# IMPACTS OF POTASSIUM, AUXIN AND CYTOKININS ON YIELD AND QUALITY OF POTATO CV. HERMES

Said M. Gabr, Alaa El-Den H. Roshdy, Sary H. Brengi, Ibrahim A. Abo El-Saad And Mostafa M. Abdel-Halim

Horticulture Department, Faculty of Agriculture, Damanhour University, Damanhour, El-Beheira, PO Box 59, Egypt

# ABSTRACT

Two field experiments were conducted in the summer seasons of 2020 and 2021 to study the effect of potassium fertilization (0, 40, and 80 Kg K<sub>2</sub>O fad<sup>-1</sup>), foliar application of NAA (0, 5 and 10 ppm), and CKs as two types (BAP and TDZ at 0, 10 and 20 ppm) on yield and quality of potato tubers c.v. "Hermes". Generally, the examined levels of each studied factor were affected significantly on all yield and tubers quality traits, in both seasons. Also, the best level of each factor was 80 Kg K<sub>2</sub>O fad<sup>-1</sup>, 5 ppm for NAA and 10 ppm TDZ for CKs. According to the first order interaction between the pairs of three main factors, the best treatment combinations were 80 Kg K<sub>2</sub>O+5 ppm NAA, 80 Kg K<sub>2</sub>O+10 ppm TDZ, and 5 ppm NAA+ 10 ppm TDZ, in both seasons. Moreover, the second order interaction among the three studied factors was found to affect significantly all the studied characters with superiority of treatment combination of 80 Kg K<sub>2</sub>O+5 ppm NAA+10 ppm TDZ, in both seasons. The treatment combination of 80 Kg K<sub>2</sub>O+5 ppm NAA+10 ppm TDZ could be a recommended for increasing potato yield with keeping high quality of potato tubers.

Keywords: potato, K, NAA, cytokinins, yield, tubers quality

#### **INTRODUCTION**

Potato (*Solanum tuberosum* L.) is the third most substantially produced and consumed tuber crop around the globe with 1.3 billion people consuming it as a staple food crop (more than 50 kg/person/year) (**Devaux** *et al.*, **2020**).Potato is considered the second vegetable crop in terms of area in Egypt after tomatoes; the cultivated area in 2021 was 501026 faddan produced approximately 5,811,901 tones, while the winter season

| J. Agric. & Env. Sci. (Damanhour University) | 2022, 21 (3): 101-126 |
|----------------------------------------------|-----------------------|
| Print: ISSN 1687-1464                        | Online: 2735-5098     |

(2018/2019) was 299,185 faddan (Reports of Ministry of Agriculture and Land Reclamation, Egypt, 2021). The increasing of tubers yield in line with high tubers quality is a contentious concern for the researchers.

Potassium (K) is an important macronutrient for growth and development of the plant by inducing numerous biochemical and physiological processes, and also promotes synthesis of protein, carbohydrate metabolism, and activation of enzyme (Ma *et al.* 2012; Hasanuzzaman *et al.* 2018; Naciri *et al.* 2021). It could summarize the physiological effects of potassium nutrition on potato plants in translocation of assimilates and protein synthesis, osmotic regulation, ionic balance, and stomatal and enzymatic activity that affect plant growth (Oosterhuis *et al.*, 2014; Bishwoyog and Swarnima, 2016; Naumann *et al.*, 2020).

The 1-Naphtalene acetic acid (NAA) is an organic compound with formula of  $C_{10}H_7CH_2CO_2H$ . The synthetic plant hormone NAA is a member of auxin family, which is commonly used in horticultural crops. It is commonly used in relatively low concentration to elicit auxin responses in cell growth, cell division, fruit setting and rooting (**Sun and Hong**, **2010**). Many of previous research papers were declared that the foliar application of synthetic auxin such as NAA can increase plant growth, yield and its components, quality parameters and nutrition composition, fruit set and development in many vegetable crops (**Vafaee** *et al.* **2020 on potato**; **Naz** *et al.* **2020** on tomato; **Aashish** *et al.* **2022** on chilli; **Ahmed** *et al.* **2022** on pepper **and El-Areiny** *et al.* **2022** on potato).

Cytokinins (CKs) are classical plant hormones; they regulate many processes, such as cell division, shoot and root growth rates, chloroplasts development, leaf senescence, resistance to adverse factors, ... etc. (**Kieber and Schaller, 2014**). Exogenous application of synthetic CKs e.g., N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), 6-binzylaminopurine (BAP) and thidiazuron (TDZ) was resulting in elevating many processes in treated plants related to vegetative growth, yield, quality, and nutrition

| J. Agric. & Env. Sci. (Damanhour University) | 2022, 21 (3): 101-126 |
|----------------------------------------------|-----------------------|
| Print: ISSN 1687-1464                        | Online: 2735-5098     |

composition (Al-muhamadi and Al- essawi 2015 on potato; Ahmed *et al.* 2021 on potato; Mijwel and Ridha 2021 on cauliflower; Samy and El-Zohiri 2021 on garlic; El-Areiny *et al.* 2022 on potato and Kumari *et al.* 2022 on okra). Accordingly, the objectives of this study were to determine the optimal doses of potassium, naphthalene acetic acid and cytokinins and their interactions on yield and qualityof potato cultivar (Hermes)

## **MATERIALS AND METHODS**

Two field experiments were carried out during the two successive summer seasons of 2020 and 2021. The experiments were performed in a private farm, at Abou Elmatamer (30.9118° N, 30.1719° E), El-Behiera Governorate, Egypt, under open field conditions. The aim of this study is to determine the effect of potassium, naphthalin acetic acid and cytokinins treatments as well as their interactions on yield and tuber and quality of potato plants, cultivar "Hermes".

The experimental site soil texture was classified as sandy clay loam with pH range of 7.6 - 7.8, potassium content range of 0.96 - 0.95 meq L<sup>-1</sup>, and available potassium range of 327 - 330 meq L<sup>-1</sup>, in the first and second seasons, respectively (Agric. Directorate Lab of Damanhur city, El-Behera Gov., Egypt).

#### **Potato cultivation**

The experimental field was polughed and pulverized. Then, the soil was ridged into rows 0.80 m in width and divided into plots. Certified imported potato seeds of "Hermes" cultivar was used after cutting. The used seed tubers were exported from Scotland. Potato seed tubers pieces were, approximately, 40 g in weight that containe at least 1 eye for each. Planting date was on the 19<sup>th</sup> of January in both seasons in dry soil and then irrigated. Potato seed tubers pieces were planted at 0.25 m apart between hills on one side of the ridge (about 20000 plant fad<sup>-1</sup>).

#### The experimental treatments

| J. Agric. & Env. Sci. (Damanhour University) |  |
|----------------------------------------------|--|
| Print: ISSN 1687-1464                        |  |

Treatments consisted of three main factors. The first factor was the soil application of potassium fertilizer in three levels (0, 40, and 80 kg fad<sup>-1</sup>), the second factor was the foliar application of naphthalene acetic acid (NAA) in three levels (0, 5, and 10 ppm), and the third factor was the foliar application of cytokinins (CKs) as 6- binzylaminopurine (BAP) and thidiazuron (TDZ) in three levels 0, 10, and 20 ppm. The NAA, BAP and TDZ were purchased from El-Gomhouria Company for Chemicals, Alexandria, Egypt.

The potassium fertilization, as well as the CKs foliar application, was applied twice after 45 and 65 days from planting, while the NAA foliar applications were applied once at 35 days. All precautions and precision followed during weighing, dissolving, spraying of the three independent factors. Foliar application of NAA, BAP and TDZ were done afternoon during both seasons, to avoid deteriorations caused by the effect of high temperatures and ambient atmosphere.

# **Experimental layout**

The experimental layout was a randomized complete block design (RCBD), with three replicates in a split-split-plot system arrangement where the mineral potassium fertilizer levels were allocated in main plots and the synthetic auxin (naphthalene acetic acid) treatments were assigned as the sub-plots; whereas, the CKs (BAP and TDZ) were devoted in sub-sub-plots. Each replicate included 45 treatments. Each treatment contains five rows, 0.8 m in width and 3 m long with total area of 12 m<sup>2</sup>. All treatment was distributed in the experimental units randomly. All other recommended agricultural practices for commercial potato production were followed. Harvesting was accomplished after 120 days of planting during both seasons.

#### **Data Recorded**

#### Yield and its components

At harvesting time (120 days from planting) the yield and its components characters were recorded for 10 plants from each treatment namely average tuber fresh weight (g), number of tubers plant<sup>-1</sup>, average tuber yield plant<sup>-1</sup>

(g), total tubers yield fad<sup>-1</sup> (ton) that estimated by multiplying the tubers weight plot<sup>-1</sup> by the factor of 350 (4200 m<sup>2</sup>/12 m<sup>2</sup>), then divided by 1000.

#### Tubers quality

Tuber specific gravity was determined by the method of **Dinesh et al.** (2005) and determined from the equation of **Smith** (1977) as follows:

 $SG = \frac{Tuber weight in the air}{Tuber weight in the air - Tuber weight in the water}$ 

Vitamin C was measured by titration with iodide potassium according to the method of **Ranganna** (1986) and calculated as mg vitamin C /100 g, fresh weight.

Starch and reducing sugars (as dry weight basis), were determined for each tubers sample according to the method described by **Malik and Singh** (1980).

#### **Statistical Analysis**

All recorded data were statistically analyzed by CoStat computer software (COSTAT, 2005) version 6.4 from cohort software. The revised least significant difference test (RLSD) was applied at 0.05 confidence level to compare means of the different treatments by using the same program.

# **RESULTS AND DISCUSSIONS**

# Yield and its components

Effect of potassium

The main effect of potassium on the tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield per faddan, of potato plants exhibited significant effect in all the studied characters compared to the control treatment, in both seasons (Table 1). However, the differences between potassium at either 40 or 80 kg K<sub>2</sub>O fad<sup>-1</sup> are not significant in tuber number, in the first season only. For instance, application of potassium at 80 kg K<sub>2</sub>O fad<sup>-1</sup>

| J. Agric. & Env. Sci. (Damanhour University) |  |
|----------------------------------------------|--|
| Print: ISSN 1687-1464                        |  |

recorded the highest average values of tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield per faddan compared to the other treatments, in both seasons. However, the differences between potassium at either 40 or 80 kg K<sub>2</sub>O fad<sup>-1</sup> are not significant in tuber number, in the first season only. Also, the favorite treatment (80 kg K<sub>2</sub>O fad<sup>-1</sup>) the estimated percentages increase in tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup> were (3.40 and 3.35 %), (21.35 and 20.18 %), (25.21 and 24.13%), and (25.19 and 24.17%) compared to the control treatment in the first and second season, respectively.

