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Abstract Human activity recognition techniques have 

achieved significant advancements in recent years. 

However, the performance of the generalization model 

may be hampered by the methods' heavy reliance on 

human feature extraction. Deep learning methods are 

becoming more and more effective, which has led to a 

lot of interest in employing these approaches to 

understand human behaviors in mobile and wearable 

computing settings. In place of the conventional 

hyperbolic tangent (tanh) activation function for human 

activity recognition, which can be applied in a variety of 

applications, in this study, the main part of LSTM neural 

networks is developed by employing 26 state functions 

to suggest Deep Learning Long Short-Term Memory 

(DLLSTM) classifiers. In LSTM network units, the 

sigmoid and tanh functions are often used as activation 

functions. The vanishing gradient issue that RNNs 

encounter can be effectively solved by LSTM networks. 

The effectiveness of the suggested DLLSTM classifiers 

for classification tasks was investigated using three 

different deep learning optimization techniques. The 

simulation results show that the suggested classifiers, 

which utilize the Modified -Elliott, Gaussian, and wave 

as DLLSTM classifiers, outperform the tanh classifier 

by getting a perfect accuracy rate of 99.92%, 99.5%, and 

99.95% as opposed to their 96.4%, respectively. 

Keywords: HAR, LSTM, DNN, activation Function, 

tanh gate. 
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Human activity recognition (HAR) is crucial to a 

person's day-to-day life. because of its ability to extract 

highly sophisticated information about human actions 

from raw sensor data  [1]. The technology of HAR has 

been a well-liked research direction both domestically 

and internationally with the growth of human-computer 

interaction applications. By taking features from routine 

activities, people might automatically categories the 

many types of human motion and collect the data that 

the body needs to communicate, which in turn serves as 

the foundation for additional intelligent applications. 

Until now, video surveillance, gait analysis, home 

behavior analysis, and gesture recognition have all made 

extensive use of this technology [2], etc. 

Machine learning techniques could heavily rely on 

heuristic manual feature extraction in the majority of 

routine tasks involving the recognition of human activity. 

Human domain knowledge typically limits it[3]. 

Researchers have employed DL approaches to address 

this problem because they can automatically identify the 

necessary traits from raw sensor data during the learning 

phase and combine the low-level original temporal 

information with high level abstraction sequences. 

Applying DL models to the field of HAR is a new area 

of study in pattern recognition. This is because of how 

well they have been used in image classification, voice 

recognition, natural language processing, and other 

areas.  [4]. 

Using a technology deep learning, computers may be 

taught to learn from experience in a manner similar to 

how people do. Instead of relying on a model Machine 

Learning(ML) techniques utilize computer approaches to 

"learn" data directly from data [5]. 

The Hochreiter and Schmidhuber-developed LSTM 

and RNN architectures, has been proven useful for a 

number of learning difficulties, particularly those 

needing sequential information. [6]. The basic elements 

of the LSTM architecture are combinations of 

recurrently connected units, the "vanishing gradient" 

issue arises when an RNN's error function gradient 

varies exponentially with time. During deeper network 
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training, novel LSTM techniques, topologies, and 

activation functions are created to solve the problem of 

vanishing or exploding gradients.[7]. 

In the LSTM network, each memory cell takes the 

position of a neuron. The cell consists of a realistic 

neuron with a repeated self-connection. The most 

frequent activation functions for those neurons in 

memory cells are the gate function     and the state 

function    𝑛  [8]. This study is the first that we are 

aware of that evaluates and discusses the performance of 

the suggested state function    𝑛  DLLSTM classifiers 

and combines a large number of functions in one place, 

using them as state functions instead of the one that is 

generally utilized. The suggested state functions- 

DLLSTM classifiers with various topologies are 

examined more specifically for their misclassification 

errors using the Human activity recognition (HAR) data 

sets. The findings show that the best performance in 

LSTMs is not caused by the activation functions that are 

used the most frequently. 

The studies indicate that the best performance in 

LSTMs is not primarily driven by the most commonly 

used activation functions. Consequently, the following 

are the main focuses of this study: 

1) Assembling a comprehensive list of functions that 

can be applied to DLLSTM classifiers. 

2) Establishing new DLLSTM classifiers that replace 

the conventional    𝑛   function with 26 state 

functions. 

3) Applying the recently created LSTM networks to a 

variety of real-world classification issues, including 

Human activity recognition and picture classification. 

