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The gravity method is one of the most useful mining-applicable approaches because 

many economic minerals are denser than their host rock. In this study, an efficient 

processing technique was developed and applied to invert both the synthetic gravity 

data generated for three thin dipping mineralized sheets of finite depth extent (with 

and without noises) and two dipping sheets of mineral deposits of gravity datasets from 

Canada and Cuba, respectively. The technique employed relies upon global particle-

swarm-optimization (PSO) technique, which was used, to determine the characteristic 

parameters of the thin dipping sheets, including the amplitude coefficient, the depth to 

the upper edge, depth to the lower edge, angle of dip and the source origin (w). The 

processing outputs support the conclusion that, the PSO technique is fast, accurate and 

effective, and applicable to the noisy data. The inverted gravity data from both Canada 

and Cuba are mostly consistent with the available borehole control. 
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1. Introduction 
 

The geophysical gravity technique is a potential field geophysical tool, used to map and model variations 

in the earth’s gravitational field (Essa and Elhussein, 2018). The gravity method is routinely used to image the 

subsurface in support of a variety of investigations, including mineral and hydrocarbon prospecting, as well as 

archaeological, geotechnical, geologic, hydro-geologic, geothermal and environmental assessments, as shown by 

the studies of (Davis et al., 1957; Roy, 1966; Nettleton, 1976; Roy et al., 2000; Elawadi et al., 2004; Fedi, 2007; 

Hinze et al., 2013; Essa and Elhussein, 2018; Essa et al., 2018; and Essa and Munschy, 2019).  

The gravity method is considered limited, because of its ill-posedness and non-uniqueness issues. Various 

innovative inversion methods have been developed, to overcome these two potential problems, with the objective 

of accurately determining the parameters of causative bodies including the source origin position, amplitude 

factor, depth and dip angle (Zhdanov, 2002; Tarantola, 2005; Essa and Elhussein, 2018; and Essa and Munschy, 

2019). These inversion methods include  the  Fourier-transform technique (Odegard and Berg, 1965; Sharma and 

Geldart, 1968; and Chacko and Bhattacharya 1980), the 3-D Euler-deconvolution technique (Thompson, 1982; 

Zhang et al., 2000; and Ghosh, 2016), the least-squares optimization technique (Gupta, 1983; Abdelrahman et 

al., 1991; Abdelrahman and Sharafeldin, 1995; Abdelrahman et al., 2003; Essa, 2014; and Abdelrahman and 

Essa, 2015), the simple characteristic points, master curves and nomograms (Grant and West, 1965; Rao et al., 

1986; Kara and Kanli, 2005; and Essa 2007 and 2012), the moving-average inversion technique (Abdelrahman 

et al., 2006; and Essa, 2013), the gradient technique (Saad, 2006), 2-D, 2.5-D and 3-D modelling (Bhaskara Rao 

et al., 1990; Pinto and Casas, 1996; Zhang et al., 2001; and Eshaghzadeh, 2018); and the fair functions technique 

(Asfahani and Tlas, 2012). Unfortunately, most of these techniques have their own issues. Some techniques 

require the input of priori geological information. Others are of few data points dependent or require the accurate 

separation of the residual anomaly. Problems related to these issues can result in the spatial shifting of the 

calculated model and error in the determined parameters (Essa and Elhussein, 2018; and Essa and Munschy, 

2019). More recently, gravity inversion techniques, which rely upon the artificial intelligence (like simulated 

annealing) have been developed (Sen and Stoffa, 2013; Biswas, 2015; and Biswas, 2016), PSO (Singh and 

Biswas, 2016; Essa and Elhussein, 2018; and Essa and Munschy, 2019), neural-network (Osman et al., 2006; and 

Al-Garni, 2013).    

 In this work, a PSO algorithm was developed and applied for inverting the gravity datasets for the three 

thin dipping mineralized sheets of finite depth and to estimate the sheet parameters, including the amplitude 

coefficient (Ac), depth to the upper edge (h), depth to the lower edge (d), angle of dip (β) and the source origin 

(w). The PSO technique was also applied to noiseless synthetic models, and noisy models with different random 

Gaussian noise levels, 10 % and 20 % random noises, and the two mining case studies from Canada and Cuba. 

