
Electronic Journal of Mathematical Analysis and Applications

Vol. 11(1) Jan. 2023, pp. 162-173.

ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

————————————————————————————————

EXISTENCE OF LATIN SQUARE DESIGNS ARISING FROM

CLASSICAL GRAPH PARAMETERS

B. CHALUVARAJU AND SHAIKH AMEER BASHA

Abstract. However, the Latin square (LS) designs have been studied exten-

sively with some classes of regular graphs, and their connections with classical
graph parameters were not explored. This article determines the existence and

non-existence of the Latin square designs with two association schemes. Also,

discusses the uniqueness of the polynomials obtained from the matrices of the
associates of LS-designs emerging from the total number of minimum cover-

ing, maximum independent, and minimum dominating sets of certain classes of

regular graphs such as Hypercube, Paley graph, Torus graph, Clebsch graph,
Shrikhande graph. Further, we generalized the parameters of LS-designs of

Circulant graphs, Complete multipartite graphs, and some Nilpotent Cayley
graphs.

1. Introduction

Throughout this paper, the graph G = (V,E), is simple and finite. In general,
we use, p = |V | and q = |E| to denote the number of vertices and edges of a graph
G, respectively. The number of edges adjacent to a vertex is called the degree
of a vertex; the minimum degree is denoted by δ(G) and the maximum degree is
denoted by ∆(G). For graph-theoretical terminology and notation not defined here,
we follow ([6] and [11]).
A square array of side s is arranged from the treatments (objects, vertices) ν = p =
s2. Let the association scheme of the design be s× s array. The blocks are formed
by all possible distinct g elements from the treatments laying in each row and each
column of the array. From one row or column, it is possible to form Cs

g distinct
g-plets, where Cs

g represents the number of combinations of s things taken g at a
time, g and s being restricted in this application by 2 ≤ g ≤ s. In this manner, it is
possible to form b = 2sCs

g blocks, each of size g and each of the p = s2 treatments

will appear once in each of h = 2Cs−1
g−1 blocks.

Two treatments lying in the same row or the same column of the association scheme
are first associates, while two treatments not lying in the same row or the same
column are second associates. Thus, n1 = 2(s − 1) and n2 = (s − 1)2. Further,
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two treatments are first associates which occur together in Cs−2
g−2 blocks, while two

treatments that are second associates do not occur together in any block. Hence,
λ1 = Cs−2

g−2 and λ2 = 0.

Cox [8], in his analysis, utilized the Latin Square Experimental structure, strat-
egy on three varieties of wheat developed with different varieties of fertilizer types
considers the prerequisites for the analysis, which incorporate a lot of test units
regularly called plots, various treatments or combinations applied to various test
units and treatments are duplicated. The comparison between the test unit, treat-
ment combination, and factor levels depends on information recorded after the
treatments have an opportunity to influence the testing material. This information
contains at least one variate each comprising of one value for each plot. The vari-
ate might be persistent (e.g., weight, stature) or discrete (e.g., tallies, scores), or
determined (acquired through arithmetical calculations). From this research, Cox
reasoned that this design; Assisted in controlling the impact of inconvenient factors,
by gathering test units into blocks having a similar number of treatment levels as
the factor of interest. Decreasing the error by obstructing in two ways discover
noteworthy outcomes for treatments almost certain. For more details, we refer to
([5], [7], [9] and [19]). Due to the existence and non-existence of the LS-Design for
the following graph parameters, we have considered all the families of graphs with
order p = s2 and are not randomly selected.

2. Covering Sets (CS)

A set X of graph G is called a vertex covering set if every edge of G is incident to
at least one vertex in X. The minimum cardinality among all the covering sets is
a vertex covering number α(G). A minimum covering set X of G with |X| = α(G)
is called a α-set of G.

Theorem 2.1. Let G be a connected graph with p = s2. Then the collection of
all α-sets forms an LS-Design with parameters b = 2, g = 2, h = 1, λ1 = 2, and
λ2 = 0, if and only if G ∼= C4(= Q2).