4) Examining the suggested DLLSTM classifiers' 

performance in light of the above classification issues. 

5) Examining the effects of several optimizers’ 

(  adam ),          and   gdm ), on how the 

suggested DLLSTM classifiers learn and how well the 

networks do classification. 

 

1.1. Related Work 

In previous research [6]and [9] a comparison study 

was carried out in which the performance of an LSTM 

network was evaluated when different activation 

functions were switched. This study compared the 

results of the network when different activation 

functions were used. Both of these pieces of research 

arrived to the same conclusion: the switching activation 

functions have an effect on the way the network operates. 

Although the sigmoid function, which is the typical 

activation function in sigmoidal gates, gives remarkable 

performance, it has been discovered that other, 

less-recognized activation functions can provide more 

accurate performance. These alternative activation 

functions have been studied.  

In the literature, several deep learning models have been 

introduced for classification of human activities. In [10], 

Pienaar et al proposed a design of a LSTM-RNN model 

for daily life activities. In [11], Hammarela et al. 

introduced a bi-directional LSTM model using inertial 

sensors to classify a large number of human activities. 

This model was applied on the Opportunity dataset and 

had a F1-Measure of 92.7%. s. In [2], Xia et al. proposed 

a LSTMCNN model for human activity recognition. 

This model was also applied to the huge WISDM dataset 

and achieved a maximum accuracy of 95.85%. However, 

the computational time consumed for the training phase 

was noticeable. Ordonez et al[12] presented a model 

with slightly simple architecture to recognize human 

activities. This model utilized a combination of a 

ConvLSTM model based on seven inertial measurement 

units (IMUS) and twelve accelerometers. It classified 

five activities using the Skoda dataset [12]and achieved 

a F1-Measure of 95.8%. 

Alani et al. [13] proposed LSTM, CNN, and CNNLSTM 

models to classify imbalanced data for human activity 

recognition. These models were applied on the SPHERE 

dataset and achieved accuracies of 92.98%, 93.55%, and 

93.67%, respectively. This work dealt with twenty 

different human activities, but the performance 

evaluation of the models was limited to a single metric. 

Agarwal et al. [14] introduced a RNN-LSTM model to 

recognize human activity, using the WISDM dataset. 

The authors utilized only two response metrics for the 

performance evaluation of the model, and achieved an 

accuracy of 95.78%. 

This study is presented in the paragraphs that follow: 

The DLLSTM structure and activation functions are 

provided in Section 2. Providing the methods is Section 

3. Section 4 presents the results of the simulation of the 

suggested approach. The conclusion of this study is 

presented in Section 5. 

2.  DLLSTM structure and Activation 

functions  

  The parts that follow will provide a quick explanation 

of the DLLSTM structure and the activation functions 

used on the network. 
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2.1. DLLSTM structure 

The data are classified using the simplest DLLSTM with 

one hidden layer, average pooling, and a logistic 

regression output layer. Figure 1 depicts the DLLSTM 

structure, which is made up of the input layer, one 

hidden layer, and the output layer. Equations 1 through 6 

are used to identify the components in each cell. 

𝑓𝑡 =   𝑊𝑓𝜒𝑡 + 𝑈𝑓 𝑡−1 + 𝑏𝑓                    1  

𝑖𝑡 =   𝑊𝑖𝜒𝑡 + 𝑈𝑖 𝑡−1 + 𝑏𝑖                     2  

𝑂𝑡 =   𝑊𝑂𝜒𝑡 + 𝑈𝑜 𝑡−1 + 𝑏𝑜                   3  

∁′
𝑡=   𝑛  𝑊𝑐𝜒𝑡 + 𝑈𝑐 𝑡−1 + 𝑏𝑐                  4  

∁𝑡 = 𝑓𝑡 ⊙ ∁𝑡−1 + 𝑖𝑡 ⊙ ∁′𝑡                        5  

  𝑡 = 𝑂𝑡 ⊙   𝑛   ∁𝑡                             6  

Eqs. 1-3 describe the forget, input, and output gates for 

each DLLSTM cell, with  𝑖𝑡 referring to the input, 𝑂𝑡 

referring to the output and 𝑓𝑡  referring to the forget 

gates. ∁′𝑡  The layer that, at time t in (Eq. 4), is the 

block input specifies the amount of new information that 

must be saved in the cell state at computation time in 

addition to the input gates. ∁𝑡  an update of the cell's 

state as of time t. (Eq. 5) Lastly,   𝑡  is the blocks output 

at the appropriate time (Eq. 6) [15]. 

