GENETIC ANALYSIS FOR SEED YIELD AND SOME RELATED CHARACTERS IN FOUR SOYBEAN CROSSES

Ismail A.I. Mohammed ${ }^{1}$; Th.M. Abou Sen ${ }^{1}$ and M.I.E. Abdul Hamid ${ }^{2}$
1. Food Legumes Res. Section, Field Crops Res. Inst., ARC, Egypt.
2. Dept. Agron., Fac. Agric., Zagazeg Univ., Egypt.

ARTICLE INFO

Article history:

Received: 25/10/2022
Revised: 30/10/2022
Accepted: 04/12/2022

Keywords:

Soybean, six population, earliness, seed yield.

Abstract

Six populations of four soybean crosses (L-86-K-96 \times Ware), (Egyptian \times Ware), (H129 \times Crawford) and (DR101× Giza 111) were conducted during three successive summer seasons 2019, 2020 and 2021 at the experimental farm of Sakha agricultural research station (SARS), Kafr El-Sheikh, Egypt for estimate the adequacy of genetic model and types of gene action for earliness, seed yield and its attributes. The scaling test provides evidence of non-allelic interaction in controlling all characters in all studies crosses. The additive, dominance and their digenic interaction types, additive x additive and dominance x dominance gene effects were significant and involved in the inheritance of days to 50% flowering in all crosses, days to 90% maturity and 100 seed weight in $1^{\text {st }}$ cross, plant height in $3^{\text {rd }}$ cross and number of pods/plant in $1^{\text {st }}$ and $4^{\text {th }}$ crosses. Duplicate type of epistasis was registered in $3^{\text {rd }}$ cross for plant height; $4^{\text {th }}$ cross for number of pods/plant; $1^{\text {st }}$ and $2^{\text {nd }}$ crosses for 100 -seed weight and $1^{\text {st }}$ cross for seed weight/plant. Heritability in narrow sense was high for plant height and seed weight /plant in $2^{\text {nd }}$ cross and number of pods/plant in $3^{\text {rd }}$ one. Positive and significant heterosis relative to mid and best parent were detected for number of pods/plant, number of seeds/plant and seed weight /plant in all crosses. Positive and significant correlation was detected between seed weight /plant and each of number of pods/ plant and number of seeds/plant. Number of seeds/plant, 100-seed weight and number of pods/plant had the highest direct effect on seed weight /plant.

in mind an ideal plant that includes a maximum number of good characteristics. Improvement of seed yield and agronomic characters are the main objectives of soybean breeders. So, an understanding of the fundamental nature of the actions and interactions of genes involved in the inheritance of quantitative characters is very helpful to soybean breeders to choose the appropriate breeding procedure.

The generations mean analysis technique has been used to obtain considerable information on the types of gene action controlling earliness and seed yield as well as its attributes. Many quantitative characteristics in soybean may be governed

[^0]by additive and dominance gene actions, information on epistatic interactions would also be valuable to improve yield attributing traits in soybean (Thakare et al., 2017; Abou Sen, 2020). Additive gene action was found predominant in the inheritance of yield and yield contributing characters viz., number of primary branches /plant, number of clusters/plant, number of pods/cluster, 100 seed weight and yield/ plant. Both additive and non-additive gene effects were significantly involved in the expression of nine quantitative traits with duplicate epistasis (Adsul et al., 2016; Ramírez et al., 2022). Whereas Nagarajan et al. (2022) found that the adequacy of the additive dominance model was predominant to explain the inheritance of plant height in the crosses Co $3 \times$ LP 5-1 and Co $3 \times$ LP 13-1 and seed yield/plant in Co $3 \times$ LP 5-2. The remaining crosses exhibited epistatic interactions with all other traits. Krisnawati and Adie (2022) revealed that heterosis according to mid-parent for F_{1} crosses ranged from -61.20 to 27.57%, heterobeltiosis ranged from -71.17 to 9.84% and the degree of dominance ranged from 6.45 to 19.40. Jain et al. (2018), Koraddi and Basavaraja (2019), Jandong et al. (2020) and Prathima et al. (2022) observed high heritability coupled with high genetic advance for plant height and number of pods. The present investigation aimed to estimate the gene action, heritability, heterosis and predicated genetic gain for seed yield and some agronomic characters of four soybean crosses.

MATERIALS AND METHODS

The present study was carried out at Sakha farm, Sakha Agricultural Research Station (SARS), Kafr El-sheikh, Egypt, during the three summer seasons of 2019, 2020 and 2021.

Seven soybean genotypes of wide divergent origin were used as parental material (L-86-K-96, Crawford, Giza 111, H129, Egyptian, Ware and D.R101) (Table 1).

In 2019 season, four crosses, I (L-86-K$96 \times$ Ware), II (Egyptian \times Ware), III (H129 \times Crawford) and IV (D.R101 \times Giza 111), were made. In 2020 season, parents and F_{1} 's of each cross were planted and F_{1} plants in each cross were self-pollinated and back-crossed to both parents to obtain the F_{2} 's and the back crosses seeds.. Crosses between the parental varieties were repeated to obtain additional hybrid seeds for further evaluation.

In 2021 season, the six populations (P 1 , $\mathrm{P} 2, \mathrm{~F} 1, \mathrm{BC} 1, \mathrm{BC} 2$ and F 2) of each cross were evaluated in randomized complete block design (RCBD) with three replications. Each replicate was consisted of two rows for P1, P2 and F_{1} generations, four rows for back crosses and eight rows for F_{2} generation. Each row was 4 m . long, and 60 cm width. Seeds were planted at 20 cm hill spacing on one side of the ridge with one seed per hill. Before flowering, 20, 40 and 80 plants were tagged for P1, P2 and F_{1} generations, back-crosses and F_{2} in each replicate, respectively. The total plants tagged for each cross was $\mathrm{P}_{1}, \mathrm{P}_{2}$, and F_{1}, 120 plants of BC_{1} and BC_{2}, and $240 \mathrm{~F}_{2}$ plants in the three replications to determine the studied characters viz., number of days to 50% flowering, number of days to 90% maturity, plant height, number of branches / plant, number of pods/plant, number of seeds/plant, 100 seed weight and seed yield/plant.

Statistical Analysis

Statistical analysis was used to calculate the means and variances for the six generations. Population means and variances were used to estimate the type of gene action for each character. A two-tail F-ratio was calculated to test the significance of the F_{2} variance from environmental variance, as follows: $\mathrm{F}=\mathrm{F}_{2}$ variance/environmental variance, if the F ratio was significant, Mather's procedure was used to calculate the components of genetic variance.

Table 1. Pedigree, maturity group, origin, flower color and growth habit of the studied soybean genotypes

Cod. No.	Parent	Pedigree	Maturity group	Origen	Flower color	Growth habit
$\mathbf{1}$	L-86-K-96	Williams 82 x L76.0279	III	**USDA, ARS,	White	Indeterminate
$\mathbf{2}$	Crawford	Williams x Columbus	IV	USA, Illinois	Purple	Indeterminate
$\mathbf{3}$	Giza 111	Crawford X Celest	IV	*FCRI (Egypt)	Purple	Indeterminate
$\mathbf{4}$	H129	D76-8070 X Giza 35	IV	FCRI (Egypt)	white	Indeterminate
$\mathbf{5}$	Egyptian	Franklin x J 74-5	IV	Virginia, ***AES	White	Indeterminate
$\mathbf{6}$	Ware	PI80-837xV63-76 (Hill	IV	Virginia, AES	Purple	determinate
$\mathbf{7}$	D.R 101	Selected from Elgin	V	USDA, ARS, Illinois Purple	determinate	

* FCRI = Field Crops Research Institute, Giza, Egypt.
**USDA = U.S. Regional soybean laboratory at Urbana, Illinois, and Stoneville, Mississippi.
*** AES = Agricultural Experiment Station.