Proof. Let G ∼= C4 be a graph with p = s2 vertices. Then α(G) = 2. Therefore, the
collection of all α-sets are given as blocks {v1, v3}, {v2, v4}. The total number of
blocks b = 2, the size of the block g = 2, the number of repetition of the elements
of the blocks h = 1 and the associates are given by λ1 = 2 and λ2 = 0.
Conversely, suppose G ∼= K4, then α(K4) = 3. Therefore, the collection of all α-
sets are {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v1}, {v4, v1, v2}. These α-sets are given by
blocks b = 4, g = 3, h = 3. By the definition of LS-Design with 2 ≤ g ≤ s, which
is a contradiction. Hence, the collection of α-sets does not form an LS-Design. □

3. Independent Sets (IS)

A set Y is an independent set of G, if no two vertices in Y are adjacent. The
maximum cardinality of independent set Y is called a vertex independence number
β(G). The maximum independent set Y with |Y | = β(G) is called a β-set of G.

Theorem 3.1. Let G be a connected graph with order 4. Then the collection of all
β-sets forms LS-Design with parameters b = 2, g = 2, h = 1, λ1 = 2 and λ2 = 0,
if and only if G ∼= C4(= Q2).
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Proof. Let G be a connected graph with order 4. Then the vertex set V =
{v1, v2, v3, v4} forms a cycle C4. This implies that the set Y = {v1, v3} is a β-
set of G and {v2, v4} is an α-set of G. We know that α(G) + β(G) = p. Therefore,
α(C4) = β(C4) = 2. Thus, from the proof of Theorem 2.1, the desired LS-Design
with parameters follows. □

Theorem 3.2. Let G be a connected graph with order 9. Then the collection of all
β-sets forms an LS-Design, if and only if G ∼= G1 or G2,

(i) G1 = C9(1, 3) be a circulant graph with the parameters b = 9, g = 3, h = 3,
λ1 = 1 and λ2 = 0.

(ii) G2 = C9(1, 2, 4) be a circulant graph with the parameters b = 3, g = 3,
h = 1, λ1 = 1 and λ2 = 0.

Proof. Let G be a circulant graph with p = 9; s = 3.

(i) If G1
∼= C9(1, 3) is a circulant graph, then β(C9(1, 3)) = 3. Therefore, the

collection of all β-sets are {v1, v3, v5}, {v2, v4, v6}, {v3, v5, v7}, {v4, v6, v8},
{v5, v7, v9}, {v6, v8, v1}, {v7, v9, v2}, {v8,
v1, v3}, {v9, v2, v4}. These β-sets are given by blocks b = 9, the size of the
block g = 3, the number of repetition of the elements of the blocks h = 3
and the associates are λ1 = 1 and λ2 = 0.

(ii) If G2
∼= C9(1, 2, 4) is a circulant graph, then, β(C9(1, 2, 4)) = 3. Therefore,

the collection of all β-sets are {v1, v4, v7}, {v2, v5, v8}, {v3, v6, v9}. These
β-sets are given by blocks b = 3, the size of the blocks g = 3, the number of
repetition of the elements of the blocks h = 1 and the associates are λ1 = 1
and λ2 = 0.

Conversely, suppose G ∼= C9, then β(C9) = 3. Therefore, the collection of all β-sets
are {v1, v4, v7}, {v2, v5, v8}, {v3, v6, v9}. These β-sets are given by blocks b = 3,
the size of the blocks g = 3, the number of repetition of the elements of the blocks
h = 1. By the definition of LS-Design with 2 ≤ g ≤ s, which is a contradiction.
Hence, the collection of β-sets does not forms an LS-Design. □

To prove our next result we use the following definition.
The square lattice graphs L2(n) are strongly regular graphs with the parameters
(n2, 2(n − 1), n − 2, 2) which are unique for all n ̸= 4. When n = 4 we obtain two
non-isomorphic strongly regular graphs with parameters (16, 6, 2, 2). The graph
with these parameters is called as Shrikhande graph. For more details, see ([2],
[17], [20] and [21]).