In Fig. 1, the three gates, as well as the input and output 

functionalities of the DLLSTM cell, are depicted (input, 

forget, and output gates). Point-wise nonlinear logistic 

sigmoid function    and hyperbolic  𝑛 respeclively 

[16]. 

 

 

 
Fig. 1 Architecture of DLLSTM blocks 

2.2. Activation Functions 

 

An activation function is added to an artificial neural 

network (ANN) to support the detection of complex 

patterns in the information and to enable the introduction 

of non-linearity into the network without the need for 

coding. The activation function determines what 

information should be provided to the following neuron at 

the end of the process in the cell model of human brains. 

Exactly the same thing occurs when an ANN uses an 

activation function. This cell is used to collect the output 

from the cell before and change it into a format that may 

be utilized as an input for the cell after. 
 

TABLE 1 Identification and Differentiation of Functions 
Act. Fun. Function Derivative function 

Wave 𝑓   =  1      −  
 𝑓′   = 2     2  −  

 

Softsign 
𝑓   =

 

1 + | |
+   5 𝑓′   =

1

 1 + | |  
 

Aranda 𝑓   = 1   1 + 2   −1  ⁄  𝑓′   =    2  + 1 −  ⁄  

Bi-sig1 𝑓   

=
1

2
 

1

1 +  −  1
+

1

1 +  − −1
  

𝑓′   

=

 1− 

  1− + 1  
+

 − −1

  − −1 + 1  

2
 

Bi-sig2 𝑓   

=
1

2
 

1

1 +  − 
+

1

1 +  − −1
  𝑓′   =

 − 

  − + 1  
+

 − −1

  − −1 + 1  

2
 

Bi-tanh1 𝑓   

=
1

2
[ a h (

 

2
) +  a h  

 + 1

2
 ]

+   5 

𝑓′   =
     (

 + 1
2

) +      (
 
2
)

4
 

Bi-tanh2 𝑓   

=
1

2
[ a h (

  1

2
)

+  a h  
 + 1

2
 ] +   5 

𝑓′   

=
     (

 + 1
2

) +      (
  1

2
)

4
 

Cloglog 𝑓   = 1   −  
 𝑓′   =   −  

 

Cloglogm 𝑓   =1-2 −     
+   5 𝑓′   = 7  −     

 5 

Elliott 
𝑓   =

  5 

1 + | |
+   5 𝑓′   =

  5

 1 + | |  
 

Gaussian 𝑓   =  −  
 𝑓′   =  2  −  

 

Logarith-mic 𝑓   

= {
   1 +   +   5         
   1    +   5         

 

𝑓′   

= {

1

 + 1
             

       
1

1   
                       

      

Loglog 𝑓   =  −  
+   5 𝑓′   =  −  −  

Logsigm 𝑓   =  
1

1    
  +0.5 𝑓′   =

2 − 

  − + 1  
 

Log-sigmoid 
𝑓   =

1

1 +  −  𝑓′   =
 − 

  − + 1  
 

Modified- 

Elliott 
𝑓   =

 

√1 +   
+   5 𝑓′   =

1

   + 1   ⁄
 

Rootsig 𝑓   =
 

1 √1   
+0.5 𝑓′   =

1

√  + 1 +   + 1
 

Saturated 
𝑓   =

| + 1|  |  1|

2
+   5 

𝑓′   =

 + 1
| + 1|

 
  1
|  1|

2
 

Sech 
𝑓   =

2

  +  − 
 𝑓′   =  

2   +  −  

   +  −   
 

Sigmoida-lm 𝑓   =  
1

1    
   +0.5 𝑓′   =

4 − 

  − + 1  
 

Sigmoida-lm2 𝑓   =  
1

1      
   +0.5 

𝑓′   =
2 −   

  −   + 1  
 

Sigt 𝑓   

=
1

1 +  − +
1

1 +  −  1

 
1

1 +  −   

𝑓′   =
2  

   + 1  
 

Skewed-sig 
𝑓   = (

1

1 +  − ) (
1

1 +  −  )

+   5 

𝑓′   =
    + 2  + 3    

   + 1      + 1  
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GELU 𝑓   
=   5  1

+  a h (√2  ⁄   +   447   )  