2. Methodology 

2.1. Forward modelling  

The gravity anomaly (∆𝑔), as expressed by the dipping thin sheet of finite depth, at any point (𝑥𝑖), is 

given by (Rao and Murthy, 1978; Sinha and Babu 1985) (Fig. 1): 
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∆𝑔(𝑥𝑖) = 𝐴𝑐 {
1

2
sin(𝛽) 𝑙𝑛

((𝑥𝑖 − 𝑤) − 𝑎)2 + 𝑑2

(𝑥𝑖 − 𝑤)2 + ℎ2
+ cos(𝛽) [𝑡𝑎𝑛−1 (

𝑥𝑖 − 𝑤

ℎ
) − 𝑡𝑎𝑛−1 (

(𝑥𝑖 − 𝑤) − 𝑎

𝑑
)]} ,

𝑖 = 0, 1, 2, 3, … … … . . , 𝑀                                (1)  

 M represents the data points number; 𝐴𝑐 represents the amplitude coefficient (mGal), which given by: 2G∆σt, 

where: G represents universal gravitational constant (cm3.g-1.s-2), ∆σ  represents the difference between the 

source's density and surrounding's density (g.cm-3) and t is the structure's thickness (dipping thin sheet); h is the 

upper edge depth of the structure (m); d is the lower edge depth of the structure (m); w represents the position of 

the structure body (m); 𝛽 represents the structure dip angle (degree) and a is given by [
𝑑−ℎ

𝑡𝑎𝑛𝛽
]. 

2.2. Inversion technique 

Inversion technique used in this work is dependent upon global PSO algorithm, the development of this 

technique was done by Eberhart and Kennedy (1995) in the late twentieth century. More recently, this algorithm 

was modified to be utilized in multi-discipline geophysical applications (Sen and Stoffa, 2013; Essa and 

Elhussein, 2018; Essa and Munschy, 2019; and Essa and Elhussein, 2020). The nature of PSO-inversion 

algorithm is stochastic; the algorithm can be explained by considering an example of birds group looking for 

food. In this example, each bird represents a model. For each model, there are two vectors: the location and 

velocity. The value of parameter represents location vector. The initiation of swarm starts with a random model 

using different variable ranges. The positions and velocities of various particles are iteratively updated using the 

following formulae:    

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑉𝑖
𝑘+1,                                         (2) 

𝑉𝑖
𝑘+1 = 𝑐3𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑇𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘+1) + 𝑐2𝑟𝑎𝑛𝑑2(𝐽𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘+1), (3) 

where: 𝑥𝑖
𝑘 and 𝑉𝑖

𝑘  are the location and the velocity   of the ith particle respectively at the kth iteration; rand1 and 

rand2 for random values ranging from 0 to 1; 𝑐1 𝑎𝑛𝑑 𝑐2 are coefficients  called cognitive and social respectively, 

take the value 2 (Parsopoulos and Vrahatis, 2002; Singh and Biswas, 2016; Essa and Munschy, 2019; Essa and 

Elhussein, 2020; and Elhussein, 2020); 𝑐3 represents the factor of inertia, that balances the velocity of model, its 

value is less than 1; 𝑇𝑏𝑒𝑠𝑡 represents the best location that the individual model can achieve and 𝐽𝑏𝑒𝑠𝑡 represents 

the best global position that any model reach in the swarm. During each iteration, both location and speed of 

each model are updated. When convergence is reached (the objective function is optimized), the iteration process 

ends (Venter and Sobieski, 2002; and Essa and Elhussein 2020). 