Figure 1. Shrikhande graph
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Theorem 3.3. Let G3 be a connected graph with order 16. Then the collection
of all β-sets forms an LS-Design if and only if G3 is a Shrikhande graph with the
parameters b = 12, g = 4, h = 3, λ1 = 0 and λ2 = 3.

Proof. Let G3 be a Shrikhande graph with p = 16 vertices. Then, β(G3) = g = 4.
Therefore, there are

(
16
4

)
possibilities of choosing β-sets. The total number of β-

sets as blocks b = 12, the size of the blocks g = 4, the number of repetition of the
elements of the blocks h = 3 and the first and second associates are λ1 = 0 and
λ2 = 3.
Conversely, suppose G3

∼= K16, then β(K16) = 1. Therefore, the total number of
blocks b = 16, the size of the blocks g = 1, the number of repetition of the elements
of the blocks h = 1. By the definition of LS-Design with 2 ≤ g ≤ s, which is a
contradiction. Hence, the collection of β-sets does not forms an LS-Design. □

To prove our next results we use the following definition.
The Cayley graph associated with the group (Zn, N) and its symmetric subset N
of non zero nilpotent elements in the ring (Zn,⊕,⊙) is the graph, whose vertex set
V is Zn = {0, 1, 2, · · ·n− 1} and the edge set E = {(x, y) : x, y ∈ Zn and either x−
y ∈ N or y − x ∈ N}. This graph is called as Nilpotent Cayley graph of the ring
(Zn,⊕,⊙) and it is represented as G(Zn, N). For more details, see ([1] and [16]).

Observation 3.1.

(i) If n =
∏t

i=0 x
ai
i , where x1 < x2 < . . . < xt are primes and ai ≥ 1, 1 ≤ i ≤ t

are integers, then the Nilpotent Cayley graph G(Zn, N) can be decomposed
into m disjoint complements, each of which is a compete graph, where m =
x1 < x2 < . . . < xt.

(ii) If n = 4, then the girth and the circumference of the graph G(Zn, N) are
undefined.

(iii) If n = x1x2 . . . xt, where x1 < x2 < . . . < xt are primes, then the graph
G(Zn, N) has only vertices and no edges.

(iv) The graph G(Zn, N) is (
∏t

i=0 x
ai−1
i − 1)-regular and the number of edges

in G(Zn, N) is given by n
2 (
∏t

i=0 x
ai−1
i − 1).

(v) If n = 22x1x2 . . . xt, where 2 < x1 < x2 < . . . < xt are primes, then the
graph G(Zn, N) is a bipartite graph and thus has no triangles.

From the above observations we can infer that each component of the Nilpotent
Cayley graph G(Zn, N) is either isomorphic to Kp or Cp or Kp1,p2

or Circulant
graph G(n, S) or some other families of graphs.

Theorem 3.4. Let G be a connected graph with p vertices. Then the collection of
all β-sets forms an LS-Design with parameters of the following graphs:

(i) b = np, g = 2, h = s, λ1 =

{
s− 2, for p is even,

s− 1, otherwise.

and λ2 =

{
s− 2, for p is odd

s− 3, otherwise.
; if G ∼= Cp(2, 4, . . . ,

⌊
p
2

⌋
); p = s2 ≥ 4.

(ii) b = m; m ≥ 3, g = p1, h = 1, λ1 = 1 and λ2 = 0; if G ∼= Kp1,p2,··· ,pm
;

p1 = p2 = . . . = pm and m > 2.
(iii) b = st; t ≥ 2, g = s, h = st−1, λ1 = 1 and λ2 = st−1 − 1; if G ∼= G(Zn, N).