𝑓′   
=   5  a h    356  +   797  
+     535  

+   398           356  

+   797  +   5 

ELU 
𝑓   = {

                     𝑖𝑓    

     1    𝑖𝑓    
 𝑓′   = {

1                      𝑖𝑓    

𝑓   +         𝑖𝑓    
 

SELU 
𝑓   =  {

                     𝑖𝑓    

     1    𝑖𝑓    
 𝑓′   =  {

1        𝑖𝑓    

     𝑖𝑓    
 

A terrible choice of activation functions can cause the 

neural network's gradients to vanish or explode, as well as 

cause input data to be lost. The learning algorithm, the 

activation functions used in the network and the network 

structure between cells are the three main factors that 

affect how well networks operate. The effectiveness of the 

network is significantly impacted by each of these factors 

[17]. The relevance of the learning algorithm has 

dominated research on NNs, whereas the activation 

functions that are used in these networks have been 

ignored. [18]. 

In this study, the LSTM network is reconstructed by 

substituting one of the functions indicated in Table 1 for 

each of the    𝑛    activation functions found in 

Equations 4, 5, and 6. Furthermore, we evaluate the 

effects of employing the 26 various functions in 

   𝑛  gates of a fundamental DLLSTM cell on network 

performance for classification. The tanh is an additional 

name for the hyperbolic tangent formula. Follows this 

definition: 

 

  𝑛    =
sinh    

cosh   
                    7  

The sigmoid   function has the following formula: [19]. 

     =
1

   −1
                      8  

 

Table1 show our exhaustive list of 26 such functions, 

which is further explained below. We found through 

experimentation that some functions can be used as 

network activation functions by raising their value by a 

factor of 0.5. Numerous earlier researches have noted 

the modification of the variety of functions[20]. 

In Table1, the wave suggested by Hara and Nakayamma 

is the first function [21]. A second alternative is the 

Softsign function, which was [22], Aranda introduced by 

Gomes which is Aranda [23]. The 4th through 7th 

functions are, respectively, the Bisig-1, Bi-sig-2, 

Bi-tanh-1, and Bi-tanh-2 functions suggested by Singh et 

al. [24].The next presents version of Clog-log, and 

Cloglog-m[9]. Next come the Elliott, Gaussian, 

logarithmic, the 13
th

 complementary log–log[25]. 

Logsigm the logistic sigmoid comes next as called 

Log-sigmoid, followed by the Modified Elliott 

function[6]. The 17th function is a sigmoid function with 

roots , called Rootsig[26]. The 18th to 21th functions are 

the Saturated, the hyperbolic secant (Sech), and two 

modified sigmoidals labeled as Sigmoidalm and 

Sigmoidalm2[3]. The tunable activation function 

proposed by Yuan et al and labeled as Sigt is the 22th 

function[27]. Next is a skewed-sig derivative activation 

function proposed by Chandra et al.  labeled as 

skewed-sig[28]. The 24
th
 function (GELU) [29].  Come 

last (ELU)and (SELU)[30].  

 

3. Methodology 

In order to determine how different functions from Table 

1 impacted the performance of the DLLSTM classifiers, 

we modified the    𝑛  function, which is used to select 

this option cell state (input) and update the hidden state 

(output). In order to study the effects of employing 

alternative state functions on the performance of the 

DLLSTM classifiers, the suggested DLLSTM classifiers 

will be first learned with the default gate function   , 

after which they are trained with a  ha d  

 igm id function. Two identical    𝑛   gates are used 

in each combination, and they are selected from the 

activation function list in Table 1 for each structure. 

  The development of learning processes relies heavily 

on optimization algorithms. The goal of the training 

process is to develop models with weight and bias 

changed to minimize the loss function in order to find 

one that will generate better outcomes. DNN can be 

viewed as an optimal solution that uses a reliable 

training process and speedy convergence with gradient 

methods to find a global optimum[31]. The choice of the 

optimal optimizer for a particular scientific issue is 

challenging. The network might remain in the local 

optimal solution during training if the network's 

optimizer strategy is chosen poorly, which would have 

no good effects on learning. To determine the best 

DLLSTM-classifiers for the suggested ones, research is 

required to evaluate the efficacy of various optimizers 

based on the data used.  adam)  (Adaptive Moment 

Estimation)[32],            (Root Mean Square 

Propagation) [33], and   gdm   (Stochastic gradient 

descent momentum)[34]. 