 

2.2. Inversion technique 

Inversion technique used in this work is dependent upon global PSO algorithm, the development of this 

technique was done by Eberhart and Kennedy (1995) in the late twentieth century. 
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More recently, this algorithm was modified to be utilized in multi-discipline geophysical applications 

(Sen and Stoffa, 2013; Essa and Elhussein, 2018; Essa and Munschy, 2019; and Essa and Elhussein, 2020). The 

nature of PSO-inversion algorithm is stochastic; the algorithm can be explained by considering an example of 

birds group looking for food. In this example, each bird represents a model. For each model, there are two vectors: 

the location and velocity. The value of parameter represents location vector. The initiation of swarm starts with 

a random model using different variable ranges. The positions and velocities of various particles are iteratively 

updated using the following formulae:    

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑉𝑖
𝑘+1,                                         (2) 

 

𝑉𝑖
𝑘+1 = 𝑐3𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1(𝑇𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘+1) + 𝑐2𝑟𝑎𝑛𝑑2(𝐽𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘+1), (3) 

where: 𝑥𝑖
𝑘 and 𝑉𝑖

𝑘  are the location and the velocity   of the ith particle respectively at the kth iteration; rand1 and 

rand2 for random values ranging from 0 to 1; 𝑐1 𝑎𝑛𝑑 𝑐2 are coefficients  called cognitive and social respectively, 

take the value 2 (Parsopoulos and Vrahatis, 2002; Singh and Biswas, 2016; Essa and Munschy, 2019; Essa and 

Elhussein, 2020; and Elhussein, 2020); 𝑐3 represents the factor of inertia, that balances the velocity of model, its 

value is less than 1; 𝑇𝑏𝑒𝑠𝑡 represents the best location that the individual model can achieve and 𝐽𝑏𝑒𝑠𝑡 represents 

the best global position that any model reach in the swarm. During each iteration, both location and speed of 

each model are updated. When convergence is reached (the objective function is optimized), the iteration process 

ends (Venter and Sobieski, 2002; and Essa and Elhussein 2020). 

  

 The best global solution (𝐽𝑏𝑒𝑠𝑡) is achieved, by optimizing the objective function (𝜓𝑜𝑏𝑗) given by the 

following equation, using iterations. 

𝜓𝑜𝑏𝑗 =
1

𝑀
∑[∆𝑔𝑂(𝑥𝑖) − ∆𝑔𝐶(𝑥𝑖)]2.

𝑀

𝑖=1

       (4) 

 

M represents the data points, ∆𝑔𝑂 represents the measured gravity and ∆𝑔𝐶 represents the estimated gravity.    

  The various sources parameters (𝐴𝑐, ℎ, 𝑑, 𝛽 and 𝑤) are estimated by minimizing equation (4). The RMS 

(root mean square) error is calculated, using the following formula after estimating the source parameters: 

 

𝑅𝑀𝑆 = √
1

𝑀
∑[∆𝑔𝑂(𝑥𝑖) − ∆𝑔𝐶(𝑥𝑖)]2

𝑀

𝑖=1

 .        (5) 
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Fig. 1. Geometric structures for dipping thin sheet 

of finite depth extent. 

Fig. 2. A synthetic noiseless gravity anomaly 

caused by dipping thin sheet of finite depth model 

using these parameters: A_c = 300 mGal, h = 5 m, 

d = 12 m, β = 40o and w = 0 m, and 120 m profile 

length; and the calculated profile. 3. Synthetic models 

3.1. First synthetic example 

  A gravity anomaly, generated for a finite depth extent dipping thin sheet, using the following 

parameters: anomaly profile length = 120 m,  𝐴𝑐 = 300 mGal, h = 5 m, d = 12 m, 𝛽 = 40o and w = 0 m (Fig. 

2). Then the developed PSO-technique was applied to this gravity anomaly profile, for estimating the dipping 

sheet parameters (Table 1). Table (1) represents the calculated structure parameters (𝐴𝑐, ℎ, 𝑑, 𝛽 and 𝑤), the 

error of 𝐴𝑐 , ℎ, 𝑑 and 𝛽 are 0 % and the error of RMS is 0 mGal. The comparison between the noiseless 

profile and the calculated profile is demonstrated in Fig. 2. 