This effect could be return to low concentration of K availability and low organic matter % in soil before planting as mentioned before. These results are in harmony with results of many other researchers who found a significant role of K fertilization in increasing potato tubers yield and its components (**Trehan** *et al.*, 2009; Abd El-Latif *et al.*, 2011; Berisha *et al.*, 2014; and Yakimenko and Naumova, 2018). This favorable role of K could be due to its involvement in many processes of the plant physiology (Youssef *et al.*, 2007). It is considered as a major osmotic active cation in plant cell (Mehdi *et al.*, 2007), where it enhances water uptake and root permeability and acts as a guard cell controller, besides its role in increasing water use efficiency (Zekri and Obreza, 2009). It, also, plays an important role in yield and quality of the tuber due to its high movement in plant tissues (Mengel and Kirkby, 2012). Moreover, according to Wassie (2009), an appreciable increase in yield was noted in response to K application fertilizers, specifically soils with low K level.

#### Effect of naphthalene acetic acid (NAA)

Concerning the main effect of NAA, it is clear from results in Table (1) that there were significant differences between values of all yield parameters, in both seasons. The application of NAA with 5 ppm was the most effective treatment that to give the highest mean values of yield and its components, in both seasons. This treatment gave increment percentages over control estimated by 3.53%, 15.59%, 19.80%, and 19.82% for tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup>, respectively as an average of both seasons. The present results are in contract with those

| J. Agric. & Env. Sci. (Damanhour University) |
|----------------------------------------------|
| Print: ISSN 1687-1464                        |

obtained by **Aboud and Abd-Alrahman (2020)** on potato who reported that spraying plants with 50 ppm of tryptophan increased No. of tubers per plant and total yield compared to control. Moreover, **Vafaee** *et al.* (2020) reported that the highest mean values fresh weight of tuber, and potato yield were obtained from the treatment containing NAA compared with control. Also, **Ahmed** *et al.* (2022) on pepper found that NAA at 10 or 20 ppm increased number of fruits/plant, fruit set %, fresh weight of fruit/ plant and total yield/fad. compared to control. The positive effect of NAA could be due to enhancing the source-sink relationship thus improved the yield (**Huang** *et al.*, 2018).

#### Effect of cytokinins (CKs)

Regarding the main effect of cytokinin (BAP and TDZ) on tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup>, results existing in Table 1 revealed that adding of cytokinin as (6-binzylaminopurine or thidiazuron) showed significant impacts in all the studied yield characters compared to the control treatment, in both seasons. Moreover, spraying of thidiazuron (TDZ) at 10.0 ppm recorded the highest average values of all the studied yield characters compared to the other treatments, in both seasons. Adding TDZ at 10.0 ppm showed a percentages increases in tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup> were (10.67 and 10.27 %), (34.00 and 29.66 %), (48.10 and 42.97%), and (48.10 and 42.97 %) compared to the control treatment in the first and second season, respectively. The current results are in contract with those obtained by numerous authors (Bhattaraia, 2017, Nuraini et al., 2021 and Lahijani et al., 2021) who stated that cytokinins can hasten and improve potato tuberization. Also, Njogu et al. (2015) reported that increase the level of CKs, led to, significant, increase in number of tubers per plant and yield (ton/ha). Moreover, El-Areiny et al. (2022) indicated that soaking cut tuber explants of potato in 10 mg L<sup>-1</sup> CPPU for 10 min before planting gave the highest average tuber weight, number of tuber and total yield ton fad<sup>-1</sup> compared with untreated plants.

2022, 21 (3): 101-126 Online: 2735-5098

| Treatments*              |         | U  | veight (g) | Tu      | Tubers<br>number |       | Yield plant <sup>-1</sup> (g) |          | l yield<br>fad <sup>-1</sup> ) |        |
|--------------------------|---------|----|------------|---------|------------------|-------|-------------------------------|----------|--------------------------------|--------|
|                          |         |    | 2020       | 2021    | 2020             | 2021  | 2020                          | 2021     | 2020                           | 2021   |
| K<br>fod <sup>-1</sup> ) |         | 0  | 127.11c    | 128.23c | 6.23b            | 6.64c | 795.95c                       | 854.73c  | 15.92c                         | 17.09c |
| N S                      | Iat     | 40 | 128.82b    | 130.07b | 7.22 a           | 7.58b | 934.31b                       | 989.49b  | 18.69b                         | 19.79b |
| 0.0                      | 4)<br>4 | 80 | 131.42a    | 132.53a | 7.56a            | 7.98a | 996.58a                       | 1060.96a | 19.93a                         | 21.22a |
|                          | (1      | 0  | 127.11c    | 128.24c | 6.47c            | 6.89c | 826.13c                       | 887.07c  | 16.52c                         | 17.74c |
| NAA                      | (uudd)  | 5  | 131.62a    | 132.73a | 7.53a            | 7.91a | 996.47a                       | 1055.44a | 19.93a                         | 21.11a |
| Z                        | (p      | 10 | 128.66b    | 129.89b | 7.02b            | 7.41b | 906.70b                       | 965.11b  | 18.13b                         | 19.30b |
| (                        | •       | 0  | 121.85e    | 123.23e | 6.00d            | 6.54d | 733.23d                       | 807.62d  | 14.66d                         | 16.15d |
| (mqq)                    | BAP     | 10 | 127.74d    | 128.89d | 6.66c            | 7.00c | 853.74c                       | 904.41c  | 17.07c                         | 18.09c |
| đ                        | щ       | 20 | 132.63b    | 133.70b | 7.44b            | 7.78b | 988.78b                       | 1041.44b | 19.78b                         | 20.83b |
| CKs                      | TDZ     | 10 | 134.85a    | 135.89a | 8.04a            | 8.48a | 1085.59a                      | 1154.70a | 21.71a                         | 23.09a |
| 0                        | IL      | 20 | 128.33c    | 129.48c | 6.85c            | 7.19c | 881.07c                       | 932.04c  | 17.62c                         | 18.64c |

 Table 1. The main effect of potassium, NAA and CKs on yield characters of potato plants during the summer seasons of 2020 and 2021.

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

# Potassium and NAA interaction

The interaction effect between potassium levels and auxin treatments on tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup>, results were presented in Table (2). Significant differences among the averages of their interactions between both variables were clear. The combined treatment of potassium rate at 80 kg K fad<sup>-1</sup> and NAA at 5 ppm gave the highest average values of tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup> compared to other treatments in both seasons. **Reddy** *et al.* (2003) on pigeon pea, indicated that the foliar application of NAA at 20 ppm+ KNO<sub>3</sub> at 0.5% significantly increased seed yield over the control. Moreover, **Ghosh** *et al.* (2022), on *Capsicum*, indicated that spray of potassium nitrate at 1% and NAA at 60 ppm increased number of fruits per plant, average fruit weight, yield per plant, per square meter and per hectare compared to control. **Mahajan** *et al.* (2022) suggested that application of NAA at 50 ppm and KNO<sub>3</sub> at 0.4% increased the yield and its components characters compared with control.

2022, 21 (3): 101-126 Online: 2735-5098

|                                             | ine sum      | nei seaso (      | JI 2020 a |                  | 1.     |                               |           |                                         |          |
|---------------------------------------------|--------------|------------------|-----------|------------------|--------|-------------------------------|-----------|-----------------------------------------|----------|
| Treatments                                  |              | Tuber weight (g) |           | Tubers<br>number |        | Yield plant <sup>-1</sup> (g) |           | Total yield<br>(Ton fad <sup>-1</sup> ) |          |
| K <sub>2</sub> O<br>(kg fad <sup>-1</sup> ) | NAA<br>(ppm) | 2020             | 2021      | 2020             | 2021   | 2020                          | 2021      | 2020                                    | 2021     |
|                                             | 0            | 125.27f          | 126.53e   | 5.73f            | 6.20e  | 722.00g                       | 787.87f   | 14.44g                                  | 15.76f   |
| 0 -                                         | 5            | 129.27c          | 130.13c   | 6.60de           | 6.93cd | 857.53def                     | 906.47de  | 17.15def                                | 18.13de  |
|                                             | 10           | 126.33ef         | 127.53de  | 6.33e            | 6.67de | 803.27f                       | 853.20ef  | 16.07f                                  | 17.06ef  |
|                                             | 0            | 126.87de         | 128.00de  | 6.60de           | 7.00cd | 840.07ef                      | 898.53de  | 16.80ef                                 | 17.97de  |
| 40                                          | 5            | 131.67b          | 132.93b   | 7.80ab           | 8.13ab | 1030.53ab                     | 1084.73ab | 20.61ab                                 | 21.69ab  |
| _                                           | 10           | 127.93cd         | 129.27cd  | 7.27bc           | 7.60bc | 932.33cd                      | 985.20b.d | 18.65cd                                 | 19.70b.d |
|                                             | 0            | 129.20c          | 130.20c   | 7.07cd           | 7.47bc | 916.33cde                     | 974.80cd  | 18.33c.e                                | 19.50cd  |
| 80                                          | 5            | 133.93a          | 135.13a   | 8.20a            | 8.67a  | 1101.33a                      | 1175.13a  | 22.03a                                  | 23.50a   |
|                                             | 10           | 131.13b          | 132.27b   | 7.40bc           | 7.80b  | 972.07bc                      | 1032.93bc | 19.44bc                                 | 20.66bc  |

 Table 2. Effect of K and NAA interaction on yield characters of potato plants during the summer seaso of 2020 and 2021.

