and its components by 8.4 and 9.7% of branches number/plant; 9.7 and 10.6% of fruits number/plant; 11.6 and 8.6% of mean fruit weight and 15.8 and 17.1% of fruit yield/fad compared to 40 kg $\mathrm{N} /$ fad in first and second season, respectively. These results are agreement with those obtained by Kacha et al. (2017) who found that yield of fruit per plant and per hectare were registered maximum under higher dose of nitrogen ($125 \mathrm{~kg} / \mathrm{ha}$). Nowaki et al. (2017) founded that the high response of watermelon to the supply of N fertilization. The nitrogen applied at $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ significantly increased fruit yield and fruit weight as compared to 100 and $125 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (Bellad and Umesh, 2018).

Noteworthy, variation between two levels of 60 and $80 \mathrm{~kg} \mathrm{~N} /$ fad did not show a significant difference in most cases. These results may be due to positive residual effect of faba bean, which increased air fixed N and reduce applied doses of N fertilization. These results get support from the work was done by several studies have demonstrated substantial savings (up to $100-200 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$) in the amount of N fertilizer required to maximize the yield of crops grown following faba bean (Jensen et al., 2010; Espinoza et al., 2015). Moreover, legume N -fixing plants can acquire 50 to 70% of the essential N needed from the air, resulting in a lack of competition for below-ground resources with co-crops (Mueller et al., 2015). Also, fruit yield /fad may not affect by increasing N fertilization than recommended doses. These results are accordance with Sabo et al. (2013) application of $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ in watermelon significantly increased the fruit yield compared with that at $60 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$, but at $200 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ it had no significant effect, where the increase in yield was mainly due to significant increase in fruit size.

Interaction effects:

Regarding interaction effects, results in Table 3 show that all studied characteristics of watermelon did not significantly affect by the interaction of plant spacing and N fertilization levels of watermelon, except average fruit weight and fruit yield/fad, in both seasons. The lowest values of fruit weight and fruit yield/fad were obtained with intercropping watermelon at 50 cm spacing with applied $40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$. This indicates that the increase in plant density of watermelon with insufficient nitrogen fertilization resulted in an increase in competition between plants and reduce yield and its components. These results are in agreement with the findings of Sylvestre et al. (2014) who reported that decreased spacing may increase crowding and decrease
yield of watermelon. So, growing watermelon at space 100 cm with applied 60 and $80 \mathrm{~kg} \mathrm{~N} /$ fad had the highest average fruit weight 4.26 and 4.85 kg in first and second season, respectively. However, the maximum fruit yield 25.46 and 25.00 ton/fad were obtained with relay intercropping watermelon spacing at 75 cm between hills, that is received $80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$. These results may be
attributed to high plant population of watermelon at 75 cm compensated the reduction in average fruit weight compared to planting space at 100 cm . These results in line with Sabo et al. (2013) the use of $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ at a spacing of $1 \times 1.5 \mathrm{~m}$ should be adopted by the farmers for watermelon production and profitable.

Table (3): Effect of watermelon plant spacing, N fertilization levels and their interaction on watermelon characters relay intercropping with faba bean in both seasons