For the purpose of testing the efficiency of PSO-technique, in the presence of noise, the above 

synthetic data were contaminated with random Gaussian noises levels of both 10 % and 20 % (Fig.s 3 and 

4) respectively. The PSO-technique was used to compute the model parameters (Table 1). The calculated 

parameters for the 10% noise example are: ( 𝐴𝑐 =  310.29 mGal , ℎ = 4.9 𝑚, 𝑑 = 11.9 𝑚, 𝛽 =

 39.18o and 𝑤 =  −0.12 𝑚 ); while the error estimates of 𝐴𝑐 , ℎ, 𝑑 𝑎𝑛𝑑 𝛽 are 3.43 %, 2 %, 0.83 % and 2.05 

%, respectively, and the RMS error calculated is 2.85 mGal. The estimated parameters for the 20% noises 

example are: 𝐴𝑐 =  288.20 mGal , ℎ = 5.1 𝑚, 𝑑 = 11.9 𝑚, 𝛽 =  40.68o and 𝑤 =  0.15 𝑚; while the error 

estimates of 𝐴𝑐 , ℎ, 𝑑 𝑎𝑛𝑑 𝛽 are 3.93 %, 2 %, 0.83 % and 1.7 %, respectively, and the RMS error calculated 

is 3.74 mGal (Table 1). Fig.s 3 and 4 show the comparison between the 10% noisy gravity profile and the 

computed profile and the 20% noisy profile and the computed one, respectively.   
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Parameters Used ranges Results Error 

(%) 

RMS error 

(mGal) 

Noise-free data 

𝑨𝒄 (mGal) 50 – 800 300 0 0 

h (m) 1 – 20 5 0 

𝒅 (m) 3 – 30 12 0 

𝜷 (degree) 20 – 80 40 0 

w (m) -10 – 10 0 -------- 

with 10 % random noise 

𝑨𝒄 (mGal) 50 – 800 310.29 3.43 2.85 

h (m) 1 – 20 4.90 2 

𝒅 (m) 3 – 30 11.90 0.83 

𝜷 (degree) 20 – 80 39.18 2.05 

w (m) -10 – 10 -0.12 -------- 

with 20% random noise 

𝑨𝒄 (mGal) 50 – 800 288.20 3.93 3.74 

h (m) 1 – 20 5.1 2 

𝒅 (m) 3 – 30 11.9 0.83 

𝜷 (degree) 20 – 80 40.68 1.7 

w (m) -10 – 10 0.15 -------- 

Table 1. Computed results of Global PSO-optimization technique applied to gravity profile (120 m) due 

to dipping thin sheet of finite depth (𝐴𝑐 = 300 mGal, h = 5 m, d = 12 m, 𝛽 = 40o and w = 0 m), with 

and without various noise levels of 10 % and 20 % random Gaussian noise.  

 

Fig. 3. A gravity profile mentioned in Figure 2 with a 

10 % random noise and the estimated anomaly. 

 

Fig. 4. A gravity profile mentioned in Figure 2 with a 

20 % random noise and the estimated anomaly. 
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3.2. Second synthetic example 

  To examine the efficiency of the PSO technique in case of a proximal structure, generating its own 

gravity anomaly, the technique was applied to a composite anomaly. The composite anomaly was generated 

by a dipping thin sheet of finite depth extent (main target), with the following parameters: 𝐴𝑐 = 400 mGal, 

h = 4 m, d = 10 m, 𝛽 = 45o and w = 0 m, and a proximal sphere, using these parameters: 𝐴𝑐 = 4000 mGal.m2, 

z (depth) = 5 m, q (shape factor) = 1.5, w = 30 m and 120 m for profile length (Fig. 5). The composite gravity 

anomaly can be represented by the following formula: 

 

∆𝑔𝑐𝑜𝑚𝑝(𝑥𝑖) = 400 {
1

2
sin(45o) 𝑙𝑛

(𝑥𝑖 − 𝑎)2 + 100

𝑥𝑖
2 + 16

+ cos(45o) (𝑡𝑎𝑛−1 (
𝑥𝑖

4
) − 𝑡𝑎𝑛−1 (

𝑥𝑖 − 𝑎

10
))}  

+ 4000 [
5

((𝑥𝑖 − 30)2 + 25)1.5 
] , 𝑖 = 0, 1, 2, 3, … … … . . , 𝑀      (6) 

 

We applied the global PSO-technique to the above composite anomaly to compute the thin sheet 

parameters, by using different parameter's ranges (Table 2). Table (2) represents the estimated parameters 

( 𝐴𝑐 =  425.32 mGal , ℎ = 3.7 𝑚, 𝑑 = 10.7 𝑚, 𝛽 =  47.34o and 𝑤 =  −0.01 𝑚 ), where the errors of 

𝐴𝑐 , ℎ, 𝑑 𝑎𝑛𝑑 𝛽 are 6.33 %, 7.50 %, 7 % and 5.2 %, respectively, and the error of RMS is 34.55 mGal. Figure 

5 illustrates the comparison between the composite and computed profiles. 