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

# Potassium and CKs interaction

The influence of K fertilizer and CKs interaction on potato yield and its components was presented in Table (3). In general, the interaction mean values showed a clear significant interaction effects between the two variables, in the both seasons. Also, the results illustrated that the highest significant mean values of aforementioned yield parameters were recorded when plants treated with potassium rate at 80 kg K fad<sup>-1</sup> with TDZ foliar application at the rate of 10 ppm, in both seasons. However, the differences between the two combined treatments 80 kg K fad<sup>-1</sup> and 10 ppm TDZ or 40 kg K fad<sup>-1</sup> and 10 ppm TDZ were not significant in the first season for tubers number. Studies of Badawy et al. (2019) on garlic, indicated that active dry yeast extract 5g/l, potassium humate 4 kg fad<sup>-1</sup>, and both of them increased bulb diameter, bulbing ratio, number of cloves per bulb and weight of 100 cloves and total yield compared with control. Samy and El-Zohiri (2021) indicated that the highest values of the average bulb weight, cloves weight /bulb, average clove weight and total yield kg fad-1. were observed in the first and second seasons, respectively, when the optimum rate of potassium fertilizers (108 kg K<sub>2</sub>O fad<sup>-1</sup>) was combined with 2.5 ppm cytokinin.

| Treatments*                                 |           |    | Tuber w  | eight (g) | Tubers | number | Yield p  | lant <sup>-1</sup> (g) | Total yield<br>(Ton fad <sup>-1</sup> ) |         |
|---------------------------------------------|-----------|----|----------|-----------|--------|--------|----------|------------------------|-----------------------------------------|---------|
| K <sub>2</sub> O<br>(kg fad <sup>-1</sup> ) | Cl<br>(pp |    | 2020     | 2021      | 2020   | 2021   | 2020     | 2021                   | 2020                                    | 2021    |
|                                             | 2         | 0  | 118.89i  | 120.33i   | 5.11h  | 5.56i  | 608.11k  | 668.56j                | 12.16k                                  | 13.37j  |
|                                             | BAP       | 10 | 125.33g  | 126.56g   | 5.89g  | 6.22h  | 738.89j  | 788.22i                | 14.78j                                  | 15.76i  |
| 0                                           | I         | 20 | 131.11d  | 132.00d   | 6.78ef | 7.11f  | 889.56gh | 939.22gh               | 17.79gh                                 | 18.78gh |
|                                             | ZC        | 10 | 133.33bc | 134.44bc  | 7.22d  | 7.67de | 963.56e  | 1031.11de              | 19.27e                                  | 20.62de |
|                                             | <b>E</b>  | 20 | 126.11fg | 127.00fg  | 6.11g  | 6.44gh | 771.22j  | 818.78i                | 15.42j                                  | 16.38i  |
|                                             | •         | 0  | 121.89h  | 123.44 h  | 6.22g  | 6.67g  | 759.00j  | 823.56i                | 15.18j                                  | 16.47i  |
|                                             | BAP       | 10 | 127.44ef | 128.44ef  | 6.78ef | 7.11f  | 864.78hi | 914.78h                | 17.30hi                                 | 18.30h  |
| 40                                          | щ         | 20 | 132.11cd | 133.22cd  | 7.67bc | 8.00cd | 1013.78d | 1067.00d               | 20.28d                                  | 21.34d  |
| -                                           | TDZ       | 10 | 134.33b  | 135.44b   | 8.33a  | 8.67b  | 1120.56b | 1175.22b               | 22.41b                                  | 23.50b  |
|                                             | IL        | 20 | 129.00e  | 130.33e   | 7.11de | 7.44ef | 918.11fg | 970.78fg               | 18.36fg                                 | 19.42fg |
|                                             | 0.        | 0  | 124.56g  | 125.67g   | 6.67f  | 7.22f  | 831.11i  | 908.22h                | 16.62i                                  | 18.16h  |
|                                             | BAP       | 10 | 130.44d  | 131.67d   | 7.33cd | 7.67de | 957.56ef | 1010.22ef              | 19.15ef                                 | 20.20ef |
| 80                                          | щ         | 20 | 134.67b  | 135.89b   | 7.89b  | 8.22c  | 1063.00c | 1118.11c               | 21.26c                                  | 22.36c  |
| -                                           | Z         | 10 | 136.89a  | 137.78a   | 8.56a  | 9.11a  | 1172.67a | 1257.78a               | 23.45a                                  | 25.16a  |
|                                             | TDZ       | 20 | 130.56d  | 131.67d   | 7.33cd | 7.67de | 958.56e  | 1010.44ef              | 19.17e                                  | 20.21ef |

Table 3. Effect of K, and CKs interaction on yield characters of potato plants during the summer seasons of 2020 and 2021.

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

# Naphthalene acetic acid and CKs interaction

Concerning the interaction effect between NAA and CKs on tuber weight, tubers No. plant<sup>-1</sup>, yield plant<sup>-1</sup>, and yield fad<sup>-1</sup>, results presented in Table (4). There were significant differences among their interaction means. The combination treatment of 5 ppm of NAA with 10 ppm of TDZ, reached the highest mean values of all studied characters in both seasons. The superiority of such combination could be due to their influence on the source-sink relationships, the auxins influence the carbohydrate mobilization of the leaves and stem apex that stimulates the translocation of assimilated compounds to sink organs; and the CKs elevate the power of the sink organs, because of the growth stimulation and usability of sucrose, besides favoring the extension of the leaf area and the photosynthetic activity of the source (**Albacete** *et al.*, **2014**). In the same contest, **Ahmed** 

| J. Agric. & Env. Sci. (Damanhour University) | 2 |
|----------------------------------------------|---|
| Print: ISSN 1687-1464                        | C |

*et al.* (2021) studied the effects of NAA auxin (0, 25, 50, and 100 mg L<sup>-1</sup>) and cytokinin BA (0, 25, 50, and 100 mg L<sup>1</sup>) as foliar application separately or in combinations on growth and yield of potato cv. Cara. Their results showed that foliar application of auxin (NAA) and the cytokinin as BA alone or in combination to potato plants gave, significantly, the highest average values of yield and its component. Moreover, **El-Areiny** *et al.* (2022) studied the effect of CPPU at 0.0, 5.0, 10.0 mg L<sup>-1</sup> and NAA at 0, 5 and 10 mg L<sup>-1</sup> on vegetative growth, yield and its components and quality of potato tubers as soaking before planting. Their results indicated that soaking cut tuber explants of potato in 10 mg L<sup>-1</sup> CPPU mixed with 10 mg L<sup>-1</sup> NAA for 10 min before planting gave the highest mean values of yield and its components compared with untreated plants.

| Treatments*  |           | Tuber weight(g) |          | Tubers number |         | Yield plant <sup>-1</sup> (g) |           | Total yield<br>(Ton fad <sup>-1</sup> ) |         |          |
|--------------|-----------|-----------------|----------|---------------|---------|-------------------------------|-----------|-----------------------------------------|---------|----------|
| NAA<br>(ppm) | Cl<br>(pp |                 | 2020     | 2021          | 2020    | 2021                          | 2020      | 2021                                    | 2020    | 2021     |
|              | Ь         | 0               | 120.11k  | 121.56k       | 5.44 k  | 6.11j                         | 655.11i   | 744.00i                                 | 13.10i  | 14.88i   |
|              | BAP       | 10              | 125.67 i | 126.78i       | 6.00j   | 6.33ij                        | 755.22h   | 804.11hi                                | 15.10h  | 16.08hi  |
| 0            | щ         | 20              | 130.67ef | 131.56ef      | 7.00efg | 7.33ef                        | 915.44efg | 965.33ef                                | 18.31eg | 19.31ef  |
|              | Z         | 10              | 133.00cd | 133.89cd      | 7.56cd  | 8.00bcd                       | 1005.56cd | 1071.56bcd                              | 20.11cd | 21.43bcd |
|              | ΠD        | 20              | 126.11hi | 127.44hi      | 6.33ij  | 6.67g-j                       | 799.33h   | 850.33gh                                | 15.99h  | 17.01gh  |
|              | 0         | 0               | 123.78j  | 125.00j       | 6.44hi  | 6.78f-i                       | 799.89h   | 849.33gh                                | 16.00h  | 16.99gh  |
|              | BAP       | 10              | 130.33f  | 131.44f       | 7.22def | 7.56de                        | 942.33ef  | 994.33def                               | 18.85ef | 19.89def |
| 5            | щ         | 20              | 135.33b  | 136.56b       | 8.00b   | 8.33b                         | 1083.22b  | 1138.89b                                | 21.66b  | 22.78b   |
| _            | TDZ       | 10              | 138.00a  | 139.00a       | 8.67a   | 9.22a                         | 1197.44a  | 1284.00a                                | 23.95a  | 25.68a   |
|              | E         | 20              | 130.67ef | 131.67ef      | 7.33de  | 7.67cde                       | 959.44de  | 1010.67def                              | 19.19de | 20.21de  |
|              | •         | 0               | 121.44k  | 122.89k       | 6.11ij  | 6.56hij                       | 743.22h   | 807.00hi                                | 14.86h  | 16.14hi  |
|              | BAP       | 10              | 127.22gh | 128.44gh      | 6.78gh  | 7.11e-h                       | 863.67g   | 914.78fg                                | 17.27g  | 18.30fg  |
| 10           | Ħ         | 20              | 131.89de | 133.00de      | 7.33de  | 7.67cde                       | 967.67de  | 1020.11cde                              | 19.35de | 20.40cde |
| -            | Z         | 10              | 133.56c  | 134.78c       | 7.89bc  | 8.22bc                        | 1053.78bc | 1108.56bc                               | 21.08bc | 22.17bc  |
|              | Ð         | 20              | 128.22g  | 129.33g       | 6.89fg  | 7.22efg                       | 884.44fg  | 935.11efg                               | 17.69fg | 18.70efg |

 Table 4. Effect of the first order interaction between NAA and CKs on some yield characters of potato plants during the summer seasons of 2020 and 2021.

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

| J. Agric. & Env. Sci. (Damanhour University) |  |
|----------------------------------------------|--|
| Print: ISSN 1687-1464                        |  |

#### Potassium, NAA and CKs interaction

The comparisons among the mean values of the various treatment combinations K, NAA, and CKs on yield characters showed significant effect for all the studied characters, in both seasons (Table 5). Also, the results clarified that fertilization of K at 80 kg of K<sub>2</sub>O fad<sup>-1</sup> and foliar application of NAA at 5 ppm combined with the TDZ at 10 ppm gave the highest significant mean values of yield and its components characters, in the both seasons. This significant improvement of this triple treatment can be due to the complementarity of the roles played by each of these three factors. Habtam et al., (2018) concluded that K has been well documented in photosynthesis, increasing enzyme activity, improving synthesis of protein, carbohydrates and fats translocation of photosynthetic. Also, Pavlista (2011), and Roumeliotis et al. (2012) indicated that auxin play a key role in the formation and growth of potato tubers. Moreover, Hussain and Khalaf (2007) illustrated that CKs stimulates cell division and enlargement, as well as, the synthesis of protein, nucleic acid and chlorophyll.

# **Tuber quality characteristics**

#### Effect of K

The main effect of K fertilization on the quality parameters, results existing in Table (6) confirmed that application of potassium significantly increased TSS, vitamin C., specific gravity, dry matter, starch and protein contents of potato tubers, compared to control treatment in both seasons. However, the reducing sugar significantly decreased, in both seasons. It is clear that addition of potassium at 80 kg K<sub>2</sub>O fad<sup>-1</sup>gave the highest mean values of TSS, vitamin C., specific gravity, dry matter, starch and protein contents of potato tubers, in both seasons, compared to the other treatments. At the favorite treatment 80 kg K<sub>2</sub>O fad<sup>-1</sup>, the estimated percentages increase in TSS, vitamin C., specific gravity, dry matter, starch and protein contents of potato tuber were (6.7 and 6.8%), (6.6 and 6.3%), (0.96 and 0.86%), (6.1 and 6.1%), (8.5 and 8.8%) and (13.7 and 13.8%) compared to the control treatment in the first and second season, respectively.