The following four tests for scale effects were estimated according to Hayman and Mather (1955) as follow:
$\mathrm{A}=2 \overline{\mathrm{BC} 1}-\overline{\mathrm{P} 1}-\overline{\mathrm{F} 1} \quad \mathrm{VA}=4 \mathrm{~V}(\mathrm{BC} 1)$
$+\mathrm{V}(\mathrm{P} 1)+\mathrm{V}(\mathrm{F} 1)$
$\mathrm{B}=2 \overline{\mathrm{BC} 2}-\overline{\mathrm{P} 2}-\overline{\mathrm{F} 1} \quad \mathrm{VB}=4 \mathrm{~V}(\mathrm{BC} 2)$
+V (P2) +V (F 1)
$\mathrm{C}=\overline{4 \mathrm{~F} 2}-2 \overline{\mathrm{~F} 1}-\overline{\mathrm{P} 1-} \overline{\mathrm{P} 2} \quad \mathrm{VC}=16 \mathrm{~V}(\mathrm{~F} 2)$
$+4 \mathrm{~V}(\mathrm{~F} 1)+\mathrm{V}(\mathrm{P} 1)+\mathrm{V}(\mathrm{P} 2)$
$\mathrm{D}=\overline{2 \mathrm{~F} 2}-\overline{\mathrm{BC} 1}-\overline{\mathrm{BC} 2} \quad \mathrm{VD}=4 \mathrm{~V}(\mathrm{~F} 2)$
$+\mathrm{V}(\mathrm{BC} 1)+\mathrm{V}(\mathrm{BC} 2)$
The adequacy genetic model estimated the various genetic component according to Hayman (1958) as follow:
$\mathrm{m}=$ Mean of F 2
$\mathrm{d}=$ Additive effect $=\overline{\mathrm{BC} 1}-\overline{\mathrm{BC} 2}$
$\mathrm{h}=$ Dominance effect $=\overline{\mathrm{F} 1}-4 \overline{\mathrm{~F}} 2-(1 / 2) \overline{\mathrm{P} 1}$ $(1 / 2) \mathrm{P} 2+2 \mathrm{BC} 1+2 \mathrm{BC} 2$.
$\mathrm{i}=$ Additive x Additive type of gene interaction $=2 \mathrm{BC} 1+2 \mathrm{BC} 2-4 \mathrm{~F} 2$
$\mathrm{j}=$ Additive x Dominance type of gene interaction $=\mathrm{BC} 1-1 / 2 \mathrm{P} 1-\mathrm{BC} 2+1 / 2 \mathrm{P} 2$.
$\mathrm{I}=$ Dominance x Dominance type of gene interaction

$$
=\overline{\mathrm{P} 1}+\overline{\mathrm{P} 2}+\overline{2 \mathrm{~F}} 1+\overline{4 \mathrm{~F}} 2-4 \overline{\mathrm{BC}} 1-4 \overline{\mathrm{BC}} 2
$$

Heterosis and inbreeding depression were determined according to Mather and Jinks (1982). The two estimates of epistatic deviation $\left(E_{1}\right)$ and (E_{2}) were calculated as the deviation of segregating populations i.e., $\mathrm{F}_{2}, \quad \mathrm{BC}_{1}$ and BC_{2} from their nonsegregating populations (F_{1} and parents). $\mathrm{E}_{1}=\mathrm{F}_{2}-1 / 2 \mathrm{~F}_{1}-1 / 4 \mathrm{P}_{1}-1 / 4 \mathrm{P}_{2} ; \mathrm{E}_{2}=\mathrm{BC}_{1}+\mathrm{BC}_{2}$ $-F_{1}-1 / 2 P_{1}-1 / 2 P_{2}$

Where, E_{1} is the epistatic deviation of F_{2} and E_{2} is the epistatic deviation of $\mathrm{BC}_{1}+$ BC_{2} (Mather and Jinks, 1982).

The relative of potence ratio (P) was used to determine the degree of dominance and its direction according to (Mather and Jinks, 1982) as follows: Potence ratio $=\left(\mathrm{F}_{1}\right.$ - M.P) / $1 / 2\left(P_{2}-P_{1}\right)$, where P_{1} is the mean of the low parent and P_{2} is the mean of the high parent.

The six population means in each cross were used to estimate the six parameters for gene effects using the relationships. Given by Jinks and Jones (1958); namely, d, h, i,
j , and l . Where, $\mathrm{d}=$ additive effect, $\mathrm{h}=$ dominance effect, $\mathrm{i}=$ additive \times additive type of epistasis, $\mathrm{j}=$ additive \times dominance type of epistasis, and $1=$ dominance \times dominance type of epistasis. The estimates variances of additive (VD), dominance (VH), phenotypic (VP), environmental (VE), and genotypic (VG), from generations variances were calculated according to Wright (1968).

Mather (1949) derived the expected genetic variance of $\mathrm{VBC}_{1}, \mathrm{VBC}_{2}$ and VF_{2} interms of additive ($1 / 2 \mathrm{D}$) and dominance $(1 / 4 \mathrm{H})$ genetic variance as follows: $1 / 2 \mathrm{D}=$ $2 \mathrm{VF}_{2}-\left(\mathrm{VBC}_{1}+\mathrm{VBC}_{2}\right)$, while $1 / 4 \mathrm{H}=$ $V B C_{1}+V B C_{2}-V F_{2}-V E$.

The variance of each of the genetic variance components was estimated as linear function of the variance of the mean squares. The variance of a mean square was calculated as given by Anderson and Bancroft (1952). The standard error of the estimate is the square root of variance.
Heritability estimates were calculated in the F_{2} generation as follows:
$h^{2}($ broad sense $)=\frac{\frac{1}{2} D+\frac{1}{4} H}{\frac{1}{2} D+\frac{1}{4} H+E}$
$h^{2}($ narrow sense $)=\frac{\frac{1}{2} D}{\frac{1}{2} D+\frac{1}{4} H+E}$
Where $\mathrm{E}=\mathrm{VP}_{1}+\mathrm{VP}_{2}+\mathrm{VF}_{1} / 3$
Expected and predicated values of genetic advance (GS and GS \%) were calculated according to Johnson et al. (1955) as $\mathrm{GS}=\mathrm{K} \times \mathrm{h}^{2}{ }_{(\mathrm{ns})} \times \sigma \mathrm{ph}$ where, K $=$ selection differential $(\mathrm{K}=2.06$ when selection intensity 5%), and $\sigma \mathrm{Ph}=$ phenotypic standard deviation of F_{2}. Genetic advance as a percent of the F_{2} mean (GS \%) was calculated as given by Miller et al. (1958) as GS\% $=\left(\mathrm{GS} / \mathrm{F}_{2}\right) \times$ 100. Correlation coefficients calculated according to Snedecor and Cochran (1981). Path coefficient analysis was computed according to Dewey and Lu (1959).

RESULTS AND DISCUSSION

Mean Performance

Mean and standard error of the six populations ($\mathrm{P}_{1}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}, \mathrm{Bc}_{2}$ and P_{2}) of four soybean crosses for the studied characters are show in Table 2. The results revealed that, the F_{1} 's means were lower than the mean of parents for days to flowering and days to maturity in $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ crosses. These results provide evidence for the presence of heterotic effects and over-dominance gene effects and the decreasing alleles were more frequent than increasing ones in the genetic constitution of soybean genotypes. The $1^{\text {st }}$ cross (L-86-K-96 \times Ware) had F_{1} mean higher than both parents for days to 90% maturity, suggesting the presence of over-dominance gene effects and the increasing alleles of this cases was predominant than decreasing ones.

The F_{2} means were more than the F_{1} values for days to flowering and days to maturity in all crosses, indicating the accumulation of increasing alleles for these characters.

The back cross population means are in the mid-way between the F_{1} and the parental genotypes for days to flowering and maturity in $2^{\text {nd }}$ and $4^{\text {th }}$ crosses, suggesting absence of dominance and genes controlling these characters are independently segregated. But it deviated from the mid values of parents and their respective F_{1} for the other cases. These results indicate that, polygenic and non-mendlian inheritance are more pronounced. Indicating that, these traits were quantitatively inherited. Similar results were recorded by Adsul et al. (2016), Thakare et al. (2017), Abou Sen (2020) and Ramírez et al. (2022).