3.3. Third synthetic example 

 For assessing the accuracy and applicability of PSO algorithm, in case of choosing different origins, 

the optimization algorithm was applied to a 120 m gravity profile caused by finite depth dipping thin sheet, 

using A_c = 200 mGal, h = 3 m, d = 8 m, β = 65o and w = 20 m (Fig. 6). Table 3 represents the computed 

parameters ( A_c,h,d,β and w), the A_c,h,d,β and w errors are 0 % and the error of RMS is 0 mGal. The 

comparison between the noiseless profile and the estimated one is illustrated in Figure 6. 

Field gravity data are contaminated with noises. To assess the utility of the PSO technique, when 

applied to noisy gravity data, the third synthetic example was contaminated with different random Gaussian 

noises levels of 10% and 20% (Fig. 7 & 8), respectively). The PSO-technique was applied to both noisy data 

and the different parameters were computed (Table 3). Table (3) represents the computed parameters 

 ( 𝐴𝑐 =  210 mGal , ℎ = 3 𝑚, 𝑑 = 7.9 𝑚, 𝛽 =  62.97o and 𝑤 =  19.92 𝑚 ), 

 where the error of 𝐴𝑐 , ℎ, 𝑑, 𝛽 and 𝑤 are 5 %, 0 %, 1.25 %, 3.12 % and 0.4 %, respectively, and 2.55 

mGal RMS error in case of 10 % noisy anomaly. In case of using 20 % random Gaussian noises, the 

estimated parameters are: 𝐴𝑐 =  210 mGal , ℎ = 3.2 𝑚, 𝑑 = 7.6 𝑚, 𝛽 =  68.48o and 𝑤 =  20.20 𝑚 and the 

error of  𝐴𝑐 , ℎ, 𝑑, 𝛽 and 𝑤 are 5 %, 6.67 %, 5 %, 5.35 % and 1 %, respectively, and 3.28 mGal RMS error 

(Table 1). Fig. 7 & 8 show the difference between the 10 % noisy profile and the estimated profile and 20 

% noisy profile and the computed one respectively anomaly, respectively.   
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Parameters Used ranges Results Error 

(%) 

RMS error 

(mGal) 

𝑨𝒄 (mGal) 100 – 1500 425.32 6.33 34.55 

h (m) 1 – 20 3.7 7.5 

𝒅 (m) 3 – 30 10.7 7 

𝜷 (degree) 20 – 85 47.34 5.2 

w (m) -10 – 10 -0.01 --------- 

Fig.5. A composite gravity profile of finite depth 

dipping thin sheet with (𝐴𝑐 = 400 mGal, h = 4 m, d = 

10 m, 𝛽 = 45o and w = 0 m) and sphere (𝐴𝑐 = 4000 

mGal.m2, z = 5 m, q = 1.5, w = 30 m and 120 m profile 

length; and the estimated anomaly. 

 

Fig. 6. A 120 m synthetic noise free gravity anomaly 

profile due to dipping thin sheet of finite depth using: 

A_c = 200 mGal, h = 3 m, d = 8 m, β = 65o and w = 

20 m, and 120 m profile length; and the computed 

anomaly. 