4. Results and discussion 

The suggested DLLSTM classifiers are trained using the 

BPTT approach [30] in a variety of optimizers, 

including      ),        and          . The 

classifiers are developed using 100 hidden units for each 

activation function. For each trial, the initial model 

parameters are selected at random[35]. Each 

DLLSTM-based classifier's loss and accuracy are 
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determined using the Human activity recognition (HAR) 

results.  

   The evaluation requirements for the classifiers 

include accuracy. Accuracy is what determines how 

much testing information has been correctly recognized. 

It matches the definition given below: 

 

𝐴  𝑢𝑟  𝑦 =
𝑛𝑢𝑚𝑏 𝑟 𝑜𝑓  𝑟𝑢   𝑙   𝑖𝑓𝑖 𝑑   𝑚𝑝𝑙  

 umbe   f    a   e    am  e 
∗ 1   

                (9) 

  A loss is the variation in predictions made by the 

classifier and the initial classification data. Several 

functions can each represent a different aspect of the loss 

function. The loss function employed in the current paper 

is the crossentropyex loss function. The definition given 

below 

              =  ∑ ∑             ̂      
 
   

 
    

(10) 

 

   Where 𝑁 is the quantity of observations,   is the 

amount of categories, 𝑋𝑖𝑗 is the 𝑖th categorized data for 

the 𝑗th c amount of categories lass and  �̂�𝑖𝑗 is the state 

function- classifier output for sample 𝑖 for a category 𝑗. 
      The deep learning toolbox in MATLAB R2019b 

was used for all simulations. 

 

4.1.  Dataset Description  

The dataset shows how to use the DLLSTM network to 

categorize each time step of sequence data. DNN can be 

trained to categorize each time step of sequence data 

using a sequence-to-sequence DLLSTM network. The 

DLLSTM network enables you to create a distinct 

prediction for each individual timestamp of the sequence 

data. The dataset uses sensor data from a smartphone 

that the subject is wearing. The example trains an LSTM 

network to recognize the wearer's actions using time 

series data that reflect accelerometer measurements 

taken in three different orientations. The training data 

consists of time series data from seven different 

individuals. Each sequence has three components and 

varies in length. The data set consists of six training 

observations and one test observation. 

Table2 highlights the architecture, training possibilities, 

and hidden neuron size of the suggested DLLSTM 

classifiers. For each design, the Human Activity 

Recognition (HAR) data are used to estimate the 

correctness and losses. The basic variables for each test 

are similar and are not changed for each implementation 

of the DLLSTM classifier. 
 

Table2 highlights the architecture of the suggested DLLSTM 

classifiers. 

Parameters Values 

Input data size 3 

Measurements of hidden neurons 100 hidden neurons 

Gradients Threshold 2 

Number of Epochs 60 

initially weighted networks Random 

Optimizers  adam),          , and 

  gdm  

functional loss Cross entropy 

 

Tables 3 and 4 show the real classification accuracy 

percentages for each activation function DLLSTM 

classifier for human activity recognition (HAR) 

classification that used the optimizers 

(         , adam), and   gdm ), also using      

and  ha d   igm id functions. All of the training data 

is provided to the classifier in small batches at every 

epoch, where tanh is used as the DLLSTM structure's 

default function, the observed results of the tanh 

DLLSTM classifiers are used as a benchmark for 

comparison. 

 

Table 3 shows that DLLSTM classifiers are the most 

effective with the Adam optimizer. When compared to 

the   𝑛   DLLSTM classifier, the accuracy range of 

the DLLSTM classifier's classification results is 94–

99.8%. Aggregated data show that 10 suggested 

DLLSTM classifiers work better than the conventional 

function   𝑛  , but only the wave DLLSTM classifier 

is the best of all with 99.8% correctness. 

 The performance curves for the suggested wave 

DLLSTM classifier, which has the best performance, 

and the conventional    𝑛   DLLSTM classifier are 

shown in Figs. 2–5. 

Table 4 displays the performance of all classifiers tested 

when the  ha d   igm id function was utilized in 

place of     function for classification. The DLLSTM 

classifier, which is based on   𝑛  , yields an efficiency 

of 96.4587%; 14 other DLLSTM-based classifiers with 

accuracy varying from 93.9 to 99.95% are also 

effective. 

The tabulated results show that 12 of the suggested 

DLLSTM classifiers do a better job than the Tanh 

DLLSTM classifier. The Wave DLLSTM classifier does 

the best job (99.95%). 