Mean and standard error of the six population ($\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \mathrm{Bc}_{1}$, and Bc_{2}) of four soybean crosses for yield and its

Table 2. Means \pm S.E. of the six populations for days to $\mathbf{5 0 \%}$ flowering, days to $\mathbf{9 0 \%}$ maturity, plant height, number of branches/plant and number of pods/plant of four soybean crosses during 2021 season

Crosses Populations	$\begin{gathered} \text { I (L-86-K-96 } \times \\ \text { Ware) } \end{gathered}$	$\begin{gathered} \text { II (Egyptian } \times \\ \text { Ware) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { III (H129× } \\ & \text { Crawford) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { IV (D.R101 } \times \\ \quad \text { Giza 111) } \\ \hline \end{gathered}$
Days to 50\% flowering				
P_{1}	40.58 ± 0.156	50.25 ± 0.174	41.25 ± 0.358	52.64 ± 0.247
P_{2}	38.64 ± 0.151	37.54 ± 0.155	36.38 ± 0.297	40.11 ± 0.281
F_{1}	40.84 ± 0.138	42.35 ± 0.188	37.54 ± 0.416	42.34 ± 0.390
F_{2}	43.98 ± 0.269	44.54 ± 0.261	44.85 ± 0.307	48.67 ± 0.375
BC_{1}	39.54 ± 0.323	42.88 ± 0.298	41.74 ± 0.353	46.84 ± 0.407
BC_{2}	37.54 ± 0.251	40.84 ± 0.298	38.94 ± 0.365	43.81 ± 0.437
LSD ${ }_{0.05}$	2.3	2.15	1.46	2.55
Days to 90% maturity				
P_{1}	120.25 ± 0.182	129.64 ± 0.189	126.88 ± 0.286	144.11 ± 0.325
P_{2}	124.84 ± 0.196	125.84 ± 0.218	122.97 ± 0.253	128.69 ± 0.352
F_{1}	126.46 ± 0.217	122.34 ± 0.244	121.44 ± 0.378	133.57 ± 0.396
F_{2}	133.85 ± 0.279	127.95 ± 0.255	135.98 ± 0.358	138.69 ± 0.368
BC_{1}	122.81 ± 0.323	125.64 ± 0.308	130.11 ± 0.387	140.67 ± 0.406
BC_{2}	126.06 ± 0.281	123.67 ± 0.308	128.61 ± 0.409	135.67 ± 0.444
LSD. ${ }_{0.05}$	3.15	2.95	2.37	3.48
Plant height (cm)				
P_{1}	70.85 ± 0.189	104.45 ± 0.237	122.01 ± 0.388	79.67 ± 0.325
P_{2}	45.84 ± 0.150	48.69 ± 0.200	104.33 ± 0.379	110.55 ± 0.352
F_{1}	88.11 ± 0.207	100.84 ± 0.287	116.64 ± 0.427	115.38 ± 0.396
F_{2}	74.68 ± 0.480	74.65 ± 0.482	90.41 ± 0.410	99.64 ± 0.368
BC_{1}	71.94 ± 0.530	81.45 ± 0.508	110.33 ± 0.433	86.54 ± 0.406
BC_{2}	75.94 ± 0.611	66.75 ± 0.489	105.84 ± 0.479	101.14 ± 0.444
LSD 0.05	8.10	7.5	6.34	8.53

Number of branches / plant

$\mathbf{P}_{\mathbf{1}}$	4.64 ± 0.101	5.07 ± 0.119	4.49 ± 0.102	5.02 ± 0.117				
$\mathbf{P}_{\mathbf{2}}$	3.84 ± 0.065	3.42 ± 0.089	4.012 ± 0.095	3.7 ± 0.130				
$\mathbf{F}_{\mathbf{1}}$	6.5 ± 0.117	6.012 ± 0.133	4.76 ± 0.179	4.22 ± 0.178				
$\mathbf{F}_{\mathbf{2}}$	4.21 ± 0.080	4.054 ± 0.099	3.91 ± 0.121	3.15 ± 0.142				
$\mathbf{B C}_{\mathbf{1}}$	3.99 ± 0.104	4.15 ± 0.117	4.51 ± 0.133	3.88 ± 0.164				
$\mathbf{B C}_{\mathbf{2}}$	4.45 ± 0.098	3.81 ± 0.125	4.11 ± 0.155	3.25 ± 0.164				
$\mathbf{L S D} \mathbf{0 . 0 5}$	1.5.	1.62					1.1	1.2
$\mathbf{P}_{\mathbf{1}}$	Number of pods / plant							
$\mathbf{P}_{\mathbf{2}}$	119.67 ± 0.691	111.35 ± 0.751	133.25 ± 0.752	99.74 ± 0.961				
$\mathbf{F}_{\mathbf{1}}$	95.45 ± 0.598	85.67 ± 0.658	118.64 ± 0.692	131.67 ± 0.851				
$\mathbf{F}_{\mathbf{2}}$	194.84 ± 0.96	189.81 ± 1.13	166.99 ± 0.865	215.88 ± 1.01				
$\mathbf{B C}_{\mathbf{1}}$	128.09 ± 1.903	142.85 ± 1.99	121.38 ± 1.42	129.54 ± 1.60				
$\mathbf{B C}_{\mathbf{2}}$	$145.8 \pm 2 . .41$	150.54 ± 1.33	134.65 ± 1.34	138.14 ± 1.62				
$\mathbf{L S D}$	122.03 ± 192	131.54 ± 1.25	125.34 ± 1.63	167.24 ± 1.85				
$\mathbf{L S O}$	15.3	14.78	15.4	16.2				

Table 3. Means \pm S.E. of the six populations for number of seeds/plant, 100- seed weight and seed weight / plant of four soybean crosses during 2021 season

Crosses Populations	$\begin{gathered} \text { I (L-86-K-96 } \times \\ \text { Ware) } \\ \hline \end{gathered}$	$\begin{gathered} \text { II (Egyptian } \times \\ \text { Ware) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { III (H129× } \\ \text { Crawford) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { IV (D.R101 } \times \\ \text { Giza 111) } \\ \hline \end{gathered}$
Number of seeds / plant				
P_{1}	270.98 ± 2.17	332.54 ± 1.77	255.37 ± 1.77	187.41 ± 1.90
P_{2}	180.840 ± 1.68	171.000 ± 1.91	210.84 ± 1.66	266.38 ± 1.76
F_{1}	408.640 ± 2.28	433.650 ± 2.50	374.35 ± 1.88	318.46 ± 2.01
F_{2}	283.640 ± 3.66	311.540 ± 1.63	260.84 ± 3.00	255.46 ± 3.68
BC_{1}	301.640 ± 3.54	341.540 ± 1.86	277.98 ± 3.5	210.56 ± 3.84
BC_{2}	255.810 ± 4.76	285.460 ± 2.05	230.84 ± 4.58	289.88 ± 4.1
LSD 0.05	22.4	23.78	21.47	25.14
100-seed weight (g)				
P_{1}	11.33 ± 0.036	9.212 ± 0.045	17.33 ± 0.05	21.88 ± 0.149
P_{2}	18.540 ± 0.064	18.650 ± 0.063	15.38 ± 0.086	17.24 ± 0.170
F_{1}	16.050 ± 0.148	14.850 ± 0.167	17.88 ± 0.182	20.66 ± 0.191
F_{2}	14.550 ± 0.116	14.250 ± 0.135	16.89 ± 0.135	17.14 ± 0.163
BC_{1}	15.021 ± 0.133	11.330 ± 0.158	17.06 ± 0.158	19.64 ± 0.169
BC_{2}	16.650 ± 0.120	15.850 ± 0.143	16.11 ± 0.152	17.85 ± 0.201
LSD ${ }_{0.05}$	1.74	2.5	2.1	1.65
Seed weight / plant (g)				
P_{1}	28.97 ± 0.266	28.345 ± 0.307	45.92 ± 0.368	39.45 ± 0.506
P_{2}	34.840 ± 0.278	33.650 ± 0.356	33.28 ± 0.459	45.21 ± 0.555
F_{1}	68.940 ± 0.868	65.840 ± 0.806	58.46 ± 1.01	60.38 ± 0.790
F_{2}	43.840 ± 0.996	46.450 ± 0.872	41.38 ± 1.138	44.64 ± 1.32
BC_{1}	38.670 ± 1.023	39.740 ± 0.956	46.44 ± 1.24	46.25 ± 1.37
BC_{2}	44.520 ± 1.139	51.540 ± 0.893	40.83 ± 1.33	52.67 ± 1.61
$\mathrm{LSD}_{0.05}$	6.4	3.98	2.47	5.46

attributes i.e. plant height, number of branches/ plant, number of pods/ plant, number of seeds/ plant, number of seeds/ plant, 100 seed weight and seed weight / plant are given in Tables (2 and 3). The four studied crosses varied greatly in the two parents involved in each cross and their populations of yield and its attributes. Such wide variation indicated the presence of the appreciable amount of genetic variability.