$\begin{array}{r} \text { Trait } \\ \text { Treatment } \end{array}$	Branches Length (cm)		Number of branches /plant		Number of fruits /plant		Mean fruit weight (kg)		Fruit yield ton/fad	
	2020/21	2021/22	2020/21	2021/22	2020/21	2021/22	2020/21	2021/22	2020/21	2021/22
Plant spacing A										
50 cm	150.40C	154.40C	7.63C	6.70 A	2.65 C	2.45 C	2.57C	2.78 C	22.48B	22.35B
75 cm	157.83B	163.05B	8.97B	7.54B	2.98B	2.83 B	3.60B	3.96B	23.97A	23.79A
100 cm	166.46A	172.56A	10.37 A	8.93 A	3.15 A	3.16A	4.13 A	4.75 A	22.59B	23.36A
F test	**	**	**	**	**	**	**	**	**	
N fertilization B										
$40 \mathrm{~kg} / \mathrm{fad}$	152.51B	157.20B	8.62B	7.32 C	2.78B	2.65 B	3.20B	3.68B	21.05B	20.95B
$60 \mathrm{~kg} / \mathrm{fad}$	159.30A	$\begin{gathered} 163.66 \mathrm{~A} \\ \mathrm{~B} \end{gathered}$	9.02 A	7.82B	2.95 A	2.86 A	3.54A	3.87 A	23.61A	24.02A
$80 \mathrm{~kg} / \mathrm{fad}$	162.88A	169.15A	9.34 A	8.03 A	3.05 A	2.93 A	3.57 A	3.93 A	24.38A	24.54A
F test	**	**	**	**	**	**	*	*	**	**
Interaction $\mathbf{A} \times \mathbf{B}$										
$\begin{array}{cc}50 & 40 \\ \text { cm } & 60 \\ & 80\end{array}$	143.06	147.03	7.33	6.40	2.53	2.38	2.20 e	2.55 d	20.37f	20.02f
	152.66	155.76	7.73	6.80	2.70	2.46	2.71 d	2.83 c	22.77 d	22.90d
	155.46	160.40	7.83	6.90	2.73	2.50	2.80 d	2.96 c	24.29b	24.13c
$\begin{array}{rr} \\ 75 & 40 \\ \text { cm } & 60 \\ & 80\end{array}$	154.46	157.46	8.63	7.03	2.70	2.65	3.46c	3.83b	21.68e	21.56e
	158.93	162.73	8.93	7.63	3.03	2.86	3.66 bc	4.06 b	24.97a	24.82a
	160.10	168.96	9.36	7.96	3.20	3.03	3.70bc	4.00 b	25.26a	25.00a
 100 40 cm 60	160.00	167.10	9.90	8.53	3.10	2.93	3.93 b	4.66a	21.10 e	21.26 e
	166.30	172.50	10.40	9.03	3.13	3.30	4.26 a	4.73a	23.10 c	24.33 b
	173.10	178.10	10.83	9.23	3.23	3.25	4.21 a	4.85a	23.58c	24.50b
F test	n.s	n.s	n.s	n.s	n.s	n.s	*	*	*	*
Pure stand	184.50	192.00	12.23	10.60	3.30	3.10	3.52	3.39	24.91	24.65

* and ${ }^{* *}$: significant at 5% and 1% probability in an F test; whereas ns means not significant. Different letters in the same row indicate significant differences according to Duncan test ($\mathrm{P} \leq 0.05$).

Results in Table (3) confirm that growing watermelon in sole culture increased branch length and number of branches/plant over all intercropping treatments. These results could be attributed to increased interspecific competition of faba bean (overstory crop) and watermelon (understory) on solar radiation, where branching stage of watermelon initiate before harvesting faba bean. However, intercropping faba bean with watermelon increased fruit weight/plant, when watermelon planting at spacing 75 and 100 cm irrespective N fertilization levels. Whereas, fruit yield/fad of intercropped watermelon superior sole culture only in two cases, when watermelon planting at 75 cm and received 60 and/or $80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$. This confirms that relay intercropping watermelon with faba bean at spacing 75 cm , as sole culture, and applied 80 $\mathrm{kg} \mathrm{N} /$ fad (recommended level) or 75% of recommended level ($60 \mathrm{~kg} /$ fad) improved mean fruit weight and fruit yield/fad compared sole watermelon. Faba bean is the best companion plants for nutrients, increasing the available N supply for intercrop at low cost (Espinoza et al., 2015).

III- Competition index

Land equivalent ratio (LER)

Results presented in Table 4 show that the relative yield of faba bean crop was ever lower than those of the relative yield of the watermelon, could be attributed to plant density of intercropped faba bean was 67% of its sole culture. However, individual plants of faba bean had greater yield per plant in the intercrop than in the sole crop (Table, 2). Data also revealed that intercropping watermelon at spacing 75 cm and applied $60 \mathrm{and} /$ or $80 \mathrm{~kg} \mathrm{~N} /$ fad had the highest relative yield of watermelon over pure stand. Therefore, the highest land equivalent rations 1.75 and 1.76 were produce with intercropping watermelon at 75 cm with applied 80 and $60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$, in first and second, respectively. So, both of N fertilization levels at 60 and $80 \mathrm{~kg} / \mathrm{fad}$ had the same value of LER as average of both seasons, which was 1.75 . However, the lowest values of LER 1.54 and 1.53 were obtained with narrow spacing 50 cm and low levels of N fertilization $40 \mathrm{~kg} /$ fad in first and second seasons, respectively.