The performance curves for the suggested wave 

DLLSTM classifier, which has the best performance, 

and the conventional    𝑛   DLLSTM classifier are 

shown in Figs. 6–9. 

In terms of total performance, the suggested DLLSTM 

classifiers that use a hard-sigmoid function do better 

than those that use a     function. 

 

Table 3 A Comparing the Results of Various Suggested 
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DLLSTM Classifiers Using     Function, and ( adam), 

         and  gdm ) Optimizers for the Human Activity 

Recognition (HAR). 

 

 

 

 
(a) 

 
(b) 

Fig.2 (a) and (b) are the performance curves for the 

suggested DLLSTM classifier and       using 

   function, and different optimizers. 

 

State 
 Act.  

Fun. 

Optimizer & Accuracy  Gate  
Act. 

 Fun. 

 
 adam              gdm  

Tanh 94.5135 92.1622 93.5432 

S
ig

m
o

id
 

 
 

Aranda 76.2162 70.2703 61.8919 
Gaussian 99.6 95.4 79.94 

Wave 99.8 89.8 64.4 

Softsign 99.7 98.9 85 
GELU 34.25 40.5946 25.4643 

Cloglog 94.5 87.56 68.6216 

Cloglogm 99.8 95.1351 80.4054 
Rootsig 28.3691 95.1351 68.909 

Sigt 23.6971 78.9129 83.9 

Sech 53.62 95.2162 85.3 
Loglog 96.66 90.8108 28.4324 

Elliott 94.8 87.8 80.8 

Bi-sig1 70.1622 48.1081 62.1622 
Bi-sig2 55.25 48.9189 60.2703 

Bi-tanh1 99.757 95.1351 95.1351 

Bi-tanh2 99.57 94.8649 95.6757 
Logsigm 20.8108 14.3243 15.1351 

Logsigmoid 42.1622 38.3784 32.4324 

ModifiedElliott 99.87 95.4 83 
Saturated 26.162 92.973 78.648 

Sigmoidalm 40.6486 32.9730 66.2162 

Sigmoidalm2 48.9189 42.9730 22.973 
Skewed-sig 11.2379 12.1460 19.327 

Logarithmic 26.2581 28.3691 29.25 

ELU 23.2587 23.6971 25.372 
SELU 27.0231 27.369 29.369 
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(a) 

 
(b) 

Fig.3 (a) and (b) are the performance curves for the 

suggested DLLSTM classifier and       using 

   function, and different optimizers. 

 

 
(a) 

 
(b) 

Fig.4 (a) and (b) are the performance curves for the 

suggested DLLSTM classifier and       using 

   function, and different optimizers. 
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(a) 

 
(b) 

Fig.5 Comparing the best result of DLLSTM classifiers 

using various optimizers with   . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tablel3. A Comparing the Results of Various Suggested 

DLLSTM Classifiers Using the               Function, 

and (     ),          and      ) Optimizers for the 

Human Activity Recognition (HAR) 
 

State 
 Act. 

Fun. 

Optimizer & Accuracy Gate 
Act. 

Fun. 

 

 adam              gdm  

Tanh 96.4595 94.8919 94.3243 

H
a

rd
-s

ig
m

o
id

  
  

Aranda 90.2703 93.7838 95.5459 

Gaussian 99.54 96.149 76.224 
Wave 99.95 96.30 95.948 

Softsign 98.57 96.14 76.22 
GELU 93.3514 94.5946 95.541 

Cloglog 95.70 88.0909 64.85 
Cloglogm 99.29 97.059 94.762 
Rootsig 99.6 97.3 80 

Sigt 93.7811 85.1892 72.9730 
Sech 96.1622 95.9459 85.6757 

Loglog 98.8 90.8 54.8 
Elliott 99.8 83.8 60 
Bi-sig1 62.7054 54.0541 25.9459 
Bi-sig2 79.5478 60.5478 43.7854 

Bi-tanh1 99 96 75.7 
Bi-tanh2 99.92 97.869 76.298 
Logsigm 12.365 11.250 9.2587 

Logsigmoid 25.3671 26.814 25.147 
ModifiedElliott 99.92 97.9 72.684 

Saturated 31.4595 30 18.3784 

Sigmoidalm 53.2432 55.2216 25.2432 
Sigmoidalm2 29.1892 24.2432 15.9459 

Skewed-sig 12.3628 13.2670 13.6932 

Logarithmic 24.147 25.184 26.7581 
ELU 20.1439 20.9314 23.1247 

SELU 23.2140 28.8561 30.7134 
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(a) 

 
(b) 

Fig.6 (a) and (b) are the performance curves for the 

suggested DLLSTM classifier and        use 

               function and different optimizers. 