2022, 21 (3): 101-126 Online: 2735-5098

| Table 5. Effect of potassium, NAA and CKs interaction on vie | ld characters of potato |
|--------------------------------------------------------------|-------------------------|
| plants during the summer seasons of 2020 and 2021.           |                         |
| Tubor woight Tuborg                                          | Total wield             |

|         | Treatments |                           |      |          | weight<br>g) |         | bers<br>nber | Yield p    | lant <sup>-1</sup> (g) | Total yield<br>(Ton fad <sup>-1</sup> ) |          |
|---------|------------|---------------------------|------|----------|--------------|---------|--------------|------------|------------------------|-----------------------------------------|----------|
| K       |            |                           | 2020 | 2021     | 2020         | 2021    | 2020         | 2021       | 2020                   | 2021                                    |          |
| <u></u> | ITAA       | C                         | 0    | 117.00s  | 119.00w      | 4.67j   | 5.33k        | 545.67v    | 634.67x                | 10.91v                                  | 12.69x   |
|         |            | Ч                         | 10   | 123.33p  | 124.67rs     | 5.33ij  | 5.67jk       | 658.00uv   | 706.33v-x              | 13.16uv                                 | 14.13v-x |
|         | 0          | BAP                       | 20   | 129.33j  | 130.33m      | 6.33f-i | 6.67g-i      | 819.33n-s  | 868.67o-t              | 16.39n-s                                | 17.37o-t |
|         | v          |                           | 10   | 132.33g  | 133.33hi     | 6.67e-h | 7.33efg      | 882.33j-p  | 977.67h-n              | 17.65j-p                                | 19.55h-n |
|         |            | TDZ                       | 20   | 124.330  | 125.33qr     | 5.67h-j | 6.00ijk      | 704.67stu  | 752.00uvw              | 51                                      | 15.04u-w |
|         |            |                           | 0    | 120.33q  | 121.33uv     | 5.33ij  | 5.67jk       | 642.00uv   | 687.33wx               | 12.84uv                                 | 13.75wx  |
|         |            | P                         | 10   | 128.33k  | 129.33n      | 6.33f-i | 6.67g-i      | 812.67n-s  | 862.33o-t              | 16.25n-s                                | 17.25o-t |
| 0       | 5          | BAP                       | 20   | 133.67f  | 134.33fg     | 7.33c-f | 7.67d-f      | 980.33e-k  | 1030.00g-k             | 19.61e-k                                |          |
| v       | č          | Z                         | 10   | 135.33cd | 136.33c      | 7.67cde | 8.00c-e      | 1037.67c-g | 1090.67d-g             | 20.75c-g                                | 21.81d-g |
|         |            | TDZ                       | 20   | 128.67jk | 129.33n      | 6.33f-i | 6.67g-i      | 815.00n-s  | 862.00o-t              | 16.30n-s                                | 17.24o-t |
|         |            | -                         | 0    | 119.33r  | 120.67v      | 5.33ij  | 5.67jk       | 636.67uv   | 683.67wx               | 12.73uv                                 | 13.67wx  |
|         |            | BAP                       | 10   | 124.330  | 125.67pq     | 6.00ghi | 6.33h-j      | 746.00q-u  | 796.00s-v              | 14.92q-u                                |          |
|         | 10         |                           | 20   | 130.33i  | 131.331      | 6.67e-h | 7.00f-h      | 869.00k-q  | 919.001-q              | 17.38k-q                                | 18.381-q |
|         |            | TDZ                       | 10   | 132.33g  | 133.67ghi    | 7.33c-f | 7.67d-f      | 970.67f-k  | 1025.00g-1             | 19.41f-k                                | 20.50g-1 |
|         |            |                           | 20   | 125.33mn | 126.33p      | 6.33f-i | 6.67g-i      | 794.00o-t  | 842.33p-u              |                                         | 16.85p-u |
|         |            |                           | 0    | 120.33q  | 121.67tu     | 5.67hij | 6.33h-j      | 681.67tu   | 770.67t-w              | 13.63tu                                 | 15.41t-w |
|         |            | BAP                       | 10   | 125.33mn | 126.00pg     | 6.00ghi | 6.33h-j      | 752.00q-u  | 798.33r-v              | 15.04q-u                                | 15.97r-v |
|         | 0          | $\mathbf{B}_{\mathbf{F}}$ | 20   | 130.33i  | 131.331      | 7.00d-g | 7.33e-g      | 912.33g-o  | 963.33i-o              | 18.25g-o                                | 19.27i-o |
|         |            | Ŋ                         | 10   | 132.33g  | 133.33hi     | 7.67cde | 8.00c-e      | 1014.67d-i | 1066.67e-i             | 20.29d-i                                | 21.33e-i |
|         |            | TDZ                       | 20   | 126.00lm | 127.670      | 6.67e-h | 7.00f-h      | 839.671-r  | 893.67n-s              | 16.791-r                                | 17.87n-s |
|         |            |                           | 0    | 124.67no | 126.33p      | 6.67e-h | 7.00f-h      | 831.001-s  | 884.33n-s              | 16.621-s                                | 17.69n-s |
|         |            | DZ BAP                    | 10   | 130.33i  | 131.331      | 7.33c-f | 7.67d-f      | 955.67f-m  | 1007.00gm              | 19.11f-m                                | 20.14g-m |
| 40      | 5          |                           | 20   | 134.67de | 136.00cd     | 8.33a-c | 8.67bc       | 1122.33b-d | 1179.00cd              | 22.45bcd                                | 23.58cd  |
|         |            |                           | 10   | 138.00b  | 139.00b      | 9.00ab  | 9.33b        | 1241.67ab  | 1297.33b               | 24.83ab                                 | 25.95b   |
|         |            | TDZ                       | 20   | 130.67hi | 132.00kl     | 7.67с-е | 8.00с-е      | 1002.00d-j | 1056.00f-j             | 20.04d-j                                | 21.12f-j |
|         |            |                           | 0    | 120.67q  | 122.33t      | 6.33f-i | 6.67g-i      | 764.33p-u  | 815.67q-u              | 15.29p-u                                | 16.31q-u |
|         |            | BAP                       | 10   | 126.671  | 128.000      | 7.00d-g | 7.33e-g      | 886.67i-p  | 939.00k-p              | 17.73i-p                                | 18.78k-p |
|         | 10         |                           | 20   | 131.33h  | 132.33jk     | 7.67с-е | 8.00с-е      | 1006.67d-j | 1058.67f-i             | 20.13d-j                                | 21.17f-i |
|         |            | TDZ                       | 10   | 132.67g  | 134.00gh     | 8.33a-c | 8.67bc       | 1105.33cde | 1161.67c-f             | 22.11с-е                                | 23.23c-f |
|         |            | IT                        | 20   | 128.33k  | 129.67mn     | 7.00d-g | 7.33e-g      | 898.67h-o  | 951.00j-o              | 17.97h-o                                | 19.02j-o |
|         |            |                           | 0    | 123.00p  | 124.00s      | 6.00g-i | 6.67g-i      | 738.00r-u  | 826.67q-u              | 14.76r-u                                | 16.53q-u |
|         |            | BAP                       | 10   | 128.33k  | 129.67mn     | 6.67e-h | 7.00f-h      | 855.67k-r  | 907.67m-q              | 17.11k-r                                | 18.15m-q |
|         | 0          |                           | 20   | 132.33g  | 133.00ij     | 7.67с-е | 8.00с-е      | 1014.67d-i | 1064.00e-i             | 20.29d-i                                | 21.28e-i |
| 80      |            | TDZ                       | 10   | 134.33ef | 135.00ef     | 8.33a-c | 8.67bc       | 1119.67bcd | 1170.33cde             | 22.39b-d                                | 23.41с-е |
| 00      |            | Ξ                         | 20   | 128.00k  | 129.33n      | 6.67e-h | 7.00f-h      | 853.67k-r  | 905.33m-r              | 17.07k-r                                | 18.11m-r |
|         |            | •                         | 0    | 126.331  | 127.330      | 7.33c-f | 7.67d-f      | 926.67g-n  | 976.33h-n              | 18.53gn                                 | 19.53h-n |
|         | 5          | BAP                       | 10   | 132.33g  | 133.67ghi    | 8.00b-d | 8.33cd       | 1058.67c-f | 1113.67c-g             | 21.17c-f                                | 22.27c-g |
|         |            | B                         | 20   | 137.67b  | 139.33b      | 8.33a-c | 8.67bc       | 1147.00bc  | 1207.67bc              | 22.94bc                                 | 24.15bc  |

J. Agric. & Env. Sci. (Damanhour University) Print: ISSN 1687-1464

|   |    | Z  | 10 | 140.67a  | 141.67a   | 9.33a   | 10.33a  | 1313.00a   | 1464.00a   | 26.26a   | 29.28a   |
|---|----|----|----|----------|-----------|---------|---------|------------|------------|----------|----------|
| - |    | I  | 20 | 132.67g  | 133.67g-i | 8.00b-d | 8.33cd  | 1061.33c-f | 1114.00c-g | 21.23c-f | 22.28c-g |
| - |    |    | 0  | 124.330  | 125.67pq  | 6.67e-h | 7.33e-g | 828.67m-s  | 921.671-q  | 16.57m-s | 18.431-q |
|   |    | AP | 10 | 130.67hi | 131.67kl  | 7.33c-f | 7.67d-f | 958.33f-m  | 1009.33g.m | 19.17f-m | 20.19g-m |
|   | 10 | B  | 20 | 134.00ef | 135.33de  | 7.67с-е | 8.00с-е | 1027.33c-h | 1082.67d-h | 20.55c-h | 21.65d-h |
|   |    | Z  | 10 | 135.67c  | 136.67c   | 8.00b-d | 8.33cd  | 1085.33c-f | 1139.00c-f | 21.71c-f | 22.78c-f |
|   |    | E  | 20 | 131.00hi | 132.00kl  | 7.33c-f | 7.67d-f | 960.67f-l  | 1012.00g.m | 19.21f-l | 20.24g-m |

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

On the other hand, increasing K rate significantly decreased the reduced sugars content and the decrements were more pronounced at higher K rates. Meanwhile, the control treatments (0 kg K<sub>2</sub>O fad<sup>-1</sup>) gave the highest mean values for reducing sugars content on both seasons. The improvement of tubers quality characters expressed as specific gravity, vitamin C., and starch as affected by increasing of K levels may be attributed to the positive effect of potassium on translocation of assimilates (**Pervez** *et al.*, **2013**). Also, **Yakimenko and Naumova** (**2018**) and **Rather** *et al.* (**2021**) reported that the K fertilization was strongly related to increasing the potato tubers quality attributes. Moreover, **Gerendas** *et al.* (**2007**) indicated that higher doses of K lead to a lower amount of reducing sugars content.