Proof.
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(i) Let G be a circulant graph Cp(2, 4, . . . ,
⌊
p
2

⌋
) with p = s2; p = 4n or 4n+ 1

or 4n+ 2; n ≥ 1 and Y is the β-set of G. Then β
(
Cp

(
2, 4, . . . ,

⌊
p
2

⌋))
= 2.

Therefore, there are
(
p
2

)
possibilities of choosing β-sets, then we obtain(

p
2

)
×

(
p
2

)
× · · · ×

(
p
2

)
, n times of β-sets. Thus, the total number of β-sets

as blocks b = np, the size of the blocks g = 2, the number of repetition
of the elements of the blocks h = s the first and second associates are

λ1 =

{
s− 2, for p is even

s− 1, otherwise

and λ2 =

{
s− 2, for p is odd

s− 3, otherwise.

(ii) Let Kp1,p2,··· ,pm ; p1 = p2 = · · · = pm be the complete regular multi-partite
graph with m ≥ 3. Then β(Kp1,p2,··· ,pm) = p1. Therefore, the collection of
total number of β-sets is considered as blocks. Thus, the total number of β-
sets as blocks b = m, the size of the blocks g = p1, the number of repetition
of the elements of the blocks h = 1 the first and second associates are λ1 = 1
and λ2 = 0.

(iii) LetG(Zn, N) be a Nilpotent Cayley graph with vertex set Zn = {0, 1, 2, · · · ,
n− 1} such that Zn = s2, 2 ≤ s has m; m ≥ 1 number of disjoint com-
plete sub graphs with Zni

where i ≥ 1. Then, the collection of all β-
sets of G(Zn, N) are obtained from

(
p
s

)
possibilities of β-sets, given by(

ni

1

)
×

(
ni

1

)
× · · · ×

(
ni

1

)
, m times of β-sets. Therefore, the total number of

β-sets as blocks b = st where t ≥ 2, the size of the blocks g = s, the number
of repetition of the elements of the blocks h = st−1 the first and second
associates are λ1 = 1 and λ2 = st−1 − 1. □

4. Dominating Sets (DS)

A set D ⊆ V is said to be a dominating set of a graph G, if every vertex in V −D is
adjacent to some vertex in D, and is the minimum cardinality of a dominating set
D is the domination number γ(G). The minimum cardinality of a dominating set
D with |D| = γ(G) is called a γ-set of G. The comprehensive details of domination-
related parameters and their applications are discussed in ([13] and [14]).

Theorem 4.1. Let G be a connected graph of order 4. Then the collection of all
γ-sets of G forms the LS-Design with parameters b = 6, g = 2, h = 3, λ1 = 2 and
λ2 = 1, if and only if G ∼= C4

∼= Q2.

Proof. Let G ∼= Q2 with γ(Q2) = 2. Then, the collection of all γ-sets are given by
{v1, v2},{v2, v3}, {v3, v4}, {v4, v1}, {v1, v3}, {v2, v4}. Therefore, the total number
of γ-sets considered as blocks b = 6, the size of the blocks g = 2, the number of
repetition of the elements of the blocks h = 3 the first and second associates are
λ1 = 2 and λ2 = 1.
Conversely, suppose G ∼= K4, then γ(K4) = 1. Therefore, the collection of all γ-sets
are {v1}, {v2}, {v3}, {v4}. These γ-sets are given by blocks b = 4, g = 1, h = 1. By
the definition of LS-Design with 2 ≤ g ≤ s, which is a contradiction. Hence, the
collection of γ-sets does not form an LS-Design. □

To prove the next results we use the following definitions.
The Cartesian product of two graphs G and H is denoted by G × H. The graph
V (G×H) = V (G)×V (H), as vertex set and {(vi, vj) : vi ∈ G, vj ∈ H} as the edge
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set. The Cartesian product of two cycles Cp1
×Cp2

is a Torus graph with p1, p2 ≥ 3
vertices. Torus graph C3 ×C3 is also known as generalized quadrangle GQ(2, 1) or
(2, 3)-Hamming graph or (3, 3)-Rook graph or 9-Paley graph or conference graph.
For more details, we refer to ([10] and [15]).