Table 2. Computed results of Global PSO-optimization technique applied to composite anomaly 

of dipping thin sheet with finite depth (𝐴𝑐 = 400 mGal, h = 4 m, d = 10 m, 𝛽 = 45o and w = 0 m) 

and sphere model (𝐴𝑐 = 4000 mGal.m2, z = 5 m, q = 1.5 and w = 30 m). 
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Parameters Used ranges Results 
Error 

(%) 

RMS error 

(mGal) 

Noise-free data 

𝑨𝒄 (mGal) 50 – 800 200 0 

0 

h (m) 0.5 – 20 3 0 

𝒅 (m) 3 – 30 8 0 

𝜷 (degree) 20 – 90 65 0 

w (m) -10 – 40 20 0 

with 10 % random noise 

𝑨𝒄 (mGal) 50 – 800 210 5 

2.55 

h (m) 0.5 – 20 3 0 

𝒅 (m) 3 – 30 7.9 1.25 

𝜷 (degree) 20 – 90 62.97 3.12 

w (m) -10 – 40 19.92 0.4 

with 20 % random noise 

𝑨𝒄 (mGal) 50 – 800 210 5 

3.28 

h (m) 0.5 – 20 3.2 6.67 

𝒅 (m) 3 – 30 7.6 5 

𝜷 (degree) 20 – 90 68.48 5.35 

w (m) -10 – 40 20.20 1 

 

Fig. 7. A gravity profile illustrated in Figure 6 with 10 

% random noise and the estimated anomaly. 

Fig. 8. A gravity anomaly illustrated in Figure 6 with 

a 20 % random noise impeded and the computed 

profile. 

 
Table 3. Numerical results of Global PSO-optimization technique applied to gravity profile (120 m) due 

to dipping thin sheet with finite depth (A_c = 200 mGal, h = 3 m, d = 8 m, β = 65o and w = 20 m), with 

and without different noise levels of 10 % and 20 % random noise. 
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4. Field examples 

To examine the efficiency of the applicability of the PSO technique in mining operations, the 

algorithm was applied to two real field examples. The first data set is from Canada and the second is from 

Cuba. 

4.1. Mobrun sulfide deposit anomaly, Québec, Canada 

 In 1954, Rio Canadian Exploration Limited discovered the Mobrun sulfide deposit. The deposit was 

characterized by a prominent electromagnetic anomaly. The Mobrun mine is located about 34 km northeast 

of Rouyn-Noranda (Barrett et al., 1992) (Fig. 9). The ore body is composed of two complex massive sulfide 

lenses (Barrett et al., 1992), of which only one is modeled here. 

 A residual gravity anomaly profile, extracted from the real field data, was generated for a profile oriented 

perpendicular to the strike of one of the massive sulfide bodies (Grant and West, 1965; Sivakumar Sinha and Ram 

Babu, 1985; Roy et al., 2000; and Biswas 2015) (Fig.10). The residual gravity profile length is 292 m; it was sampled 

at 1 m intervals. The global PSO technique was applied to the residual gravity profile, to estimate the ore body 

parameters  (𝐴𝑐 , ℎ, 𝑑, 𝛽 and 𝑤), using different ranges (Table 4). The calculated parameters are: 𝐴𝑐 =

 682 x 10−3 mGal, ℎ = 28.97 m, 𝑑 = 188.74 m, 𝛽 =  84.37o and 𝑤 =  159.46 m, and the RMS error is 0.04 mGal 

(Table 4). The correlation between the measured and computed gravity anomalies is shown in Figure (10). The results 

obtained from the proposed method is consistent well with the drilling information, which indicates that, the depth to 

the top of the ore body is 30.48 m and the depth to the bottom is 194 m (Sivakumar Sinha and Ram Babu, 1985; and 

Roy et al., 2000). Table (5) shows the comparison between the estimated parameters of the present method and these 

from different methods in the literatures. 

4.2. Camaguey chromite area anomaly, Cuba 

 The chromite deposits of Camaguey area were developed along the contact of serpentinized dunite 

and peridotite rocks, and feldspathic rocks (Davis et al., 1957). The chromite’s gravity data were acquired 

across the dipping sheet-shaped chromite-bearing ore body by Davis et al. (1957), as a part of an exploration 

program conducted by the Geological Survey of the United States in the Camaguey district, Cuba. 