#### Effect of NAA

Regarding the main effect of naphthalene acetic acid, it is clear from results in Table (6) all naphthalene acetic acid treatments significantly increased TSS, vitamin C., specific gravity, dry matter, starch and protein with different significant levels when compared to non-treated plants, in both seasons. The maximum significant increases in aforementioned tubers quality were recorded at NAA 5 ppm. The estimated percentages increases in TSS, vitamin C., specific gravity, dry matter, starch and protein at NAA 5 ppm were (3.08 and 3.07%), (1.99 and 2.10%), (0.67 and 0.67%), (4.19 and 4.12%), (4.94 and 4.98%) and (12.44 and 12.45%) as compared to control treatment in the first and second seasons, respectively. On the other hand, NAA 5 ppm decreased reducing sugar by (15.00 and 15.31%) in the first and second seasons, respectively. These results are in agreement. These results are in harmony with those of **kumar** *et al.*, (2012), Vafaee *et al.* (2020), and El-Areiny *et al.* (2022) who found a

significant positive effect of auxins application on quality parameters of potato tubers.

#### Effect of CKs

The results in Table (6) cleared that the two types of CKs (6binzylaminopurine and TDZ) significantly affected all studied parameters of potato tubers quality, in both seasons. On other words; the highest values ((5.68 and 5.67%)) for TSS, (4.99 and 4.81%) for vitamin C, (1.44 and 1.44) for specific gravity, (5.48 and 5.41%) for dry matter, (12.87 and 12.81%) for starch and (38.89 and 38.57%) for protein, respectively during both seasons were realized when potato plants treated with thidiazuron (TDZ) at 10 ppm. On the other hand, TDZ at 10 ppm decreased the reducing sugar by (25.82 and 25.96%) in the first and second seasons, respectively compared to control. These findings were emphasizing the positive role of cytokinins in improving the potato tubers quality as reported by **El-Anany** *et al.* (2020), Ahmed and Mengistu (2020), and Malek *et al.* (2021).

#### Potassium and NAA interaction

Concerning the interaction effects between potassium levels and NAA treatments on specific gravity, vitamin C, starch and reducing sugars of potato tubers, results presented in Table (7) revealed significant differences among the interaction means, in both seasons. Also, the treatment combination of 80 kg K fad<sup>-1</sup> and NAA at 5 ppm was found to give the highest mean values of specific gravity and starch; whereas, the vitamin C content exhibit the best content under 80 kg K fad<sup>-1</sup> with NAA at either 5 or 10 ppm, in both seasons of study.

On contrary, the combined treatment of zero kg K fad<sup>-1</sup> with zero ppm NAA attained the highest mean value of reducing sugar, in both seasons. These finding pointed out the favorable effect of treated potato plants with K and NAA for enhancing the quality parameters of produced yield as published by **Khajehzadeh** *et al.* (2018) and **Mahajan** *et al.* (2022).

2022, 21 (3): 101-126 Online: 2735-5098

|                              |        | 2021             | •                                  | 8 1    |                         |        | 5      |                            |       |       |
|------------------------------|--------|------------------|------------------------------------|--------|-------------------------|--------|--------|----------------------------|-------|-------|
| Treatments                   |        | Specific<br>(g/c | <b>gravity</b><br>m <sup>3</sup> ) |        | <b>nin C</b><br>Ogf.w.) | Starc  | h (%)  | (%) <b>Reducing</b><br>(%) |       |       |
|                              |        | 2020             | 2021                               | 2020   | 2021                    | 2020   | 2021   | 2020                       | 2021  |       |
| K<br>(kg fad <sup>-1</sup> ) |        | 0                | 1.043c                             | 1.045c | 18.23c                  | 18.29c | 15.10c | 15.15c                     | 2.08a | 2.04a |
|                              |        | 40               | 1.048b                             | 1.049b | 18.50b                  | 18.55b | 15.87b | 15.95b                     | 1.82b | 1.78b |
|                              |        | 80               | 1.053a                             | 1.054a | 19.44a                  | 19.45a | 16.39a | 16.49a                     | 1.64c | 1.58c |
|                              | (      | 0                | 1.045c                             | 1.046c | 18.52c                  | 18.56c | 15.40c | 15.47c                     | 2.00a | 1.96a |
| AA                           | (undd) | 5                | 1.052a                             | 1.053a | 18.89a                  | 18.95a | 16.16a | 16.24a                     | 1.70c | 1.66c |
| Z                            | (d)    | 10               | 1.047b                             | 1.049b | 18.77b                  | 18.78b | 15.80b | 15.89b                     | 1.83b | 1.78b |
| -                            | _      | 0                | 1.040e                             | 1.041e | 18.24e                  | 18.30e | 14.84e | 14.91e                     | 2.13a | 2.08a |
| (M                           | BAP    | 10               | 1.047d                             | 1.048d | 18.56d                  | 18.61d | 15.42d | 15.50d                     | 1.92b | 1.87b |
| (mqq)                        | B      | 20               | 1.051b                             | 1.052b | 18.98b                  | 19.05b | 16.34b | 16.42b                     | 1.73d | 1.68d |
| CKs                          | Z      | 10               | 1.055a                             | 1.056a | 19.15a                  | 19.18a | 16.75a | 16.82a                     | 1.58e | 1.54e |
| C                            | ΠD     | 20               | 1.048c                             | 1.049c | 18.70c                  | 18.68c | 15.57c | 15.66c                     | 1.86c | 1.82c |

Table 6. The main effect of K, NAA and CKs on specific gravity, vitamin C, starch, and reducing sugars of potato tubers during the summer seasons of 2020 and 2021.

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

Table 7. Effect K and NAA interaction on specific gravity, vitamin C., starch and reducing sugar of potato tubers during the summer seasons of 2020 and 2021.

| Treatn                         | Treatments |         | Specific gravity<br>(g/cm <sup>3</sup> ) |          | n <b>in C</b><br>0gf.w.) | Starc   | h (%)   | Reducing sugars<br>(%) |        |
|--------------------------------|------------|---------|------------------------------------------|----------|--------------------------|---------|---------|------------------------|--------|
| K2O<br>(kg fad <sup>-1</sup> ) |            |         | 2021                                     | 2020     | 2021                     | 2020    | 2021    | 2020                   | 2021   |
|                                | 0          | 1.041f  | 1.042f                                   | 18.10e   | 18.16e                   | 14.74g  | 14.79g  | 2.21a                  | 2.18a  |
| 0                              | 5          | 1.047d  | 1.048d                                   | 18.37cde | 18.43c.e                 | 15.42e  | 15.48e  | 1.95c                  | 1.91c  |
|                                | 10         | 1.043ef | 1.044ef                                  | 18.20de  | 18.25de                  | 15.07f  | 15.13f  | 2.07b                  | 2.02b  |
| _                              | 0          | 1.045de | 1.046de                                  | 18.34cde | 18.39de                  | 15.54e  | 15.61e  | 1.97bc                 | 1.93bc |
| 40                             | 5          | 1.051bc | 1.053b                                   | 18.68c   | 18.73c                   | 16.21bc | 16.30bc | 1.67e                  | 1.63e  |
| _                              | 10         | 1.047d  | 1.048d                                   | 18.49cd  | 18.54cd                  | 15.85d  | 15.94d  | 1.81d                  | 1.76d  |
|                                | 0          | 1.049c  | 1.051c                                   | 19.13b   | 19.14b                   | 15.93cd | 16.02cd | 1.83d                  | 1.77d  |
| 80                             | 5          | 1.057a  | 1.058a                                   | 19.63a   | 19.70a                   | 16.86a  | 16.96a  | 1.48f                  | 1.42f  |
|                                | 10         | 1.052b  | 1.053b                                   | 19.57a   | 19.50a                   | 16.39b  | 16.50b  | 1.60e                  | 1.55e  |

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

| J. Agric. & Env. Sci. (Damanhour University) | 2 |
|----------------------------------------------|---|
| Print: ISSN 1687-1464                        | 0 |

# Potassium and CKs interaction

Relating to the interaction effect between potassium levels and auxin treatments on TSS, vitamin c., specific gravity, dry matter, starch and protein in potato tubers, results presented in Table (8) revealed significant differences among the averages of their interactions between both variables. The combination between potassium at 80 kg K fad<sup>-1</sup> and NAA at 5 ppm reached the highest average values of TSS, vitamin C., specific gravity, dry matter, starch and protein of potato plants, in both seasons compared to other treatments.

Table 8. Effect of the K and CKs interaction on specific gravity, vitamin C., starch and reducing sugar of potato tubers during the summer seasons of 2020 and 2021.

|                                             |            | /41.      |                                                 |         |                 |                         |          |          |               |        |
|---------------------------------------------|------------|-----------|-------------------------------------------------|---------|-----------------|-------------------------|----------|----------|---------------|--------|
| Treat                                       | Treatments |           | <b>Specific</b><br>gravity (g/cm <sup>3</sup> ) |         | Vitan<br>(mg/10 | <b>nin C</b><br>0gf.w.) | Starc    | h (%)    | Redu<br>sugar | 0      |
| K <sub>2</sub> O<br>(kg fad <sup>-1</sup> ) |            | Ks<br>om) | 2020                                            | 2021    | 2020            | 2021                    | 2020     | 2021     | 2020          | 2021   |
|                                             | 6          | 0         | 1.035j                                          | 1.037i  | 17.93e          | 17.98e                  | 14.38i   | 14.43j   | 2.36a         | 2.31a  |
| 0                                           | BAP        | 10        | 1.042h                                          | 1.043g  | 18.17de         | 18.23de                 | 14.80hi  | 14.86ij  | 2.17b         | 2.13b  |
|                                             |            | 20        | 1.046f                                          | 1.048f  | 18.35cde        | 18.41cde                | 15.49efg | 15.55fgh | 1.97d         | 1.94d  |
|                                             | TDZ        | 10        | 1.050e                                          | 1.052e  | 18.46cde        | 18.53b-e                | 15.85def | 15.90d-g | 1.80g         | 1.76e  |
|                                             | IT         | 20        | 1.043h                                          | 1.044g  | 18.21de         | 18.26de                 | 14.87ghi | 14.93hij | 2.08c         | 2.05c  |
|                                             | ۵.         | 0         | 1.040i                                          | 1.041h  | 18.16de         | 18.20de                 | 14.85ghi | 14.93hij | 2.13bc        | 2.09bc |
|                                             | BAP        | 10        | 1.046f                                          | 1.047f  | 18.43cde        | 18.48b-e                | 15.57ef  | 15.66efg | 1.87ef        | 1.83e  |
| 40                                          |            | 20        | 1.051e                                          | 1.052e  | 18.64b-e        | 18.70b-e                | 16.40cd  | 16.47cd  | 1.71h         | 1.67f  |
|                                             | ZC         | 10        | 1.055bc                                         | 1.056bc | 18.80bcd        | 18.85bcd                | 16.78bc  | 16.86bc  | 1.56i         | 1.51g  |
|                                             | D          | 20        | 1.049ef                                         | 1.050ef | 18.67b-e        | 18.72b-e                | 15.83def | 15.92d-g | 1.79g         | 1.75e  |
|                                             | 4          | 0         | 1.044gh                                         | 1.045g  | 18.60b-e        | 18.67b-e                | 15.22fgh | 15.31ghi | 1.91de        | 1.83e  |
|                                             | BAP        | 10        | 1.052de                                         | 1.053de | 19.07bc         | 19.13bc                 | 15.89de  | 15.98def | 1.72h         | 1.66f  |
| 80 _                                        | I          | 20        | 1.056b                                          | 1.057b  | 19.96a          | 20.03a                  | 17.13ab  | 17.23ab  | 1.50i         | 1.44g  |
|                                             | TDZ        | 10        | 1.060a                                          | 1.061a  | 20.19a          | 20.17a                  | 17.62a   | 17.72a   | 1.39j         | 1.34h  |
|                                             |            | 20        | 1.054cd                                         | 1.055cd | 19.40ab         | 19.24b                  | 16.11de  | 16.22cde | 1.67h         | 1.62f  |