The results indicated that the F_{1} 's means were lower than P_{1} and more than P_{2} and mid-parents for plant height in the $2^{\text {nd }}$,
and $3^{\text {rd }}$, crosses. These results provide evidence for the presence of heterotic effects and partial-dominance gene effects in the genetic constitution of soybean genotypes. Meanwhile, the F_{1} 's exceeding the high-performing parent for plant height in crosses 1st and 4th, all crosses for number of branches/ plant, number of pods/ plant, number of seeds/ plant and seed yield/ plant and in the $3{ }^{\text {rd }}$ cross for 100 -seed weight. These results provide evidence for the presence of over-dominance gene effects and increasing alleles were more frequent than decreasing ones in the genetic makeup of soybean genotypes.

The F_{2} means were lower than F_{1} values for yield and its attributes in all crosses. These results suggest that decreasing alleles for these characters were more frequent than increasing ones, indicating the presence of inbreeding depression.

The backcross population means are in the mid-way between the F_{1} and the parental genotypes for number of branches/ plant in the $3^{\text {rd }}$ cross, 100 seed weight and seed weight / plant in all crosses as well as plant height in the $1^{\text {st }}$ one. Also, the midway between the F_{1} and the parental genotypes means were detected in BC_{1} for number of pods/ plant in the $2^{\text {nd }}$ cross; BC_{2} for plant height in the $1^{\text {st }}$ cross and number of seeds/plant in the $4^{\text {th }}$ one, suggesting the absence of dominance and genes controlling these characters are independently segregated. On the other hand, the backcross population means deviated from the mid values of parents and their respective F_{1} for the other cases. These results are in harmony with those obtained by Adsul et al., 2016; Thakare et al., 2017; Abou Sen, 2020 and Ramírez et al., 2022.

Scaling Test, Gene Effects and Heritability

Flowering and to maturity dates

The scaling tests $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D were employed to test the presence of epistasis. The results given in Table 4 indicate significant non-allelic interactions for number of days to flowering and maturity in all crosses. These results indicated the presence of epistasis and the digenic model was adequate to explain the genetics of the aforementioned characters in the corresponding crosses. In this connection, the complex genetic model has controlled the inheritance of flowering and to maturity dates, Adsul et al. (2016) and Ramírez et al. (2022).

The additive (d), dominance (h) and their digenic interaction types, additive x additive (i) and dominance x dominance (l) gene effects were significant in almost cases and involved in the inheritance of days to 50% flowering in all crosses and days to 90% maturity in $1^{\text {st }}$ cross. Hereby, recurrent selection system could be used for improving these characters in those crosses. In this respect, Adsul et al. (2016) and Ramírez et al. (2022) found that additive and dominance gene action were of primary importance in controlling flowering and to maturity dates characters.

The digenic interaction types additive \times additive (i) and additive \times dominance (j) in the $2^{\text {nd }}$ and $4^{\text {th }}$ crosses for days to 50% flowering and in the $1^{\text {st }}$ cross for days to 90% maturity were involved in the inheritance of theses traits. Additive \times dominance (j) and dominance \times dominance (l) were involved in the inheritance of days to 90% maturity only in the $4^{\text {th }}$ cross. These cross-combinations could be considered the most promising materials for recurrent selection programs for earliness. Similar results were recorded by Thakare et al. (2017) and Abou Sen (2020).

It is interesting to mention that, the additive (d) and dominance (h) gene actions were negative and significant for days to 90% maturity in the $1^{\text {st }}$ cross, indicating that decreasing alleles were more frequent than increasing ones in favor of decreasing days to 90% maturity.

It is noticeable that the dominance (h) and its digenic interaction type dominance \times dominance (l) were significant and had different signs in all crosses for days to 50% flowering and in the $1^{\text {st }}$ and $2^{\text {nd }}$ crosses for days to 90% maturity, suggesting that interaction was predominantly of duplicate type.

Table 4. Scaling tests and gene action for days to $\mathbf{5 0 \%}$ flowering and days to $\mathbf{9 0 \%}$ maturity using six populations of four soybean crosses during 2021 season

Crosses Estimates	$\begin{gathered} \text { I (L-86-K-96 } \times \\ \text { Ware) } \end{gathered}$	$\text { II (Egyptian } \times$	$\begin{gathered} \hline \text { III (H129×× } \\ \text { Crawford) } \end{gathered}$	$\begin{gathered} \text { IV (D.R101× } \\ \text { Giza 111) } \end{gathered}$
Days to $\mathbf{5 0 \%}$ flowering				
A	-2.34**	-6.84**	4.69**	-1.3
B	-4.4**	1.79**	3.96**	5.17**
C	15.02**	5.67**	26.69**	17.25**
D	10.88**	5.36**	9.02**	6.69**
Adequacy genetic model				
m	43.98**	44.54**	44.85**	48.67**
d	2.00**	2.04**	2.8**	3.03**
h	-20.53**	$-12.27 * *$	-19.32**	-17.42**
i	-21.76**	-10.72**	-18.04**	-13.38**
j	1.03*	-4.315**	0.365	-3.235**
1	28.5**	15.77**	9.39**	9.51**
Days to 90\% maturity				
A	-1.09	-0.7	11.9**	3.66**
B	0.82	-0.84	12.81**	9.08**
C	37.39**	11.64**	51.19**	14.82**
D	18.83**	6.59**	13.24**	1.04
Adequacy genetic model				
m	133.85**	127.95**	135.98**	138.69**
d	-3.25**	1.97**	1.5**	5.0**
h	-33.75**	-18.58**	-29.96**	-4.91*
i	-37.66**	-13.18**	-26.48**	-2.08
j	-0.955*	0.07	-0.455	-2.71**
1	37.93**	14.72**	1.77	-10.66**

*, ** significant at 0.05 and 0.01 probability levels, respectively.

Seed yield and its attributes

The results in Tables 5 and 6 indicate significant non-allelic interactions for yield and its attributes in all crosses. These results indicated the presence of epistasis and the digenic model was adequate to explain the genetics of the aforementioned characters in the corresponding crosses. In this connection, the digenic model was found to be adequate to explain the genetics of plant height, number of branches/plant, number of pods/plant, number of seeds/ plant, 100 seed weight, and seed weight /
plant (Adsul et al., 2016; Ramírez et al., 2022).

The additive (d), dominance (h), additive \times additive (i), additive \times dominance (j) and dominance \times dominance (l) gene actions were significant for plant height in the $3^{\text {rd }}$ cross, number of pods/plant in the $1^{\text {st }}$ and $4^{\text {th }}$ crosses and 100 seed weight in the $1^{\text {st }}$ cross. Therefore, a recurrent selection procedures could be used for improving such characters.

It is interesting to mention that, the additive (d) and dominance (h) gene actions

Table 5. Scaling tests and gene action for plant height, number of branches/plant and number of pods/plant using six populations of four soybean crosses during 2021 season

Crosses Estimates	$\begin{gathered} \text { I (L-86-K-96 } \times \\ \text { Ware) } \\ \hline \end{gathered}$	$\text { II (Egyptian } \times$	$\begin{gathered} \text { III (H129× } \\ \text { Crawford) } \end{gathered}$	$\begin{gathered} \hline \text { IV (D.R101× } \\ \text { Giza 111) } \\ \hline \end{gathered}$
Plant height (cm)				
A	$-15.08 * *$	-42.39**	-17.99**	-21.97**
B	17.93**	-16.03**	-9.29**	-23.65**
C	5.81**	-56.22**	-97.98**	-22.42**
D	1.48	1.1	-35.35**	11.6**
Adequacy genetic model				
M	74.68**	74.65**	90.41**	99.64**
d	-4.00**	14.7**	4.49**	-14.6**
h	26.805**	22.07**	74.17**	-2.93
i	-2.96	-2.2	70.7**	-23.2**
j	-16.51**	-13.18**	-4.35**	0.84
1	0.11	60.62**	-43.42**	68.82**
Number of branches / plant				
A	-3.16**	-2.782**	-0.23	-1.48
B	-1.44**	-1.812**	-0.552	-1.42
C	-4.64**	-4.298**	-2.382**	-4.56**
D	-0.02	0.148	-0.8*	-0.83
Adequacy genetic model				
M	4.21**	4.054**	3.91**	3.15**
d	-0.46**	0.34*	0.4*	0.63**
h	2.3**	1.471**	2.11**	1.52*
i	0.04	-0.296	1.6*	1.66*
j	-0.86**	-0.485**	0.161	-0.03
1	4.56**	4.89**	-0.818	1.24
Number of pods / plant				
A	1.31	25.6**	-16.33**	-71.27**
B	-70.46**	-38.08**	-49.56**	18.86**
C	-92.44**	-5.24	-100.4**	-145**
D	-11.65*	3.62	-17.23**	-46.3*
Adequacy genetic model				
M	128.09**	142.85**	121.38**	129.54**
d	23.775**	19.0**	9.31**	-29.1**
h	110.57**	84.06**	75.505**	192.78**
i	23.29*	-7.24	34.46**	92.6**
j	11.665**	6.16**	2.005	-13.14**
1	45.86**	19.72*	31.43**	-40.19**