     A 71 m residual gravity anomaly profile was generated along a profile oriented perpendicular to 

the strike of the chromite deposit (Fig. 11). The profile was sampled at 0.5 m intervals. The global PSO 

optimization algorithm was applied to the gravity anomaly profile, for estimating different parameters 

 (𝐴𝑐 , ℎ, 𝑑, 𝛽 and 𝑤), using different ranges (Table 6), in which the computed parameters are 𝐴𝑐 =

 24 x 10−2 mGal , ℎ = 10.11 m, 𝑑 = 20.00 m, 𝛽 =  94o and 𝑤 = 41.13 m, and the RMS error is 6.55 x 10-

3 mGal (Table 6). The difference between the measured and estimated anomalies is illustrated in Fig.11. The 

results obtained from the proposed method are matched well with drilling information, which indicated that, 

the depth to the top is ranging from 3.22 m to 22.86 m and the depth to the bottom is ranging from 12.65 m 

to 76.20 m (Davis et al., 1957). Table (7) shows the comparison between the computed parameters of the 

present technique and those from different algorithms in the literatures.  
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Parameters Used ranges Result RMS 

error 

(mGal) 

𝑨𝒄 (mGal) 15 x 10-2 – 300 

x 10-2 

87 x 10-2 0.04 

h (m) 10 – 50 28.97 

𝒅 (m) 60 – 200 188.74 

𝜷 (degree) 20 – 140 84.37 

w (m) 120 – 180 159.46 

Fig. 9. Geological map of the Mobrun zone, Noranda 

area, Canada (Modified after Barrett et al. 1992). 

 

Fig.10. The measured and the computed gravity profile 

for the Mobrun sulfide deposit anomaly, Québec, 

Canada field example. 

 

Fig.11. The observed and the estimated gravity 

anomaly profile for the Camaguey chromite area 

anomaly, Cuba field example. 

 

Table 4. Computed results of Global PSO-optimization 

technique applied to the residual gravity profile of 

Mobrun sulfide deposit anomaly, Québec, Canada.  
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Methods 

  Parameters 
Grant 

and West 

(1965) 

method 

 Sinha 

and Babu 

(1985) 

method 

Sinha and 

Babu 

(1985) 

Drilling 

Roy 

(2000) 

method 

Al-Garni 

(2018) 

method 

Present 

method 

𝑨𝒄 (mGal) ------- ------- ------- ------- 146.37 

(arbitrary 

units) 

87 x 10-2 

h (m) 17.07 24.38 30.48 22.7 28.04 28.97 

𝒅 (m) ------- ------- 193.97 52 ------- 188.74 

𝜷 (degree) 83 79 ------- ------- 80.51 84.37 

w (m) ------- ------- ------- ------- ------- 159.46 

Parameters Used ranges Results RMS error 

(mGal) 

𝑨𝒄 (mGal) 1 x 10-2 – 150 x 10-2 24 x 10-2 6.55 x 10-3 

h (m) 3 – 50 10.11 

𝒅 (m) 5 – 80 20.00 

𝜷 (degree) 20 – 140 94.00 

w (m) 28 – 52 41.13 

        Methods 

   

Parameters 

Davis et al. 

(1957) 

drilling 

Mehanee 

(2014) 

method 

Biswas 

(2015) 

method 

Mehanee and 

Essa (2015)  
Present 

method 

𝑨𝒄 (mGal) ------- 3 (mGal.m) 3.5 (m Gal.m) 6990 – 7980 

(kg/m2) 

24 x 10-2 

h (m) 3.22 – 22.86 16 16.2 6 – 7 10.11 

𝒅 (m) 12.65 – 

76.20  

------- ------- ------- 20.00 

𝜷 (degree) ------- ------- 79 94 94.00 

w (m) ------- ------- -1.8 ------- 41.13 

Table 5. A comparison between Numerical results computed from various algorithms for 

the residual gravity profile of Mobrun sulfide deposit anomaly, Québec, Canada. 

 

Table 6. Numerical results of Global PSO-optimization technique applied to the residual 

gravity anomaly profile of Camaguey chromite area anomaly, Cuba. 

 

Table 7. Comparison between Numerical results obtained from various methods for the 

residual gravity anomaly profile of Camaguey chromite area anomaly, Cuba.    
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