Table (4): Effect of interaction of plant spacing and N fertilization level of relay intercropping watermelon with faba bean on land equivalent ratio in both seasons

Treatment	Trait	Land equivalent ratio			Land equivalent ratio		
		$L_{\text {melon }}$	$\mathbf{L}_{\text {faba bean }}$	LER	$L_{\text {melon }}$	$\mathbf{L}_{\text {faba bean }}$	LER
		First season			Second season		
50 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.82	0.72	1.54	0.81	0.72	1.53
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.91	0.75	1.66	0.93	0.72	1.65
	$80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.98	0.75	1.73	0.98	0.73	1.71
75 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.87	0.72	1.59	0.87	0.73	1.60
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.00	0.74	1.74	1.01	0.75	1.76
	$80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.01	0.74	1.75	1.01	0.74	1.75
100 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.85	0.72	1.57	0.86	0.75	1.61
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.93	0.74	1.67	0.99	0.74	1.73
	$80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.95	0.75	1.70	0.99	0.73	1.72

Although, all intercropping treatments increased LER than unit, implying a yield advantage for the intercropping system. In other words, 53 to 76% land area will be required for the sole crop to obtain similar yield, as obtained from intercropping system. These results are in accordance with those obtained by Huang et al. (2015) and Miller and Greene (2018), Abd Allah et al. (2020) they found that watermelon relay intercropping attained yield advantage with LER values over than 1.0.

Area time equivalent ratio (ATER)

Results in Table (5) confirm that values of ATER always were less than LER and behaved the same trend of LER. The highest ATER 1.05 and 1.06 were produced with applied $80 \mathrm{~kg} \mathrm{~N} /$ fad, in first season, and 60 or $80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$, in second season, to watermelon planting at 75 cm . In general, any intercropping
treatment had value of ATER larger than 1.0, it implies yield advantage, while intercropping treatments had ATER values lesser than 1.0, yield disadvantages exist. In 2020/2021 season, ATER value were higher than unit with applied $80 \mathrm{~kg} \mathrm{~N} /$ fad, irrespective plant spacing of watermelon, while $60 \mathrm{~kg} \mathrm{~N} /$ fad had ATER higher than unit only with plant distance at 75 cm . However, both nitrogen levels 80 and $60 \mathrm{~kg} \mathrm{~N} /$ fad had values of ATER higher than unit, irrespective watermelon plant spacing, in 2021/2022 season. This indicated that the relative yield of watermelon more response to N fertilization levels than plant spacing in both seasons. Results are in line with Nowaki et al. (2017) founded that the high response of watermelon to the supply of N fertilization. The nitrogen applied at $150 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ significantly increased fruit yield and fruit weight as compared to 100 and 125 kg N/ha (Bellad and Umesh, 2018).

Table (5): Effect of interaction of plant spacing and N fertilization level of relay intercropping watermelon with faba bean on area time equivalent ratio and aggressivity in both seasons

Treatment	Trait	ATER	Aggressivity		ATER	Aggressivity	
			$\mathrm{A}_{\text {melon }}$	$\mathbf{A}_{\text {faba }}$		$\mathbf{A}_{\text {melon }}$	$\mathrm{A}_{\text {faba }}$
		First season			Second season		
50 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.93	-1.15	1.15	0.93	-1.15	1.15
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.00	-0.34	0.34	1.00	-0.25	0.25
	$80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.03	0.24	-0.24	1.03	0.29	-0.29
75 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.96	-1.07	1.07	0.97	-1.09	1.09
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.04	-0.18	0.18	1.06	-0.20	0.20
	$80 \mathrm{~kg} \mathrm{~N} /$ fad	1.05	0.35	-0.35	1.06	0.34	-0.34
100 cm	$40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	0.94	-1.10	1.10	0.98	-1.17	1.17
	$60 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.00	-0.30	0.30	1.04	-0.21	0.21
	$80 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$	1.02	0.19	-0.19	1.03	0.29	-0.29

Aggressivity (A)

Aggressivity estimated the variation in competitive ability of the component crops in intercropping system. The (+) sign confirms the dominant crop and the (-) sign confirms the dominated crop. Higher aggressive value indicates a greater
difference in competitive ability, as well as a greater disparity between actual and expected yield in both crops. Results in Table (4) revealed that faba bean was the dominant crop component with applied 40 and 60 kg $\mathrm{N} /$ fad, while faba bean was the dominated crop with applied $80 \mathrm{~kg} \mathrm{~N} /$ fad, irrespective plant spacing of
watermelon. The best aggressivity values 0.18 and 0.20 were obtained by intercropping watermelon at plant spacing 75 cm which received $60 \mathrm{~kg} \mathrm{~N} /$ fad in first and second season, respectively. While the worst values of aggressivity 1.15 were obtained with dense planting of watermelon at 50 cm along with applied $40 \mathrm{~kg} \mathrm{~N} / \mathrm{fad}$ in both seasons. This indicated that insufficient N levels with the dense plant density per unit area increased crowding between intercrop components. These results are in agreement with those obtained by Abd Allah et al. (2020) also reported that values of aggressivity under intercrop showed that wheat was a higher competitive and dominant crop over watermelon in the intercropping systems.