[^1]Table 6. Scaling tests and gene action for number of seeds/plant, 100- seed weight and seed weight per plant using six populations of four soybean crosses during 2021 season

Crosses Estimates	$\begin{gathered} \text { I (L-86-K-96× } \\ \text { Ware) } \\ \hline \end{gathered}$	$\begin{gathered} \text { II (Egyptian } \times \\ \text { Ware) } \\ \hline \end{gathered}$	$\begin{gathered} \text { III (H129× } \\ \text { Crawford) } \end{gathered}$	$\begin{gathered} \hline \text { IV (D.R101× } \\ \text { Giza 111) } \\ \hline \end{gathered}$
Number of seeds / plant				
A	13.8	78.43**	-29.23**	-163.7**
B	-168**	-195.3**	-168**	73.89**
C	-134.5**	-124.7**	-171.6**	-68.87**
D	9.83	-3.92	12.86	10.48
Adequacy genetic model				
M	283.64**	311.54**	260.84**	255.46**
d	45.83**	56.08**	47.14**	-79.32**
h	163.07**	189.72**	115.53**	70.605**
i	-19.66	7.84	-25.72	-20.96
j	0.76	-24.69**	24.875**	-39.84**
1	173.86**	109**	222.99**	110.79**
100-seed weight (g)				
A	-4.548**	-10.84**	0.86*	1.38**
B	5.92**	7.638**	-2.99**	-6.84**
C	-3.77**	-0.562	-0.91	-11.88**
D	-2.571**	1.32**	0.61	-3.21 **
Adequacy genetic model				
M	14.55**	14.25**	16.89**	17.14**
d	-1.629**	-4.52**	0.95**	1.79**
h	6.257**	-1.721*	0.305	7.52**
i	5.142**	-2.64**	-1.22	6.42**
j	1.976**	0.199	-0.025	-0.53
1	-6.514**	5.842**	3.35**	-0.96
Seed weight per plant (g)				
A	-26.44**	-20.01**	1.14	-13.09**
B	-8.87**	8.895**	-22.72**	5.51
C	-26.33**	-7.875*	-30.6**	-26.86**
D	4.49	1.62	-4.51	-9.64**
Adequacy genetic model				
M	43.84**	46.45**	41.38**	44.64**
d	-5.85**	-11.8**	5.61**	-6.42**
h	28.055**	31.603**	27.88**	37.33**
i	-8.98	-3.24	9.02	19.28**
j	-2.915	-9.148**	-0.71	-3.54
1	44.29**	14.355**	12.56	-11.7

[^2]were negative and significant for plant height in the $4^{\text {th }}$ cross, indicating that decreasing alleles were more frequent than increasing ones for plant height, on the other hand, it was positive and significant for a number of branches/ plant in the $2^{\text {nd, }}$ $3^{\text {rd }}$ and $4^{\text {th }}$ crosses, number of pods/ plant in the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ crosses, number of seeds/ plant in all crosses, 100 - seed weight in the $4^{\text {th }}$ cross and seed weight $/$ plant in the $3^{\text {rd }}$ one, suggesting that increasing alleles were more frequent than decreasing ones for these traits.

It is noticeable that the dominance (h) and its digenic interaction dominance \times dominance (l) were significant and have different signs in the $3^{\text {rd }}$ cross for plant height; the $4^{\text {th }}$ cross for number of pods plant; the $1^{\text {st }}$ and $2^{\text {nd }}$ crosses for 100 -seed weight and the $1^{\text {st }}$ cross for seed weight /plant. These results indicate that interaction is predominantly of duplicate type. Whereas the sign of dominance (h) and dominance \times dominance (l) was similar in the $2^{\text {nd }}$ cross for plant height, the $1^{\text {st }}$ and $2^{\text {nd }}$ crosses for number of branches/plant, the $1^{\text {st }}, 2^{\text {nd, }}$ and $3^{\text {rd }}$ crosses for number of pods/ plant, all crosses for number of seeds/plant and the $1^{\text {st }}$ and $2^{\text {nd }}$ crosses for seed weight/plant, revealing that interaction is predominantly of complementary type.

Heterosis, inbreeding depression, \mathbf{F}_{2} deviation and potence ratio

Results presented in Table 7 show that heterosis relative to mid and best parent for all traits were highly significant. Furthermore, useful heterosis relative to mid-parent was detected by the $2^{\text {nd }}, 3^{\text {rd, }}$ and $4^{\text {th }}$ crosses for days to 50% flowering and days to 90% maturity as well as relative to best parent by the $2^{\text {nd }}$ and $3^{\text {rd }}$ crosses for days to 90% maturity and plant height, these results suggest that these crosses could be promising for earliness and plant height shortness through recurrent selection method.

Meanwhile, positive and significant heterosis relative to mid and best parent were detected for number of pods/ plant, number of seeds/ plant and seed weight / plant in all crosses and in the $1^{\text {st }}, 2^{\text {nd, }}$ and $3^{\text {rd }}$ crosses for number of branches/plant. Moreover positive and significant heterosis relative to the mid parent was detected in all crosses and relative to the best parent in the $3^{\text {rd }}$ and $4^{\text {th }}$ crosses for 100 - seed weight, these results suggest that, these crosses could be promising for seed yield and its components through selection in the advanced generation.

The inbreeding depression was negative and highly significant for days to 50% flowering in all crosses and for days to 90% maturity in the $1^{\text {st }}$ and $3^{\text {rd }}$ crosses. Meanwhile, positive highly significant inbreeding depression was detected in all crosses for all yields and its attributes. Significant effects for both heterosis and inbreeding depression seem logical since the expression of heterosis in F_{1}, s was followed by a considerable reduction in the F_{2} performance. Also, a reduction in values of non-additive genetic components is expected caused through inbreeding depression. In addition, the conflicting estimates of heterosis and inbreeding depression were associated in most traits.

Potance ratio was less than unity but not equal to zero for days to 50% flowering in the $2^{\text {nd }}, 3^{\text {rd, }}$ and $4^{\text {th }}$ cross; days to 90% maturity and number of branches/ plant in the $4^{\text {th }}$ cross; plant height in the $2^{\text {nd }}$ and $3^{\text {rd }}$ crosses and 100 seed weight in $1^{\text {st }}, 2^{\text {nd, }}$ and $4^{\text {th }}$ crosses, indicating partial dominance. Similar results were also reported by Adsul et al. (2016) as well as Krisnawati and Adie (2022). Meanwhile, days to 50% flowering in the $1^{\text {st }}$ cross; days to 90% maturity and number of branches/ plant in the $1^{\text {st }}, 2^{\text {nd, }}$ and $3^{\text {rd }}$ crosses; plant height in the $1^{\text {st }}$ and $4^{\text {th }}$ crosses; 100 seed weight in the $2^{\text {nd }}$ cross and number of pods/plant, number of seeds/plant and seed weight/plant

Table 7. F_{2} deviation (E1), back cross deviation (E2), heterosis, inbreeding depression percentage and potence ratio for the studied characters in four crosses of soybean