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

However, the differences between 80 kg K fad<sup>-1</sup> and NAA at either 5 or 10 ppm were not significant in vitamin C during both seasons. Conversely, the combined treatment between zero kg K fad<sup>-1</sup> and zero ppm NAA attained the highest mean value of reducing sugar, in both seasons compared to other treatments. Other research works revealed the favorable effect of combined

| J. Agric. & Env. Sci. (Damanhour University) | 2022, 21 (3): 101-126 |
|----------------------------------------------|-----------------------|
| Print: ISSN 1687-1464                        | Online: 2735-5098     |

treatment of K with CKs application on the quality parameters (ALmuhamadi and AL-Essawi, 2015 on potato and Samy and El-Zohiri, 2021 on garlic).

# Naphthalene acetic acid and CKs interaction

In this context, the mean values listed in Table (9) revealed a clear significant interaction effect between NAA and CKs on all the studied tubers quality parameters, in both seasons. The combination between NAA at 5 ppm and TDZ at 10 ppm chronicled the highest average values of TSS, vitamin C., specific gravity, dry matter, starch and protein of potato plants, in both seasons compared to other treatments. However, the differences between (NAA at 5 ppm and TDZ at 10 ppm) or (NAA at 5 ppm and BAB at 20 ppm) were not significant in TSS and vitamin C during both seasons.

Table 9. Effect of the NAA and CKs interaction on specific gravity, vitamin C., starch and reducing sugar of potato tubers during the summer seasons of 2020 and 2021

|              | 202              | 21. |                                                |          |                            |          |            |         |                       |       |
|--------------|------------------|-----|------------------------------------------------|----------|----------------------------|----------|------------|---------|-----------------------|-------|
| Treatments*  |                  | -   | <b>Specific</b><br>gravity(g/cm <sup>3</sup> ) |          | Vitamin C<br>(mg/100gf.w.) |          | Starch (%) |         | Reducing<br>sugar (%) |       |
| NAA<br>(ppm) | CKs<br>(ppm)     |     | 2020                                           | 2021     | 2020                       | 2021     | 2020       | 2021    | 2020                  | 2021  |
|              | ۵.               | 0   | 1.037i                                         | 1.039i   | 18.07h                     | 18.12j   | 14.59k     | 14.65k  | 2.31a                 | 2.25a |
|              | BAP              | 10  | 1.044fg                                        | 1.046fg  | 18.39fg                    | 18.45hi  | 15.03ij    | 15.10ij | 2.07b                 | 2.03b |
| 0            | щ                | 20  | 1.048def                                       | 1.049def | 18.78de                    | 18.85ef  | 15.98de    | 16.06de | 1.89d                 | 1.85d |
|              | TDZ              | 10  | 1.051cd                                        | 1.052cd  | 18.93cd                    | 18.90de  | 16.26cd    | 16.32cd | 1.74f                 | 1.70g |
|              | IL               | 20  | 1.045fg                                        | 1.046fg  | 18.44fg                    | 18.49h   | 15.16hi    | 15.23hi | 2.00c                 | 1.97c |
|              | d                | 0   | 1.042gh                                        | 1.043gh  | 18.37fg                    | 18.43hi  | 15.07ij    | 15.14ij | 1.99c                 | 1.94c |
|              | BAP              | 10  | 1.050cde                                       | 1.051cde | 18.72de                    | 18.78efg | 15.82ef    | 15.92ef | 1.79e                 | 1.74f |
| 5            | H                | 20  | 1.055b                                         | 1.056b   | 19.20ab                    | 19.25b   | 16.71b     | 16.78b  | 1.57g                 | 1.52h |
|              | ZUT              | 10  | 1.061a                                         | 1.062a   | 19.40a                     | 19.47a   | 17.25a     | 17.33a  | 1.44h                 | 1.39i |
|              | II               | 20  | 1.051cd                                        | 1.052cd  | 18.78de                    | 18.83ef  | 15.97de    | 16.06de | 1.72f                 | 1.68g |
|              | •                | 0   | 1.039hi                                        | 1.040hi  | 18.24gh                    | 18.30ij  | 14.80jk    | 14.89jk | 2.10b                 | 2.04b |
|              | BAP              | 10  | 1.046ef                                        | 1.047efg | 18.56ef                    | 18.61gh  | 15.40gh    | 15.47gh | 1.90d                 | 1.85d |
| 10           | $\mathbf{B}_{i}$ | 20  | 1.050cde                                       | 1.051cde | 18.97b.d                   | 19.04cd  | 16.32c     | 16.41c  | 1.72f                 | 1.67g |
| - •          | TDZ              | 10  | 1.053bc                                        | 1.054bc  | 19.12bc                    | 19.18bc  | 16.74b     | 16.82b  | 1.57g                 | 1.52h |
|              | IL               | 20  | 1.047def                                       | 1.049def | 18.87cd                    | 18.71fg  | 15.59fg    | 15.68fg | 1.85d                 | 1.81e |

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

| J. Agric. & Env. Sci. (Damanhour University) | 2022, 21 (3): 101-126    |
|----------------------------------------------|--------------------------|
| Print: ISSN 1687-1464                        | <b>Online: 2735-5098</b> |

On the other hand, the combined treatment between zero ppm NAA and zero ppm TDZ attained the highest mean value of reducing sugar, in both seasons compared to other treatments. These findings are agreed with those of **El-Areiny** *et al.* (2022) who reported a significant favorable effect of NAA and CKs combination on tubers quality traits of potato.

# Effect of K, NAA and CKs interaction

The interaction effect among the three main factors of K, NAA and CKs was found to be significant for all potato tubers quality parameters (Table, 10), in both seasons. Among these treatment combinations, the application of 80 kg K<sub>2</sub>O fad<sup>-1</sup> with foliar application of 5 ppm of NAA and 10 ppm of TDZ gave the highest average values of TSS, vitamin c., specific gravity, dry matter, starch and protein in potato tubers in both seasons compared to other treatments. **El-Sayed** *et al.* (2015) on bell pepper and **Binnoubah** *et al.* (2022) on potato reported the ability of combined the application of K with some growth modulators for enhancing the quality parameters.

|   | 20          | )21. |                                                    |         |                            |        |            |        |                       |        |        |
|---|-------------|------|----------------------------------------------------|---------|----------------------------|--------|------------|--------|-----------------------|--------|--------|
|   | Treatments* |      | <b>Specific</b><br>gravity<br>(g/cm <sup>3</sup> ) |         | Vitamin C<br>(mg/100gf.w.) |        | Starch (%) |        | Reducing<br>sugar (%) |        |        |
| K | NAA CKs     |      | Ks                                                 | 2020    | 2021                       | 2020   | 2021       | 2020   | 2021                  | 2020   | 2021   |
|   |             |      | 0                                                  | 1.034B  | 1.035y                     | 17.87H | 17.91z     | 14.27K | 14.32L                | 2.55a  | 2.51a  |
|   |             | BAP  | 10                                                 | 1.040wx | 1.042t                     | 18.00E | 18.07xy    | 14.44I | 14.48J                | 2.25d  | 2.22c  |
|   | 0           | B    | 20                                                 | 1.044t  | 1.045r                     | 18.25z | 18.31tu    | 15.14C | 15.20C                | 2.11g  | 2.07f  |
|   |             | TDZ  | 10                                                 | 1.046qr | 1.048no                    | 18.31x | 18.39q.t   | 15.38z | 15.42x                | 1.941  | 1.911  |
|   |             | I    | 20                                                 | 1.041v  | 1.042t                     | 18.07C | 18.12v.x   | 14.47H | 14.52I                | 2.19ef | 2.17d  |
|   |             |      | 0                                                  | 1.037z  | 1.038w                     | 17.99F | 18.06xy    | 14.53G | 14.58H                | 2.21e  | 2.17d  |
| 0 |             | BAP  | 10                                                 | 1.045s  | 1.046q                     | 18.35v | 18.41q-t   | 15.14C | 15.20C                | 2.09g  | 2.04h  |
| U | 5           |      | 20                                                 | 1.050im | 1.0511m                    | 18.48r | 18.53m.p   | 15.89q | 15.94p                | 1.85no | 1.82no |
|   |             | TDZ  | 10                                                 | 1.055e  | 1.056ef                    | 18.65n | 18.72ij    | 16.33m | 16.391                | 1.66v  | 1.62u  |
|   |             | E    | 20                                                 | 1.047op | 1.048no                    | 18.38u | 18.43p-s   | 15.22B | 15.29z                | 1.96k  | 1.92kl |
|   |             |      | 0                                                  | 1.035A  | 1.037x                     | 17.93G | 17.97yz    | 14.34J | 14.41K                | 2.33b  | 2.26b  |
|   | 10          | BAP  | 10                                                 | 1.041v  | 1.042t                     | 18.15B | 18.20u-w   | 14.84E | 14.89F                | 2.18f  | 2.13e  |
|   | 10          | B    | 20                                                 | 1.046qr | 1.047pq                    | 18.32w | 18.38rst   | 15.43y | 15.49w                | 1.96k  | 1.92kl |
|   |             | Ţ    | <b>10</b>                                          | 1.049m  | 1.0511m                    | 18.42t | 18.48o-r   | 15.83r | 15.89q                | 1.79p  | 1.75q  |