 

 
(a) 

 
(b) 

Fig.7 (a) and (b) are the performance curves for the 

suggested DLLSTM classifier and the       using a 

              function, and different optimizers. 
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(a) 

 
(b) 

Fig.8. (a) and (b) are the performance curves for the suggested 

DLLSTM classifier and  𝐭 𝐧  using       
        function and different optimizers. 
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(a) 

 
(b) 

Fig.9 Comparing the best result of DLLSTM classifiers 

using various optimizers with                
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Fig.10 Comparing the best result of DLLSTM classifiers 

using various optimizers with               and 100 

hidden units for the Human Activity Recognition (HAR). 

 

In Fig. 10 the efficiency obtained by the more strong 

function DLLSTM classifiers, which make use of 

              functions, These classifiers are 

developed using 100 hidden neurons and three 

optimizers (     ),          , and       ). 

 The wave DLLSTM classifier clearly outperforms the 

tanh DLLSTM classifier by getting a perfect accuracy 

rate of 99.9%, as opposed to their 94.3% while using the 

     ) optimizer. The Modified-Elliott DLLSTM 

classifier beats the        DLLSTM classifier when 

employing the            optimizer, obtaining 97.9% 

accurate classification accuracy compared to 94.8% for 

the last. The greatest classifier among those that have 

been suggested is the wave DLLSTM classifier. 

The wave DLLSTM classifier beats the tanh DLLSTM 

classifier by getting an accuracy rate of 95.9% as 

opposed to 94.3% by utilizing the       optimizer. 

Generally, the Modified-Elliott, Gaussian, Wave, 

Bi-tanh2, and Softsign-based DLLSTM classifiers beat 

their peer       DLLSTM classifier. Aside from that, 

the examined classifiers that use the       
        function work better than those that use the 

    function. 

Finally, Table 4 presents a comparison of the accuracy 

between this work and previous published works. We 

see that the accuracy achieved by the DLLSTM model, 

(99.9-99.5) %, is better than the models referred in [10], 

[11], [2], [12], [13] and [14]. 

Table 4. Comparison of the accuracy between this work and 

previous works. 

Ref. Model Accuracy  

[10] LSTM-RNN 94% 

[11] Bi-directional -LSTM 92.2% 

[2] LSTM-CNN 95.85% 

[12] ConvLSTM 95.8% 

[13] LSTM 

CNN 

LSTM-CNN 

96.6 

94.5 

97.7 

[14] RNN-LSTM 95.78%. 

This 

work 

LSTM(default) 

DLLSTM(propose) 

96.4% 

99.9-99.5% 

 

 

5. Conclusions 

The two main types of activation functions shown in 

DLLSTM cells are state conventional       function 

and gate conventional    function. In this paper, 26 

alternative functions to the tanh were used to create 

state-function DLLSTM classifiers. The Human Activity 

Recognition dataset of 100 hidden units has been used to 

evaluate the performance of the suggested classifiers. 

They are also adjusted for internal weights and biases 

using the      ),           and 

      optimization methods. The study revealed that 

some less well-known functions, such as Modified 

-Elliott, Gaussian, Bi-tanh2, Wave, and Softsign, 

produce the fewest losses in comparison to the most 

widely used functions and also allow classifiers to 

produce more promising results than those that use the 

widely used     )function. Furthermore, compared to 

the other functions, the Skewed-sig, logarithmic, ELU, 

SELU, and saturated functions perform poorly in the 

DLLSTM cells. The outcomes also demonstrate that the 

suggested classifiers that utilize the       
        function outperform those that utilize the 

   function. Also, suggested classifiers that were trained 

with     ), and         , were better than those 

that were trained with      . The following ideas are 

suggested for future research: 

 Analyzing the effectiveness of the suggested 

DLLSTM-based classifiers using a variety of 

optimization methods, such as Ada-delta, Adagrad, 

AMS-grad, and Nadam. 

 Investigating the effectiveness of the suggested 

DLLSTM classifiers using additional functions, like 

probit and sincos. 
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