Theorem 4.2. Let G be a connected r-regular graph of order 9. If r = 2, 4, 6, then
the collection of all γ-sets forms the LS-Design with parameters shown in Table 1.

Graphs
of order 9

Parameters of Latin square design
b g h λ1 λ2

G4 3 3 1 1 0
G4(a) 9 2 2 1 1
G4(b) 45 3 15 1 14
G5 18 2 4 2 2

Table 1. Parameters of LS-Design of graphs with 9.

Proof. Let D be a γ-set of a connected r-regular graph G of order 9. Then, γ(G4) =
γ(G4(a)) = γ(G4(b)) = 3, we have
Case 1. IfG4

∼= C9 is a cycle of order 9, then γ(C9) = 3. Therefore, the collection of
all γ-sets are {v1, v4, v7}, {v2, v5, v8}, {v3, v6, v9}. These γ-sets are given by blocks
b = 3, the size of the blocks g = 3, the number of repetition of the elements of the
blocks h = 1, the first and second associates are λ1 = 1 and λ2 = 0.

Figure 2. 4-regular graphs

Case 2. If G ∼= G4(a) is a connected r-regular graph of order 9, then the collection
of all γ-sets are given by blocks b = 3 and the size of the block g = 3. Therefore,
the number of repetition of the elements of the blocks h = 1, the first and second
associates are λ1 = 1 and λ2 = 0.
Case 3. If G ∼= G4(b) is a Torus graph C3 ×C3, with s = 3, then the collection of
all γ-sets are given by blocks b = 45 and the size of the blocks g = 3. Therefore,
the number of repetition of the elements of the blocks h = 15 and the associates are
λ1 = 1 and λ2 = 14. Case 4. If G ∼= G5

∼= C9(1, 2, 4) is a graph of order 9, which
implies s = 3, then vertex v1 dominates {v2, v3, v5, v6, v8, v9} and the remaining
vertices v4, v7 are dominated by another vertex as there is no adjacency between
them. Thus, γ(G5) = 2. Therefore, there are

(
9
2

)
possibilities of choosing γ-sets and

these γ-sets are given by blocks b = 18, the size of the blocks g = 2, the number of
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Figure 3. 6-regular graph

repetition of the elements of the blocks h = 4, the first and second associates are
λ1 = 2 and λ2 = 2. □

Association scheme of graphs of order 16
To prove our next results we use the definition.
Clebsch graph is a strongly regular Quintic (5-regular) graph with 16 vertices and
40 edges having the parameters (16, 5, 0, 2). For more details, see ([2] and [20]).

Theorem 4.3. Let G be a graph with order 16. Then the collection of all γ-sets
forms an LS-Design for the following graphs

(i) b = 16, g = 4, h = 4, λ1 = 0 and λ2 = 2; if G ∼= Q4.
(ii) b = 64, g = 4, h = 16, λ1 = 0 and λ2 = 16; if G is a Clebsch graph.
(iii) b = 32, g = 3, h = 6, λ1 = 0 and λ2 = 6; if G is a Shrikhande graph.
(iv) b = 8, g = 4, h = 2, λ1 = 0 and λ2 = 2; if G ∼= C4 × C4.

Proof.

(i) Let G ∼= Q4 be a hypercube with p = s2 = 16 vertices, and γ(Q4) = 4.
Then there are

(
16
4

)
possibilities of choosing γ-sets. Therefore, these γ-

sets are given by blocks b = 16, the size of the blocks g = 4, the number of
repetition of the elements of the blocks h = 4, the first and second associates
are λ1 = 0 and λ2 = 2.