Character	Cross	(E1)	(E2)	Heterosis		Inbreeding depression (\%)	Potence ratio (\mathbf{P})
				M.P.	B.P.		
$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { flowering } \end{gathered}$	I	3.76**	-3.37**	3.11**	5.69**	$-7.67^{* *}$	1.27
	II	1.42**	-2.53**	-3.52**	12.81**	-5.17**	-0.24
	III	6.67**	4.33**	-3.28**	3.19**	-19.47**	-0.52
	IV	4.31**	1.94**	-8.70**	5.56**	-14.95**	-0.64
Days to 90\% maturity	I	9.35**	-0.13	3.19**	1.30**	-5.84**	-1.71
	II	2.91**	-0.77	-4.23**	-2.78**	-4.59	-2.84
	III	12.80**	12.36**	-2.79**	-1.24**	-11.97**	-1.78
	IV	3.71**	6.37**	-2.07**	3.79**	-3.83	-0.37
Plant height (cm)	I	1.45*	1.43	51.02**	24.36**	15.24**	2.38
	II	-14.01**	-29.21**	31.70**	-3.46**	25.97**	0.87
	III	-24.50**	-13.64**	3.07	-4.40**	22.49**	0.39
	IV	-5.61**	-22.81**	21.31**	44.82**	13.64**	-1.31
Number of branches / plant	I	-1.16**	-2.30**	53.30**	40.09**	35.23**	5.65
	II	-1.10**	-2.30**	41.63**	18.58**	32.57**	2.14
	III	-0.60**	-0.39	11.97**	6.01**	17.86**	2.13
	IV	-1.14**	-1.45**	-3.21	-15.94**	25.36**	-0.21
Number of pods / plant	I	-23.11**	-34.58**	81.15**	62.81**	34.26**	-7.21
	II	-1.31	-6.24**	92.68**	70.46**	24.74**	-7.11
	III	-25.09**	-31.95**	32.59**	25.32**	27.31**	-5.62
	IV	-36.25**	-26.21**	86.58**	116.44**	39.99**	6.27
Number of seeds / plant	I	-33.64**	-77.10**	80.89**	50.80**	30.60**	-4.05
	II	-31.17**	-58.42**	72.24**	30.41**	28.16**	-2.25
	III	-42.89**	-98.64**	60.59**	46.59**	30.32**	-6.34
	IV	-17.22**	-44.92**	40.36**	69.93**	19.78**	2.32
$\begin{aligned} & 100-\text { seed } \\ & \text { weight }(\mathrm{g}) \end{aligned}$	I	-0.94**	0.69**	7.47 **	-13.43**	9.35**	0.31
	II	-0.14	-1.60**	6.60**	-20.4**	4.04**	0.19
	III	-0.23	$-1.07 * *$	9.32**	16.25**	5.54**	-1.56
	IV	-2.97**	-2.73**	5.62**	19.84**	17.04**	-0.47
Seed weight /plant (g)	I	-6.58**	-17.66**	116.08**	97.88**	36.41**	12.62
	II	-1.97*	-5.56**	112.40**	95.66**	29.45**	13.14
	III	-7.65**	-10.79**	47.63**	75.66**	29.22**	-2.98
	IV	-6.72**	-3.79	42.64**	33.55**	26.07**	6.27

[^3]in all crosses were more than unity, showed over dominance. These results are in agreement with those reported by Adsul et al. (2016) as well as Krisnawati and Adie (2022).
F_{2} deviation (E1) and back cross deviation (E2) for all traits studied were either positive or negative significant or highly significant, however (E2) for days to 90% maturity in the $1^{\text {st }}$ and $2^{\text {nd }}$ crosses, plant height in the $1^{\text {st }}$ cross, number of branches/ plant in the $3^{\text {rd }}$ cross and seed weight / plant in the $4^{\text {th }}$ cross as well as (E1) for number of pods/plant in the $2^{\text {nd }}$ cross and 100 seed weight in the $2^{\text {nd }}$ and $3^{\text {rd }}$ crosses were nonsignificant.

Heritability and genetic advance

Heritability values are important to the breeder since it quantifies the expected improvement upon selection to achieve genetic improvement through selection, heritability must be reasonably high. In the present investigation, the results in Table 8 show high values of heritability in broad sense.

The highest broad sense heritability values were recorded in the $1^{\text {st }}$ cross for plant height (96.33%) and number of pods/ plant (95.96%), the $4^{\text {th }}$ one for number of seeds/pod (93.41%), and seed weight / plant (94.28%). Furthermore, the highest narrow sense heritability values were observed for plant height (92.96%) in the $2^{\text {nd }}$ cross, number of pods/ plant (89.88%) in the $3^{\text {rd }}$ cross and seed weight / plant (87.59%) in the $2^{\text {nd }}$ one. Meanwhile, the lowest broad sense heritability estimates were detected for number of seeds/ pod (59.09\%) in the $2^{\text {nd }}$ cross, number of branches/ plant in the $1^{\text {st }}$ cross and days to 50% flowering (65.70\%) in the $3^{\text {rd }}$ cross. Moreover, the lowest narrow sense heritability estimates were recorded for number of seeds/pod (16.11%) in the $3^{\text {rd }}$ cross, number of branches/plant in the $1^{\text {st }}$ cross (39.75%) and the $2^{\text {nd }}$ one (48.93%) and plant height (58.17%) in the $1^{\text {st }}$ cross. The values of heritability in narrow sense which indicate
to the proportion of phenotypic variance that results from additive genetic variance, were high in magnitude but were lower than their corresponding broad sense values. Genetic advance estimates from selection 5% superior plants of the F_{2} generation showed the highest values for number of seeds/ plant in the $1^{\text {st }}$ cross (80.35) and in the $4^{\text {th }}$ cross (98.31), number of pods/ plant in the $3^{\text {rd }}$ cross (40.84) and the $4^{\text {th }}$ one (41.79) and seed weight / plant in $3^{\text {rd }}$ cross (26.47) and $4^{\text {th }}$ one (30.05). While, low estimates were observed for number of branches/plant in all crosses (1.01, 1.54, 2.30 and 3.02 , respectively) and 100 seed weight in all crosses (3.03, 3.24, 2.90 and 3.63, respectively). Genetic advance values as a percentage of F_{2} mean ($\mathrm{G} . \mathrm{S} / \mathrm{F}_{2} \%$) were high for the number of branches/ plant in the $2^{\text {nd }}$ cross (37.95), $3^{\text {rd }}$ cross (58.80) and $4^{\text {th }}$ one (96.01); number of pods/ plant in $1^{\text {st }}$ cross (32.58), $3^{\text {rd }}$ cross (33.64) and $4^{\text {th }}$ one (32.26); number of seeds/ plant in the $4^{\text {th }}$ cross (38.48) and seed weight / plant in all crosses.

The genetic advance under selection depends on the amount of genetic variability, the magnitude of the masking effect of the environment and the intensity of selection that is practiced. In terms of the progress expected, the confounding of nonadditive with the additive genetic variance will have an effect in future generations, due to the non-additive variance included in the estimates. Therefore, the expected genetic advance for characters in this study was derived by using heritability in the narrow sense. These results are in harmony with the findings by, Jain et al. (2018), Koraddi and Basavaraja (2019), and Prathima et al. (2022).