Economic evaluation

The total return and net return of relay intercropped watermelon with faba bean as compared to solid watermelon in both seasons are shown in Table (6). Relay intercropping watermelon at plant distance 75 cm between hills in both seasons increased total and net returns compared to other plant spacing. Overall, application $80 \mathrm{~kg} \mathrm{~N} /$ fad gave the highest total return

54169 and 58600 L.E./fad, followed by 53792 and 58546 L.E/fad with applied $60 \mathrm{~kg} \mathrm{~N} /$ fad in first and second season, respectively, with unrecognized distinctions. Whereas, the highest net return 24036 and 27123 L.E/fed were obtained by intercropping watermelon at plant spacing 75 cm with applied 80 kg $\mathrm{N} /$ fad in first season and $60 \mathrm{~kg} \mathrm{~N} /$ fad in second season, respectively. However, net return as average of both seasons not substantial differences between N fertilization levels 60 and $80 \mathrm{~kg} / \mathrm{fad}$. Therefore, we recommended with applied $60 \mathrm{~kg} \mathrm{~N} /$ fad, to rationalize the fertilizer and reduce production costs. On the contrary, application $40 \mathrm{~kg} \mathrm{~N} /$ fad with plant spacing 50 cm had the lowest total and net income in both seasons. Although, the intercropping treatment with the lowest income increased net return by 31.6 and 20.3% as compared to sole watermelon in the first and second seasons, respectively. This result is in line with most other field studies reported that intercropping watermelon increased grower's profitability (Miller and Greene, 2018; Abd Allah et al., 2020).

Table (6): Effect of interaction of plant spacing and N fertilization level of relay intercropping watermelon with faba bean on total return, cost and net return in both seasons

Treatment	Trait	Total return LE/fad	$\begin{gathered} \text { Total } \\ \text { cost } \\ \text { LE/fad } \end{gathered}$	Net return L.E./fad	Total return LE/fad	Total cost LE/fad	Net return L.E./fad	Average of net return in both
	First season					Second season		seasons
50 cm	40 kg N/fad	46563	29653	16910	49751	31153	18598	17754
	60 kg N/fad	50628	29893	20735	54566	31393	23173	21954
	80 kg N/fad	53024	30133	22891	56940	31633	25307	24099
75 cm	40 kg N/fad	48470	29653	18817	52571	31153	21418	20117
	60 kg N/fad	53792	29893	23899	58516	31393	27123	25511
	80 kg N/fad	54169	30133	24036	58600	31633	26967	25502
100 cm	40 kg N/fad	47600	29653	17947	52464	31153	21311	19629
	60 kg N/fad	50987	29893	21094	57481	31393	26088	23591
	80 kg N/fad	51959	30133	21826	57427	31633	25794	23810
Sole wate	ermelon	37965	25115	12850	42075	26615	15460	14155

CONCLUSION

In Egypt, there is large gap between production and consumption of faba bean, and it can be overcome by finding unconventional practices to increase faba bean production, such as relay intercropped with other crops. Our results indicated that relay intercropping watermelon with faba bean at plant spacing 75 cm apart with applied $60 \mathrm{~kg} \mathrm{~N} /$ fad produced $24.90 \mathrm{ton} /$ fad of watermelon fruits, in addition to produced 8.3 ardab/fad seed of faba bean. Which increased the net return by 80.2% and increased land use by 75%, as well as reduce N fertilizer use by 20% compared to solid
watermelon cultivation averaged over both seasons. It is evident that, intercropping is more profitable than the sole planting of watermelon.

REFERENCES

Abd Allah, A. M., A. M., Morsy and M. M. M. Abd Elsalam (2020). Maximizing productivity, profitability and land use efficiency by relay intercropping watermelon with some wheat cultivars under drip irrigation system. Journal of Plant Production, 11(3): 251-258.