Figure 4. Hypercube Q4

(ii) Let G be the Clebsch graph with p = s2 = 16 vertices, and γ(G) = 4. Then
there are

(
16
4

)
possibilities of choosing γ-sets. These γ-sets are given by

blocks b = 64, the size of the blocks g = 4, the number of repetition of the
elements of the blocks h = 16, the first and second associates are λ1 = 0
and λ2 = 16.
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Figure 5. Clebsch graph

(iii) Let G be a Shrikhande graph with p = s2 = 16 vertices, and γ(G) = 3.
Then there are

(
16
3

)
possibilities of choosing γ-sets. By considering the

total number of γ-sets as blocks, we have 32 blocks. Therefore, these γ-
sets are given by blocks b = 32, the size of the blocks g = 3, the number of
repetition of the elements of the blocks h = 6, the first and second associates
are λ1 = 0 and λ2 = 6.

(iv) Let G be a Torus graph with p = s2 = 16 vertices and γ(C4 × C4) = 4.
Then

(
16
4

)
possibilities of choosing γ-sets. By considering the total number

of γ-sets as blocks, we obtain 8 blocks. Therefore, these γ-sets are given
by blocks b = 8, the size of the blocks g = 4, the number of repetition of
the elements of the blocks h = 2, the first and second associates are λ1 = 0
and λ2 = 2. □

Theorem 4.4. Let G be a Torus graph with order 25. Then, the collection of all
γ-sets of forms an LS-Design with the parameters b = 10, g = 5, h = 2, λ1 = 0
and λ2 = 2.

Proof. LetG ∼= C5×C5 be a Torus graph with p = s2 = 52 = 25 and γ(C5×C5) = 5.
Then by considering the total number of γ-sets as blocks, these γ-sets are given by
blocks b = 10, the size of the blocks g = 5, the number of repetition of the elements
of the blocks h = 2, the first and second associates are λ1 = 0 and λ2 = 2. □

Observation 4.1. Let G = Cp1 ×Cp2 with p1 = p2 ≥ 6. Then the collection of all
γ-sets does not form an LS-Design.

Here, we generalize the parameters of LS-Design for certain classes of graphs.

Theorem 4.5. Let G be a graph. Then the collection of all γ-sets forms the LS-
Design for the following graphs:

(i) b = s2, g = 2, h = s, λ1 = s
2 and λ2 = s

2 (s− 1); if G ∼= Cp(1, 3, . . . ,
⌊
p
2

⌋
).

(ii) b = m with m > 2, g = p1, h = 1, λ1 = 1 and λ2 = 0; if G ∼= Kp1,p2,··· ,pm
;

p1 = p2 = · · · = pm and m > 2 .
(iii) b = st with t ≥ 2, g = s, h = st−1, λ1 = 1 and λ2 = st−1 − 1; if

G ∼= G(Zn, N).

Proof.
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(i) Let Cp(1, 3, . . . ,
⌊
p
2

⌋
) be a circulant graph with odd jump size. Then,

γ(Cp(1, 3, . . . ,
⌊
p
2

⌋
)) = 2. Therefore, the collection of total number of γ-

sets is considered as blocks b = s2, the size of the blocks g = 2, the number
of repetition of the elements of the blocks h = s, the first and second
associates are λ1 = s

2 and λ2 = s
2 (s− 1).

(ii) Let Kp1,p2,··· ,pm
; p1 = p2 = · · · = pm be a complete regular multipartite

graph with m > 2. Then, γ(Kp1,p2,··· ,pm) = p1. Therefore, the collection
of total number of γ-sets is considered as blocks b = m; m > 2, the size of
the blocks g = p1, the number of repetition of the elements of the blocks
h = 1, the first and second associates are λ1 = 1 and λ2 = 0.

(iii) LetG(Zn, N) be a Nilpotent Cayley graph with vertex set Zn = {0, 1, 2, · · · ,
n− 1} such that Zn = s2, s ≥ 2 has a m number of disjoint complete sub
graphs with Zni with i ≥ 1. Then γ(G(Zn, N)) = s. Therefore, there are(
p
s

)
possibilities of choosing γ-sets, and

(
ni

1

)
×
(
ni

1

)
× · · · ×

(
ni

1

)
, m times of

γ-sets. Thus, the collection of total number of γ-sets is considered as blocks
b = st; t ≥ 2, the size of the blocks g = s, the number of repetition of the
elements of the blocks h = st−1, the first and second associates are λ1 = 1
and λ2 = st−1 − 1. □

Non-existence of LS-Design
The non-existence of LS-Design from the α-sets, β-sets and γ-sets of a graph is
given by the condition 2 ≤ g ≤ s, where g is the cardinality of the block. For more
details, we refer to ([4], [5] and [7]).