Correlation and path coefficient

Correlation results indicated that number of branches/plant, number of pods/ plant and number of seeds/ plant had significant positive correlation with seed weight / plant, whereas, days to 50% flowering had negative correlation with this parameter

Table 8. Heritability in broad and narrow senses and genetic advance for studied characters in four crosses of soybean

Character	Cross	Heritability		Genetic advance	
		Broad sense	Narrow sense	Δ G	$\Delta \mathrm{G}$ (\%)
Days to 50\% flowering	I	92.39	84.06	7.21	16.40
	II	89.07	81.38	6.79	15.24
	III	65.70	63.60	6.24	13.91
	IV	69.84	67.37	5.13	10.54
$\begin{gathered} \text { Days to } 90 \% \\ \text { maturity } \end{gathered}$	I	87.31	82.11	7.31	5.46
	II	81.76	80.50	6.56	5.13
	III	81.28	76.88	8.80	6.47
	IV	82.66	73.19	8.75	6.31
Plant height (cm)	I	96.33	58.17	8.91	11.94
	II	93.57	92.96	14.29	19.14
	III	76.38	75.82	9.92	10.97
	IV	76.22	66.65	7.83	7.86
Number of branches / plant	I	63.06	39.75	1.01	23.97
	II	65.81	48.93	1.54	37.95
	III	71.00	59.32	2.30	58.80
	IV	74.59	66.74	3.02	96.01
Number of pods / plant	I	95.96	68.70	41.73	32.58
	II	86.79	83.99	32.14	22.50
	III	92.62	89.88	40.84	33.64
	IV	91.32	81.75	41.79	32.26
Number of seeds / plant	I	92.09	68.78	80.35	28.33
	II	59.09	55.90	29.09	9.34
	III	91.29	16.11	15.44	5.92
	IV	93.41	83.69	98.31	38.48
100-seed weight (g)	I	83.15	81.57	3.03	20.82
	II	84.34	75.40	3.24	22.73
	III	80.35	67.28	2.90	17.14
	IV	72.48	69.86	3.63	21.19
Seed weight/plant (g)	I	92.43	82.04	26.09	59.50
	II	90.48	87.59	24.39	52.50
	III	91.17	72.87	26.47	63.96
	IV	94.28	71.54	30.05	67.31

I (L-86-K-96 \times Ware), II (Egyptian \times Ware), III (H129 \times Crawford), and IV (D.R101 \times Giza 111)
(Table 9). Positive and significant correlation was recorded between days to50\% flowering had negative correlation with this parameter (Table 9). Positive and significant correlation was recorded between days to 50% flowering with days to 90% maturity ($0.771^{* *}$); plant height with number of pods/plant (0.484*); days to 90% maturity with 100 -seed weight (0.494*); number of branches/ plant with number of pods/ plant (0.401*), and number of seeds/ plant with number of branches/plant $\left(0.628^{* *}\right)$ and number of pods/plant $\left(0.783^{* *}\right)$. 100- seed weight exhibited negative and significant correlation with number of seeds/ plant ($-0.424 *$). Number of branches (0.92) showed the uttermost correlation with seed yield (Ghanbari et al. 2018). Santosh et al. (2020) showed that number of branches/ plant and number of seeds/pod exhibited significantly positive correlation with seed weight/ plant. On the other side, Kuswantoro et al. (2018) reported that, the correlation of all seed yield components with yield was not significant, while plant height tended to have a higher number of branches.

Direct and indirect effects for some agronomic traits on seed yield/plant relative to correlation coefficients are showing in Table 10. The direct effect on seed weight /
plant for most studied traits was positive except days to 50% flowering (-0.300) and plant height (-0.072). The results displayed that number of seeds/ plant had the largest direct effect on seed weight / plant (0.906) followed by 100 - seed weight (0.565), then days to 90% maturity (0.303), number of pods/plant (0.134), and number of branches /plant (0.040). Number of seeds/plant showed the highest positive indirect effects on seed weight /plant via number of pods/ plant (0.709), Number of branches/ plant (0.569), and Plant height (0.329). 100- seed weight had positive indirect effect on seed yield/ plant via and days to 90% maturity (0.279). On the other hand, days to 50% flowering, plant height and number of seeds/ plant showed negative indirect effect on seed weight / plant via 100 - seed weight. Also, Ferrari et al. (2018) reported that, the number of branches and number of pods/plant had the greatest direct and indirect effects on seed yield.

Generally, the previous results revealed that number of seeds/plant, 100 -seed weight, number of pods/ plant, number of branches/ plant, and days to 90% maturity were considered the major seed yield components and attributes that the soybean breeder should take into account for developing high yielding soybean genotypes.

Table 9. Simple correlation coefficients for various metric traits in soybean genotypes

Trait	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { flowering } \end{gathered}$	$\begin{gathered} \text { Days to } \\ 90 \% \\ \text { g maturity } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Plant } \\ & \text { height } \end{aligned}$	Number 0 branches plant	Number of pods $/$ plant	Number of seeds/ plant	$\begin{gathered} \text { 100-- } \\ \left.\begin{array}{c} \text { seed } \\ \text { weight } \end{array}\right] \end{gathered}$	
Days to 50\% flowering	1							
Days to $\mathbf{9 0 \%}$ maturity	0.771**	1						
Plant height	$0.099^{\text {ns }}$	$0.136^{\text {ns }}$	1					
Number of branches/ plant	$0.069^{\text {ns }}$	$-0.238{ }^{\text {ns }}$	$0.185{ }^{\text {n }}$					
Number of pods/ plant	$-0.065{ }^{\text {ns }}$	$-0.083{ }^{\text {ns }}$	0.484*	0.401*	1			
Number of seeds/ plant	$0.002{ }^{\text {ns }}$	$-0.341{ }^{\text {ns }}$	$0.363{ }^{\text {n }}$	ns.628**	0.783**			
100- seed weight	$0.009{ }^{\text {ns }}$	0.494*	$0.052^{\text {n }}$	${ }^{\text {ns }}-0.211^{\text {ns }}$	$0.054{ }^{\text {ns }}$	$-0.424{ }^{\text {ns }}$		
Seed weight / plant	$-0.072{ }^{\text {ns }}$	$0.012{ }^{\text {ns }}$	$0.37{ }^{\text {ns }}$	0.437*	0.849**	0.666**	$0.323{ }^{\text {ns }} 1$	

[^4]Table 10. Direct (Diagonal) and indirect effect for studied traits on seed weight/plant

| Trait | Days to
 $\mathbf{5 0 \%}$
 flowering | Days to
 $\mathbf{9 0 \%}$
 maturity | Plant
 height | Number of Number
 branches/
 plant | Number
 of pods/
 plant | 100-
 of seeds/
 plant | weed
 weight |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Days to $\mathbf{5 0 \%}$ flowering | $\mathbf{- 0 . 3 0 0}$ | 0.234 | -0.007 | 0.003 | -0.009 | 0.002 | 0.005 |
| Days to $\mathbf{9 0 \%}$ maturity | -0.231 | $\mathbf{0 . 3 0 3}$ | -0.010 | -0.009 | -0.011 | -0.309 | 0.279 |
| Plant height | -0.030 | 0.041 | $\mathbf{- 0 . 0 7 2}$ | 0.007 | 0.065 | 0.329 | 0.029 |
| Number of branches/ plant | -0.021 | -0.072 | -0.013 | $\mathbf{0 . 0 4 0}$ | 0.054 | 0.569 | -0.119 |
| Number of pods/ plant | 0.020 | -0.025 | -0.035 | 0.016 | $\mathbf{0 . 1 3 4}$ | 0.709 | 0.031 |
| Number of seeds/ plant | -0.001 | -0.103 | -0.026 | 0.025 | 0.105 | $\mathbf{0 . 9 0 6}$ | -0.240 |
| 100- seed weight | -0.003 | 0.150 | -0.004 | -0.008 | 0.007 | -0.384 | $\mathbf{0 . 5 6 5}$ |

REFERENCES

Abou Sen, T.M. (2020). Generation Mean analysis for seed yield and its components of some quantitative characters on soybean crosses. J. Plant Prod., Mansoura Univ., 11 (7): 587-593.

Adsul, A.T.; Chimote, V.P.; Deshmukh, M.P. and Thakare, D.S. (2016). Genetic analysis of yield and its components in soybean Glycine max (L.) Merrill] SABRAO J. Breed. and Genet., 48 (3) 247-257.

Anderson, R.L. and Bancroft, T.A. (1952). Statistical Theory in Research. McGrawHill, New York, 358-366.
Brim, C.A. and Burton, J.W. (1979). Recurrent selection in soybeans. ii. selection for increased percent protein in seeds. Paper No. 5828 of the Journal Series of North Carolina Agric. Exp. Stn., Raleigh, NC 27650.

Dewey, D.R. and Lu, K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron. J., 51: 515-518.

Ferrari, M.; Carvalho, I.R.; de Pelegrin, A.J.; Nardino, M.; Szareski, V.J.; Olivoto, T.; Follmann, D.N.; Pegoraro, C.; da Maia, L.C.; de Souza, V.Q. and da Rosa, T.C. (2018). Path analysis and
phenotypic correlation among yield components of soybean using environmental stratification methods. Aust. J. Crop Sci., 12 (2): 193-202.

Ghanbari, S.; Nooshkam, A.; Fakheri, B.A. and Mahdinezhad, N. (2018). Assessment of yield and yield component of soybean genotypes (Glycine Max L.) in North of Khuzestan. J. Crop Sci. Biotechnol., 21: 435-441 .