Abdel-Wahab, T. I. and A. M. El Manzlawy (2016). Yield and quality of intercropped wheat with faba bean under different wheat plant densities and slow-release nitrogen fertilizer rates in sandy soil. Journal of Experimental Agriculture International, 1-22.
Bellad, S. B. and H. Umesh (2018). Effect of sowing date, spacing and fertilizer levels on crop growth and seed yield of hybrid watermelon. Environment and Ecology, 36(2): 498-507.
Bitew Y., A. Abera and D. Woldegiorgis (2014). Competition indices of intercropped lupine (local) and small cereals in additive series in west Gojam , NorthWestern Ethiopia: 12961305.

Bulletin of the Agricultural Statistics (2012/2013). Agriculture Statistics and Economic Sector, Ministry of Egyptian Agriculture and Land Reclamation, winter crops part (1), Egypt.
Bulletin of the Agricultural Statistics (2019/2020). Agriculture Statistics and Economic Sector, Ministry of Egyptian Agriculture and Land Reclamation, winter crops part (1), Egypt.
Campagnol, R., S. D. C. Mello and J. C. Barbosa (2012). Vertical growth of mini watermelon according to the training height and plant density. Horticultura Brasileira, 30: 726-732.
Cecílio Filho, A. B., A. L. Feltrim, J. W. Mendoza Cortez, M. V. Gonsalves, L. C. Pavani and J. C. Barbosa (2015). Nitrogen and potassium application by fertigation at different watermelon planting densities. Journal of Soil Science and Plant Nutrition, 15(4): 928-937.
Ding, S., D. Zhou, H. Wei, S. Wu and B. Xie (2021). Alleviating soil degradation caused by watermelon continuous cropping obstacle: Application of urban waste compost. Chemosphere, 262: 128387.
Espinoza, S., C. Ovalle, E.Zagal, I. Matus and A. del Pozo (2015). Contribution of legumes to the availability of soil nitrogen and its uptake by wheat in Mediterranean environments of central Chile. Chilean journal of agricultural research, 75(1): 111-121.
FAO (2020). Agricultural production, primary crops. Food and Agricultural Organization of the United Nations, Rome.
Fetene, T., G. Alemayehu and Z. G. Tsadik (2020). Effect of planting density and time of white lupine relay intercropping on the productivity of Teff Eragrostis tef (Zucc.) Trotter) in Burie district, North Western Ethiopia. Int. J. Adv. Res. Biol. Sci., 7(11): 64-72.
Freed R. D. (1991). MSTATC Microcomputer Statistical Program. Michigan State University, East Lansing, Michigan, USA.
Gomez, K. A. and A. Gomez. (1984). Statistical procedures for agricultural research. $1^{\text {st }}$ ed. John Willey \& Sons, New York.
Goreta, S., S. Perica, G. Dumicic, L. Bucan and K. Zanic (2005). Growth and yield of watermelon on polyethylene mulch with
different spacings and nitrogen rates. HortScience, 40(2): 366-369.
Hiebsch, C. K. (1980). Principles of intercropping. Effect of N fertilization and crop duration on equivalency ratios in intercrops versus monoculture comparisons. Ph D Thesis. North Carolina State University, Raleigh, N. C., USA;
Huang, C., Q. Liu, N. Heeink, T. J. Stomph, B. Li, R. Liu, H. Zhang, C. Wang, X. Li, C. Zhang, W. van der Werf, F. Zhang (2015). Economic performance and sustainability of a novel intercropping system on the North China Plain. PLoS ONE, 10: e0135518.
Jensen, E. S., M. B. Peoples and H. H. Nilsen (2010). Faba bean in cropping systems. Field Crops Research, 115: 203-216.
John, L. W., D. B. Jamer, L. T. Samuel and L. W. Warner (2004). Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Pearson Education, India, 106-53.
Kacha, H. L., B. P. Jethaloja, R. S. Chovatiya and J. Giriraj (2017). Growth and yield of watermelon affected by chemical fertilizers. International Journal of Chemical Studies, 5(4): 1701-1704.
Khursheed, S., A. Raina, R. Amin, M. R. Wani and S. Khan (2018). Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Research on Crops, 19: 276-284.
Li, X. -F., C. -B. Wang, W. -P. Zhang, L. -H.Wang, X. L. Tian and S. -C. Yang (2018). The role of complementarity and selection effects in P acquisition of intercropping systems. Plant Soil, 422: 479-493.
Mao, L., L. Zhang, X. Zhao, S. Liu, W. van der Werf, S. Zhang and Z. Li (2014). Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Research, 155: 67-76.
Mc-Gilichrist, C. A. (1965). Analysis and competition experiments. Biometrics, 21: 975-985.
Miller, G. and J. Greene (2018). Intercropping seedless watermelon and cotton. Hortscience, 53(12): 1799-1803.
Mueller, N., R. Elmore, and C. Shapiro (2015). Soybean Inoculation: When, Where, and Why. Crop Watch.
Nowaki, R. H. D., A. B. Cecílio, R. T. D. Faria, A. F. Wamser and J. W. M. Cortez (2017). Effect of nitrogen fertilization on yield and quality of watermelon, cv. top gun1. Revista Caatinga, 30: 164-171.
Sabo M. U., M. A. Wailare, M. Aliyu, S. Jari and Y. M. Shuaibu (2013). Effect of NPK Fertilizer and Spacing on growth and yield of watermelon (Citrullus lanatus L.) in Kaltungo Local Government Area of Gombe State, Nigeria. Scholarly Journal of Agricultural Science, 3(8): 325-330.