Theorem 4.6. The collection of α-sets, β-sets, and γ-sets of an irregular graph
with p ≥ 3 vertices do not form an LS-Design.

Proof. Let G be an irregular graph with p ≥ 3. Then, it is clear that deg(vi) ̸=
deg(vj); 0 ≤ i, j ≤ p− 1. Therefore, the elements of the α-sets, β-sets and γ-sets of
the graph have unequal replications. Hence, an irregular graph does not form an
LS-Design. □

Observation 4.2. Some of the regular graphs do not form the LS-Design from
the α-sets, β-sets and γ-sets of graphs. For example, the Complete graph Kp with
p ≥ 2, we have α(Kp) = p− 1 and β(Kp) = γ(Kp) = 1.

5. Matrix representation and their polynomials of CS, IS and DS

A graph polynomial P is a graph invariant whose values are polynomials, which
is characterized by matrices P 1 and P 2 obtained from the parameters of the second
kind.
The graph with 2× 2 association schemes
By Theorem 2.1, Theorem 3.1 and Theorem 4.1, we have the association scheme of
the LS-Design arsing from α-set, β-set and γ-set of a hypercube Q2 are given by
an array of 2 × 2. Therefore, two vertices lying in the same row or column of the
association scheme are the first associates, while two vertices not lying in the same
row or column are the second associates. Hence, the matrices P 1 and P 2 give the
correct values of second kind parameters of graphs with order 4. Then,

P 1 =

(
0 1
1 0

)
and P 2 =

(
2 0
0 0

)
.
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Thus, polynomials of the matrices P 1 and P 2 are P(P 1, x) = x2 − 1 with roots
x = ±1 and P(P 2, x) = x2 − 2x with roots x = 2 or x = 0. Therefore, the
polynomials are not unique.
The graph with 3× 3 association schemes
By Theorem 3.2 and Theorem 4.2, we have the association scheme of the LS-Design
arsing from β-set of G1 and G2, and γ-set of G4, G4(a), G4(b) and G5 are given by
an array of 3× 3. Then, the matrices P 1 and P 2 give the correct values of second
kind parameters of graphs of order 9. Therefore,

P 1 =

(
1 2
2 2

)
and P 2 =

(
2 2
2 1

)
.

Hence, the polynomials of the matrices P 1 and P 2 are P(P 1, x) = P(P 2, x) =

x2 − 3x− 2 with roots x =
1

2

(
3±

√
17
)
. Therefore the roots are unique.

The graph with 4× 4 association schemes
By Theorem 3.3 and Theorem 4.3, we have the association scheme of the LS-Design
arsing from β-set of a Shrikhnde graph L2(4) and γ-set of a Clebsch graph G and
a Hypercube Q4, a Shrikhnde graph L2(4) and a product graph C4 ×C4 are given
by an array of 4× 4. Then the matrices P 1 and P 2 give the correct values for the
parameters of the second kind. Then,

P 1 =

(
2 3
3 6

)
and P 2 =

(
2 4
4 4

)
.

Hence, the polynomials of the matrices P 1 and P 2 are P(P 1, x) = x2−8x+3 with

roots x = 4±
√
13 and P(P 2, x) = x2 − 6x− 8 with roots x = 3±

√
17. Therefore,

the polynomials are not unique.
The graph with 5× 5 association schemes
By Theorem 4.4, we have the association scheme of the LS-Design arsing from γ-set
of a Torus graph C5 × C5 is given by an array of 5 × 5. Hence, the matrices P 1

and P 2 give the correct values of second kind parameters of graphs with order 25.
Then,

P 1 =

(
3 4
4 12

)
and P 2 =

(
2 6
6 9

)
.