Hayman, B. I. (1958). The separation of epistasis from additive and dominance variation in generation means. Heredity 12: 371-390.

Hayman, B. I and K. Mather (1955). The description of genetic interaction in continuous variation. Biometrics, 11: 6982.

Jain, R.K.; Joshi, A.; Chaudhary, H.; Dashora, A. and Khatik, C.L. (2018). Study on genetic variability, heritability and genetic advance in soybean Glycine \max (L.) Merrill. Legume Res., 41 (4): 532-536.

Jandong, E.A.; Uguru, M.I. and Okechukwu, E.C. (2020). Estimates of genetic variability, heritability and genetic advance for agronomic and yield traits in soybean (Glycine max L.). Afr. J. Biotechnol., 19 (4): 201-206.

Jinks, J.L. and Jones, R.M. (1958). Estimation of the components of heterosis. Genet., 43: 223-234.

Johnson, H.W.; Robinson, H.F. and Comstock, R.E. (1955). Estimation of genetic and environmental variability in soybeans. Agron. J., 47: 314-318.

Koraddi, S. and Basavaraja, G.T. (2019). Genetic variability studies on yield and yield component traits of soybean. Int. J. Current Microbiol. and Appl. Sci., 8 (2): 1269-1274.

Krisnawati, A. and Adie, M.M. (2022). Expression of heterosis, heterobeltiosis, and gene action in quantitative characters of soybean (Glycine max). Biodiversitas, 23, (4): 1745-1751.

Kuswantoro, H.; Artari, R.; Rahajeng, W.; Ginting, E. and Supeno, A. (2018). Genetic variability, heritability, and correlation of some agronomical characters of soybean varieties. Biosaintifika: J. Biol. and Biol. Ed., 10 (1): 9-15.

Mather, K. (1949). Biometrical Genetics. Dover Publication, Inc., London.

Mather, K. and Jinks, J.L. (1982). Biometrical Genetics, $3^{\text {rd }}$ Ed. Chapman and Hall, London.

Miller, P.A.; Williames, J.C.; Robinson, H.F. and Comstock, R.E. (1958). Estimates of genotypic and environmental variances and covariance in upland cotton and their implications in selection. Agron. J., 50: 126-131.

Nagarajan, D. T. Kalaimagal and E. Murugan (2022). Inheritance studies through generation mean analysis for quantitative traits in soybean (Glycine max (L.) Merrill.). J. Appl. and Nat. Sci., 14 (SI): 111-118.

Prathima, H.N.; Swarnalatha, V.; Reddy, M.R. and Vanisri, S. (2022). Genetic variability and trait association studies on yield and pod shattering attributing traits in MAGIC population of soybean (Glycine max (L.) Merrill). Biol. Forum An Int. J., 14 (2a): 107-113.

Ramírez, R.A.; Caicedo, S.; Reyes, J.C.; Flórez-Gómez, D.L. and Tibocha, Y. (2022). Genetic parameters of agronomic traits and yield components of soybean genotypes in the Colombian Altillanura. Rev. U.D.C.A Act. and Div. Cient., 25 (1): e1901.http://doi.org/10.31910/rudca. v25.n1.2022.1901

Santosh, K.; Vedna, K. and Vinod, K. (2020). Genetic variability and character association studies for seed yield and component characters in soybean (Glycine max L. Merrill) under Northwestern Himalayas. Legume Res. - An Int. J., 43 (4): 507-511.

Snedecor, G.W. and Cochran, W.G. (1981). Statistical Methods. Iowa State University, Ames, Iowa, USA, $7^{\text {th }}$ Ed.

Talwar, M.L.; Rao, S.K. and Sharma, S.M. (1986). Inheritance of quantitative traits in soybean. J. Oilseeds Res., 3 (1): 8-13.

Thakare, D.S.; Chimote, V.P.; Deshmukh, M.P.; Bhailume, M.S. and Adsul, A.T. (2017). Inheritance of yield and yield components in soybean [Glycine max (L.) Merrill.]. Electronic J. Pl. Breed., 8 (1): 176-181.

Wright, S. (1968). The Genetics of Quantitative Variability. In: Wright S, editor. Evolution and genetics of populations. Univ. Chicago Press, Chicago.

الملخص العربي
 التحليل الوراثى لمحصول البذور وبعض الصفات المرتبطه بـه لاربعة هجن من فول الصويا

إسماعيل أبوبكر الصديق اسماعيل محمد ، ثروت محب أبوسن¹، محمد إبراهيم السيد عبد الحميد² 1ـ قسم بحوث المحاصيل البقولية، معهد بحوث المحاصبل الحقلية، مركز البحوث الزر اعية، مصر.

2- قسم المحاصيل، كلية الزر اعة، جامعة الزقازيق، مصر
أجريت هذه الدراسة خلال المواسم الزراعيـة الصيفية للأعوام 2019، 2020 و 2021، تحت ظروف محطـة البحوث الزر اعية بسخا، كفر الثيخ، مصر . وذلك لتحديد الموديل الـور اثي الملائم وطرز الفعل الجيني المتحكم في ور اثـة صفات I (L-86-K-96x Ware) التبكير وكذلك محصول البذور ومساهماته في العشائر الستة لأربعة هجن من فول الصويا هي وقد أظهرت نتـائج اختبـار (Egyptian x Ware), III (H129 x Crawford) IV (D.R101x Giza 111) المقياس (A, B, C and D) أن الموديل الور اثي المعقد هو الملائم لتفسير ور اثـة جميع الصفات في جميع الهجن تحت اللدر اسة. كان الفعل الجيني المضيف والسيادي والتفاعل (مضبف × مضبف)، (مضيف × سبادي) و(سبادي × سبادي) معنويا لصفات عدد الأيام حتى 50\% نز هير في جميع الهجن، عدد الأيام حتى النضج ووزن 100 بذرة في الهجين الأول، ارتفـاع النبـات في الهجين الثالث، عدد القرون/النبـات في الهجينين الأول والرابع. كـان التفاعل غير الأليلـى مـن النـوع المتضاعف هو السائد في وراثة صفات ارتفاع النبات في الهجين الثلالث، عدد القرون/النبات في الهجين الرابع، وزن 100 بذرة في الهجينين الأول و الثاني. سجلت الصفات ارتفاع النبات ووزن البذور /النبات في الهجين الثاني و عدد القرون/النبـات في الهجين الثالث أعلى القيم لكفاءة النوريث في المعنـى الضبق. كانت قوة الهجين بالنسبة لمتوسط الآبـاء والأب الأفضـل موجبة ومعنوية لصفات عدد القرون/النبات و عدد البذور /النبات ووزن البذور /النبات في جميع الهجن و عدد الأفر ع /النبات في الهجن الأول و الثاني والثالث. كان الارتباط موجب ومعنوى بين وزن البذور /النبات وبين كل مـن عدد القرون/النبـات و عـد البذور /النبات. كــن لعـد البذور /النبات، وزن 100بـذرة وعدد القرون/النبـات أعلـى تـأثنثر مباشـر علـى كميـة وزن البذور /النبات.

الكلمات الاسنرشادية: فول الصويا، العشائر الستة، التبكير، محصول البذور.

REVIEWERS:

Dr. Mohammed Saad Maghazi
| abdelaty2009@yahoo.com
Dept. Agron., Fac. Agric., Kafr El-Shakh. Univ., Egypt.
Dr. Mohamed. M. A. Ali | abd_lhamed@yahoo.com
Dept. Agron., Fac. Agric., Zagazig Univ., Egypt.

[^0]: * Corresponding author: E-mail address: is.abobaker@yahoo.com
 https://doi.org/10.21608/sinjas.2023.170682.1160
 2022 SINAI Journal of Applied Sciences. Published by Fac. Environ. Agric. Sci., Arish Univ. All rights reserved.

[^1]: *, ** significant at 0.05 and 0.01 probability levels, respectively.

[^2]: *, ** significant at 0.05 and 0.01 probability levels, respectively.

[^3]: I (L-86-K-96 \times Ware), II (Egyptian \times Ware), III (H129 \times Crawford), and IV (D.R101 \times Giza 111)

[^4]: ns, * and ** no significant, significant at 0.05 and significant at 0.01 , probability levels respectively.