Stomph, T. J., C. Dordas, A. Baranger, J. de Rijk, B. Dong, J. Evers, J., et al. (2020). Designing intercrops for high yield, yield stability and efficient use of resources: are there principles? Adv. Agron. 160, 1-41. doi: 10.1016/bs.agron., 2019: 10.002.

Sylvestre, H., N. J. Bosco, N. Emmanuel and U. Christine (2014). Growth and yield of watermelon as affected by different spacing and mulching types under Rubona conditions in Rwanda. Scholarly Journal of Agricultural Science, 4(10): 517-520.
Tan, K. H. (1996). Soil sampling, preparation and analysis. New York (NY): Marcel Dekker. Brockhaus, F. A. 1962. A B C der land wirtscheft B. and A-K 2 nd Edit VEB F. A. Brockhaus Verlay, Leipzg.
Tilahun, H. and G. Alemayehu (2019). Planting density and time of safflower relay intercropping in tef (eragrostis tef) at sebatamit kebele in Bahir Dar Zuria District, Amhara Region.

Journal of Biology, Agriculture and Healthcare, 9(7): 22-34.
Wehner, T. C. (2008). Watermelon. In Vegetables I (pp. 381-418). Springer, New York, NY.
Watson, C. A., M. Reckling, S. Preissel, J. Bachinger, G. Bergkvist, T. Kuhlman, ... and F. L. Stoddard (2017). Grain legume production and use in European agricultural systems. Advances in Agronomy, 144: 235-303.
Willey, R. W. (1979). Intercropping: Its importance and research needs. Part1. Competition and yield advantages. Field Crop Abstr., 32: 1-10.
Zeidan, M. S. (2003). Effect of sowing dates and urea foliar application on growth and seed yield of determinate faba bean (Vicia faba L.) under Egyptian conditions. J. Agron, 24: 93-102.
Zhang, W. -P., G. -C. Liu, J. -H Sun, D. Fornara, L. -Z., Zhang, F. -F., Zhang, et al. (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Funct. Ecol., 31: 469-479. doi: 10.1111/13652435. 12732.

تأثير مسافات الززاعة ومستويات التسميا اللنتروجينّى للبطيخ المحمل مناوباً مع الفول البلاي

> أحمد محمد عبدالله'، أميرة عطية الميهى' ، اسماعيل أبو بكرالصديق إسمـاعيل محمد ‘‘، محمد محمد عبدالسلامّ 'قسم بحوث النكثيف المحصولي ـ معهز بحوث المحاصيل الحقلية ـ مركز البحوث الز الزراعية ـ مصر
「معهد بحوث البساتنين - مركز البحوث الزر اعية ـ مصر

اقترحت هذه الدر اسة زر اعة الفول البلدي بمناطق زر راعة البطيخ عن طريق التحميل المناوب للبطيخ المتبادل مع الفول لتقليل الفجوة بين

 نتروجين /ف)على إنتاجية كلا المحصولين و كفاءة استخدام الأرض والعائد الإفتصـادي من وحدة المساحة. استخدم تصميم القطع المنشقة مرة واحدة في ثلاث مكررات، حيث وضعت مسافات الزر اعة في القطع الرئبسية و معاملات معدلات النسميد في القطع الثقفية. وأوضحت النتائج الاتتي: صفات النمو والمحصول للفول البلدي لم تتأثر معنويا بمسافات الزر اعة و مستويات النسميد النتروجينى للبطيخ وكذلك التفاعل في كلا

 البطيخ في كلا الموسمين، ولكن دون فروق معنويـة مـع مستوى التنسيد النتروجينىى • اكجم/ فدان، في معظم الصفات. حقق تحميل البطيخ

 يمكن تجاهلها.