Hence, the polynomials of the matrices P 1 and P 2 are P(P 1, x) = x2−15x+20 with

roots x =
1

2

(
15±

√
145

)
and P(P 2, x) = x2−11x−8 with roots x =

1

2

(
11±

√
89

)
.

Therefore the polynomials are not unique.
The graph with s× s association schemes
By Theorem 3.4 and Theorem 4.5, we have the association scheme of the LS-
Design arsing from β-set of a circulant graph Cp(2, 4, . . . ,

⌊
p
2

⌋
) with p = s2; p = 4n

or 4n + 1 or 4n + 2 ; n ≥ 1, a complete regular multipartite graph Kp1,p2,··· ,pm ;
p1 = p2 = · · · = pm; m > 2 and a Nilpotent Cayley graph G(Zn, N), and γ-set
of a circulant graph with odd jump size, a complete regular multipartite graph
Kp1,p2,··· ,pm

; p1 = p2 = · · · = pm with m > 2 and a Nilpotent Cayley graph
G(Zn, N) are given by an array of s× s. Therefore, two vertices lying in the same
row or the same column of the association scheme are the first associate, while two
vertices not lying in the same row or the same column are second associates.



172 B. CHALUVARAJU AND SHAIKH AMEER BASHA EJMAA-2023/11(1)

v1 v2 v3 · · · vs
v(s+1) v(s+2) v(s+3) · · · v2s
v(2s+1) v(2s+2) v(2s+3) · · · v3s
...

...
... · · ·

...
v[(s−2)s+1] v[(s−2)s+2] v[(s−2)s+3] · · · v(s−1)s

v[(s−1)s+1] v[(s−1)s+2] v[(s−1)s+3] · · · vs2

Association scheme for the graphs with an array of s× s.

Therefore, the matrices P 1 and P 2 give the correct values for the parameters of
the second kind. Then,

P 1 =

(
s− 2 s− 1
s− 1 (s− 1)(s− 2)

)
and

P 2 =

(
2 2(s− 2)

2(s− 2) (s− 2)2

)
where 2 ≤ g ≤ s. Hence, the polynomial is characterized by matrices P 1 and P 2

obtained from the parameters of the second kind. Therefore, the polynomials of
the matrices P 1 and P 2 are
P(P 1, x) = s3 − s2x− 6s2 + 2sx+ 10s+ x2 − 5 with roots

x = 1
2

(
s2 ±

√
s4 − 8s3 + 28s2 − 40s+ 20− 2s

)
and

P(P 2, x) = s2(−x)− 2s2 + 4sx+ 8s+ x2 − 6x− 8 with roots

x = 1
2

(
s2 ±

√
s4 − 8s3 + 36s2 − 80s+ 68− 4s+ 6

)
.

6. Conclusion and open problems

In this article, we determine the existence of the Latin square designs with two
association schemes and also, discussed the uniqueness of the polynomials obtained
from the matrices of the associates emerging from the total number of minimum
covering, maximum independent, and minimum dominating sets of certain classes
of regular graphs such as Hypercube, Paley graph, Torus graph, Clebsch graph,
Shrikhande graph. Further, we generalized the parameters of LS-designs of cir-
culant graphs Complete multipartite graphs, and some Nilpotent Cayley graphs.
Finally, we discussed the non-existence of LS-designs and we pose some open prob-
lems.

Open Problem 1. Find the parameters of Latin Square designs emerging from
minimum dominating sets of hypercube Qn, n ≥ 5.

Open Problem 2. Find the parameters of the mutually orthogonal Latin Square
designs from the minimum dominating sets of some regular graphs.

Open Problem 3. Compare the parameters of the Latin square designs and the
mutually orthogonal Latin Square designs emerging from minimum dominating sets
of certain regular graphs.
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