Table 10. Effect of the second order interaction between pot, NAA and CKs on tubers quality characters of potato plants during the summer seasons of 2020 and 2021

J. Agric. & Env. Sci. (Damanhour University) Print: ISSN 1687-1464

|    |    |     | 20 | 1.042u  | 1.043s  | 18.19A | 18.23uv  | 14.92D | 14.99D  | 2.09g  | 2.06g  |
|----|----|-----|----|---------|---------|--------|----------|--------|---------|--------|--------|
|    |    |     | 0  | 1.038y  | 1.039v  | 18.05D | 18.09wx  | 14.57F | 14.62G  | 2.30c  | 2.27b  |
| _  |    | BAP | 10 | 1.044t  | 1.045r  | 18.31x | 18.36st  | 15.20B | 15.27A  | 2.02i  | 1.99i  |
|    | 0  |     | 20 | 1.047op | 1.049n  | 18.44s | 18.50n-q | 16.16n | 16.23mn | 1.86n  | 1.82no |
|    |    | TDZ | 10 | 1.051jk | 1.053i  | 18.55q | 18.60k-n | 16.43k | 16.49j  | 1.69tu | 1.65t  |
|    |    | IL  | 20 | 1.044t  | 1.045r  | 18.35v | 18.39q-t | 15.35A | 15.42 x | 1.97jk | 1.93jk |
|    |    |     | 0  | 1.042u  | 1.044s  | 18.27y | 18.31tu  | 15.15C | 15.22 B | 1.98j  | 1.94j  |
|    |    | BAP | 10 | 1.048n  | 1.050m  | 18.56q | 18.62j-m | 15.94p | 16.070  | 1.74r  | 1.70r  |
| 40 | 5  | B   | 20 | 1.055e  | 1.057d  | 18.861 | 18.92h   | 16.69h | 16.75h  | 1.53z  | 1.50xy |
|    |    | TDZ | 10 | 1.061b  | 1.062b  | 19.10j | 19.15g   | 17.15e | 17.23e  | 1.42B  | 1.38B  |
|    |    | II  | 20 | 1.049m  | 1.051lm | 18.61p | 18.64jkl | 16.130 | 16.21n  | 1.69tu | 1.65t  |
|    | 10 | BAP | 0  | 1.040wx | 1.041u  | 18.16B | 18.21uv  | 14.85E | 14.94E  | 2.09g  | 2.05gh |
|    |    |     | 10 | 1.045s  | 1.047pq | 18.43t | 18.47o-s | 15.56v | 15.64t  | 1.85no | 1.80o  |
|    |    |     | 20 | 1.050im | 1.0511m | 18.630 | 18.68jk  | 16.34m | 16.43k  | 1.73rs | 1.68s  |
|    |    | TDZ | 10 | 1.053h  | 1.054h  | 18.74m | 18.80i   | 16.75g | 16.85g  | 1.56y  | 1.51x  |
|    |    | II  | 20 | 1.046qr | 1.048no | 18.50r | 18.56l-o | 15.73t | 15.82r  | 1.830  | 1.78p  |
|    |    |     | 0  | 1.041v  | 1.042t  | 18.31x | 18.37rst | 14.93D | 15.00D  | 2.07h  | 1.98i  |
|    |    | BAP | 10 | 1.049m  | 1.051im | 18.861 | 18.93h   | 15.46x | 15.55v  | 1.921  | 1.88m  |
|    | 0  |     | 20 | 1.052hi | 1.054h  | 19.65g | 19.74d   | 16.64i | 16.75h  | 1.71st | 1.66t  |
|    |    | TDZ | 10 | 1.054fg | 1.056ef | 19.92f | 19.72d   | 16.96f | 17.06f  | 1.58x  | 1.54w  |
|    |    | II  | 20 | 1.051jk | 1.052ij | 18.90k | 18.96h   | 15.64u | 15.74s  | 1.85no | 1.82no |
|    |    |     | 0  | 1.048n  | 1.049n  | 18.861 | 18.94h   | 15.53w | 15.62u  | 1.76q  | 1.70r  |
|    |    | BAP | 10 | 1.055e  | 1.056ef | 19.24i | 19.30f   | 16.401 | 16.49j  | 1.56y  | 1.49y  |
| 80 | 5  | B   | 20 | 1.060b  | 1.061b  | 20.25b | 20.31b   | 17.54c | 17.64c  | 1.32D  | 1.25D  |
|    |    | TDZ | 10 | 1.067a  | 1.068a  | 20.46a | 20.53a   | 18.26a | 18.36a  | 1.24E  | 1.18E  |
|    |    | E   | 20 | 1.056d  | 1.057d  | 19.36h | 19.42e   | 16.57j | 16.67i  | 1.52z  | 1.46z  |
|    |    |     | 0  | 1.043u  | 1.044s  | 18.65n | 18.71ijk | 15.21B | 15.33y  | 1.89m  | 1.82no |
|    |    | BAP | 10 | 1.052hi | 1.052ij | 19.11j | 19.16g   | 15.80s | 15.89q  | 1.67uv | 1.62u  |
|    | 10 |     | 20 | 1.056d  | 1.057d  | 19.97d | 20.05c   | 17.20d | 17.30d  | 1.46A  | 1.40A  |
|    |    | TDZ | 10 | 1.058c  | 1.059c  | 20.19c | 20.25b   | 17.64b | 17.73b  | 1.36C  | 1.31C  |
|    |    | IT  | 20 | 1.054fg | 1.055g  | 19.94e | 19.33ef  | 16.130 | 16.25m  | 1.64w  | 1.60v  |
|    |    |     |    |         |         |        |          |        |         |        |        |

\*Values having a common alphabetical letter (s), do not significantly differ using the revised L.S.D. test

# Conclusion

The obtained results showed, generally, that the combination between potassium (80 kg K<sub>2</sub>O fad<sup>-1</sup>) + NAA (5ppm) + TDZ (10 ppm) recorded the highest average values and might be considered as the best treatment for the production of high yield and good quality of potato plants under the environmental conditions of Behiera Governorate and other similar regions.

#### References

- Aashish, K. C.; J. Kumar; V. J. Silas; H. Giri; H. Khadka and M. K. Yadav, (2022). Effect of foliar application of urea and naphthalene acetic acid (NAA) on growth and yield of chilli (*Capsicum annum* L.) var Pusa Jwala. Pharma Innov. J., 11(7): 1187-1198.
- Abd El-Latif, K. M.; E. A. M. Osman; R. Abdullah, and N. Abd El-Kader (2011). Response of potato plants to potassium fertilizer rates and soil moisture deficit. Adv. Appl. Sci. Res., 2(2): 388-397.
- Aboud, F. S., and H. A. Abd-Alrahman (2020). Effect of foliar spray with some growth stimulants on potato plants under different growing media. Plant Archives 20 (2): 9244-9252.
- Ahmed, A. A.; A. A. Alkharpotly; A. A. Gabal and A. I. Abido(2021).Potato growth and yield as affected by foliar application with NAA auxin and 6-BA cytokinin. J. Plant Prod., Mansoura Univ., 12 (6):591 – 596.
- Ahmed, I. H.; E. F. Ali; A. A. Gad; A. Bardisi; A. M. El-Tahan; O. A. Abd Esadek, and A. S. Gendy, (2022). Impact of plant growth regulators spray on fruit quantity and quality of pepper (*Capsicum annuum* L.) cultivars grown under plastic tunnels. Saudi J. Biol. Sci., 29(4): 2291-2298.
- Ahmed, K., and F. G. Mengistu (2020). Quality components of potato tubers as affected by plant growth regulators. Int. J. Res Stud. Agri. Sci. (IJRSAS), 6(11): 21-27.
- Albacete, A. A.; C. Martínez-Andújar and F. Pérez-Alfocea, (2014). Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol. Adv., 32(1): 12-30.
- AL-muhamadi O. H. M. and A. kh. H. AL- essawi (2015).Effect of spraying with Growth Regulators and some nutrients in quality characters of Potato plants *Solanum tuberosum* L. Burren cv. Anbar J. Agric.Sci.,13(2):267-276.
- Badawy, A.; M. M. A. Zahran and M. M. Hefzy, (2019). Effect of irrigation level and bio-stimulants on productivity and quality of garlic (*Allium sativum* L.) in calcareous soils. Fayoum J. Agric. Res. & Develop., 33(1): 90-101.
- Berisha, D.; E. Susaj; N. Bardhi; L. Susaj; V. Havolli; S. Aliu; I. Rusinovci; B. Neziraj, and A. Osmanaj (2014). Effect of potassium fertilization rate on several vegetative and yield characters of potato (*Solanum tuberosum* L.), grown under two different agro-climatic regions of Kosovo. Int. Interdiscip. Res. J., 4: 62-69.

- Bhattaraia, P. (2017). Effects of plant growth regulators on growth and yield of pre-basic seed potato production under glasshouse condition. SAARC J. Agric., 15(1): 149-160.
- Binnoubah A. H. A.; Z. H. A. Saed and A. A. A. Hadia (2022). Response of growth and potato tubers yield to potassium fertilization and some bio- extracts. Middle East J. Agric. Res., 11(3): 781-789.
- Bishwoyog, B., and K. Swarnima (2016). Effect of potassium on quality and yield of potato tubers— A Review. Int. J. Agric. Environ. Sci., 3(6): 7–12.
- Cohort Software; Version 6.4; CoStat: Monterey, CA, USA, 2005.
- Devaux, A.; J.P. Goffart; A. Petsakos; P. Kromann; M. Gatto; J. Okello and G. Hareau (2020). Global food security, contributions from sustainable potato agri-food systems. In The potato crop (pp. 3-35).
- Dinesh, K., R. Ezekiel, B. Singh and I. Ahmed (2005). Conversion table for specific gravity, dry matter, and starch content from under water weight of potatoes grown in North India plains. Potato J., 32 (1-2):79-84.
- El-Anany, A. M. A.; Y. M. M. Osman and M. M. Abd El-Aal (2020). Studies on improving potato growth, yield and quality. Ann. Agric. Sci., Moshtohor, 58(4): 963 – 976.
- El-Areiny, A. A. R.; A. E Alkharpotly; A. A. A. Gabal and M. A. Aly, (2022). Potato tuber eye explant growth performance as affected by some growth regulators. J. of Plant Production, 13(9): 641-648.
- El-Sayed, H. A.; S. M. Farid and R. E. El-Zehery, (2015). The effect of some soil treatment and foliar applications on the productivity and quality of pepper crop 1-vegetative growth, yield and chemical. J. Plant Prod., 6(4): 623-643.
- Gerendas, J.; F. Heuser and B. Sattlemacher (2007). Influence of nitrogen and potassium supply on contents of acrylamide precusors in potato tubers and on acrylamide accumulation in fries. J. Plant Nutr., 30 (7):1499-1516.
- Ghosh, T.; A. M. Sonkamble; S. R. Patil, and A. W. D. Kankal (2022). Effect of chemicals and plant growth regulator on yield and economics of capsicum under shade net conditions. Pharma Innov. J., 11(4): 1659-1660.
- Habtam S.; N. Dechassa and Y. Alemayehu, (2018). Influence of phosphorus and potassium fertilizers on growth and yield of potato (*Solanum tuberosum* L.) at Assosa, Benishangul Gumuz Regional State, Western Ethiopia. J. Soil Sci. & Environ. Manag., 9 (6): 81-90.
- Hasanuzzaman M.; M.H.M. Borhannuddin Bhuyan; K. Nahar; S. Hossain; J. Al Mahmud, S.H. Md; A.A. Chowdhury Masud; Moumita, and M. Fujita (2018).

Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8:31.

- Huang, Y.; X. Zeng and H. Cao, (2018). Hormonal regulation of floret closure of rice (*Oryza sativa*). PLoS One, 13: e0198828.
- Hussain, W. and L. Khalaf, (2007). Effect of foliar spraying with yeast solution on growth and yield of potato plant cv. desiree.
- Khajehzadeh, S.; N. Moallemi, and M. H. Mortazavi, (2018). Effect of foliar application of puttassium sulphate and naphtalin acitic acid on yield and quality of 'Pearl Tangelo'mandarin. Res. Pomol., 3(2): 16-26.
- Kieber J. J., and G.E. Schaller (2014). Cytokinins. Arabidopsis Book. 12, e0168.
- Kumar, A.; B.P. Singh and H. Katiyar (2012). Effect of foliar application of plant growth regulators on potato tubers quality. Progress. Hort., 44(2): 299-303.
- Kumari, S.; M. L. Meena; A. Saini, and S. Kumar, (2022). Effect of foliar application of plant growth regulators on yield and yield attributes of okra in western arid region of Rajasthan. Pharma Innov. J., 11(2): 1544-1546.
- Lahijani, M. J. A.; M. Kafi; A. Nezami; J. Nabati and J. E. Erwin (2021). ABA and BAP improve the accumulation of carbohydrates and alter carbon allocation in potato plants at elevated CO<sub>2</sub>. Physiol. Mol. Biol. Plants, 27(2):313-325.
- Ma, T-L.; W-H. Wu, and Y. Wang (2012). Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol., 12:161.
- Mahajan, S.; D.K. Rana, Hema and L. Raj, (2022). Effect of different concentration of nutrient and PGRs on physico-chemical quality and yield of mango (*Mangifera indica* L.) cv. Amrapalli under valley conditions of Garhwal hill. Pharma Innov. J., 11(5): 2194-2197.
- Malek, S.; A. I. A. Ebido; G. Abdel-Nasser; M. M. Ziton and A. A. A. Gabel (2021).Yield and quality of potato as affected by foliar spraying of boron and cytokinin. J. Adv. Agric. Res. (JAAR) 26 (2):86-99.
- Malik, C. P. and M. B. Singh (1980). Plant Enzymology and Histo-Enzymology-A text Manual, PP. 276- 277, Kalyani Publishers, New Delhi, India.
- Mehdi, S. M.; M. Sarfraz, and M. Hafeez (2007). Response of rice advance line PB-95 to potassium application in saline sodic soil. Pak. J. Biol. Sci., 10: 2935-2939.
- Mengel, K., and E. A. Kirkby (2012). Principles of plant nutrition. Springer Science and Business Media.

- Mijwel A. K. and R. A. Ridha (2021). Effect of thidiazuron on growth and yield parameters of cauliflower *Brassica oleracea* var *botrytis* hybrids. Plant Cell Biotechnol. Mol. Biol., 22(5&6):8-14.
- Naciri R.; M. Lahrir; C. Benadis et al (2021). Interactive effect of potassium and cadmium on growth, root morphology and chlorophyll a fluorescence in tomato plant. Sci. Rep., 11:5384.
- Naumann, M.; M. Koch; H. Thiel; A. Gransee, and E. Pawelzik (2020). The importance of nutrient management for potato production part II: Plant Nutrition and Tuber Quality. Potato Res., 63: 121–137.
- Naz, S.; S. A. H. Naqvi; B. Siddique; M. A. Zulfiqar and A. Rehman, (2020). Exogenous application of selected antioxidants and phyto development directors influenced the development, output and biochemical attributes of tomato (*Lycopersicum esculentum* Mill.). Pakistan J. Agric. Res., 33(4): 789-797.
- Njogu, M. K.; G. K. Gathungu and P. M. Daniel (2015). Comparative effects of foliar application of gibberellic acid and benzylaminopurine on seed potato tuber sprouting and yield of resultant plants. American J. Agric. For., 3(5):192-201.
- Nuraini, A.; P. S. Nugroho; W. Sutari; S. Mubarok, and J. S. Hamdani, (2021). Effects of cytokinin and paclobutrazol application time on growth and yield of G2 potato (*Solanum tuberosum* L.) Medians cultivar at medium altitude in Indonesia. Agric. Nat. Resour., 55(2), 171-176.
- Oosterhuis, D.M.; D.A. Loka; E.M. Kawakami and W.T. Pettigrew (2014). The physiology of potassium in crop production. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 126: 203–233.
- Pavlista, A. D. (2011). Growth regulators increased yield of Atlantic. Potato Am. J. Potato Res., 88(6): 479-484.
- Pervez, M.A.; M.A. Choudhary; M.R. Shaheen and M.A. Noor, (2013). Determination of physic morphological characteristics of potato crop regulated by potassium management. Pak J. Agric. Sci., 50(4): 611-615.
- Ranganna, S. (1986). Handbook of Analysis and Quality Control for Fruit and Vegetable Products. Tata McGraw-Hill Publishing Company Ltd., New Delhi, India.1112 Pp.
- Rather, M. A.; M. A. Chattoo; T. A. Bhat; F. Mushtaq; M. Rashid; M. Shah and A. Sultan (2021). Influence of different levels of sulphur and potassium and their interactions on different quality and storage parameters of potato. Int. J. Plant & Soil Sci., 33(3): 38-46.

- Reddy, P. J.; K. L. N. Rao; C. N. Rao, and B. K. Mahalakshmi (2003). Effect of different chemicals on growth, yield and yield attributes of pigeonpea in vertisols. Ann. plant physiol., 17(2): 120-124.
- Roumeliotis E.; B. Kloosterman; M. Oortwijn; W. Kohlen; H. J. Bouwmeester; R.G.F. Visser, and C.W.B. Bachem (2012). The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J. Exp. Bot., 63(12): 4539-4548.
- Samy, M., and M. S. El-Zohiri, (2021). Improving seed productivity of garlic by using nitrogen, potassium fertilization and some growth regulators. J. Plant Prod., 12(7): 805-812.
- Smith, O. (1977). Potatoes: production, storing and processing. The AVI Publishing Company, Westport, Connecticut, USA. Second edition. pp. 222-302.
- Sun, Y.L., and S.K. Hong (2010). Effects of plant growth regulators and Lglutamic acid on shoot organogenesis in the halophyte *Leymus chinensis* (Trin.). Plant Cell Tiss. Organ Cult., 100: 317-328.
- Trehan, S. P.; S. K. Pandev, and S. K. Bansal (2009). Potassium nutrition of potato Crop –Indian Scenario.
- Vafaee M.; A. Golchin; F. Moradi and A. Shariatzade (2020). The effect of growth hormones and mycorrhizal fungi on the yield of potato plant (Agria Cultivar). Iranian J. Soil & Water Res., 51(7): 1623-1635.
- Wassie, H. (2009). On farm verification of potassium fertilize effect on the yield of Irish potato grown on acidic soils of Hagere-Selam, Southern Ethiopia. Ethiopian J. Nat. Resour., 11(2): 207-221.
- Yakimenko, V. N., and N. B. Naumova (2018). Potato tuber yield and quality under different potassium application rates and forms in West Siberia. Agriculture (Pol'nohospodárstvo), 64: 128–136.
- Youssef, Y. A. A.; M. Y. El-Maziny; S. A. Abdalla; M. E. Meleha, and A. A. Hassan (2007). Effect of water stress and potassium fertilization on yield quantity and quality of potato. Afri. Crop Sci. Conf. Proc., (8): 445-455.
- Zekri, M., and T. A. Obreza (2009). Plant nutrients for citrus trees. SL 200, UF/IFAS Extension Service, Inst. Food. Agric. Sci. Univ. Florida.

2022, 21 (3): 101-126 Online: 2735-5098

# الملخص العربي

تأثير البوتاسيوم والأوكسين والسيتوكينينات على محصول و جودة درنات البوتاسيوم والأوكسين والسيتوكينينات على محصول و

سعيد محمد جبر، علاء الدين حسين رشدي، ساري حسن برنجي، ابراهيم على ابوالسعد و مصطفى معيد محمود عبدالحليم

قسم البساتين- كلية الزراعة- جامعة دمنهور

تم إجراء تجربتين حقليتين خلال موسمي الصيف 2020 و 2021 لدراسة تأثير التسميد بالبوتاسيوم (0 ، 40 ، 00 كجم للغدان (K2O) ، وتطبيق الرش الورقي بحمض النفثالين أستيك أسيد (0، 5، 10 جزء في المليون) AA ) ، و نوعين من السيتوكينينات (BAP و TDZ عند 0 و 10 و 20 جزء في المليون) على المحصول ومكوناته وجودة درنات البطاطس صنف هير ميس. بشكل عام فإن المستويات التي تم فحصها لكل عامل تم إختياره قد أثرت معنوياً على كل صفات المحصول وجودة الدرنات في كلا الموسمين. أيضًا ، كان أفضل مستوى لكل عامل هو 80 ليرم مين بشكل عام فإن المستويات التي تم فحصها لكل عامل تم إختياره قد أثرت معنوياً على كل صفات المحصول وجودة الدرنات في كلا الموسمين. أيضًا ، كان أفضل مستوى لكل عامل هو 80 ليتداخل الأول بين أزواج ثلاثة عوامل رئيسية ، كانت أفضل التداخلات 80 كجم 205 لـ Ks في المليون NAA ، و 80 كجم 200 + 10 جزء في المليون من 7DZ لـ NAA. في المليون من NAA ، و 70 جزء في المليون لـ NAA التداخل الأول بين أزواج ثلاثة عوامل رئيسية ، كانت أفضل التداخلات 80 كجم 10 جزء في المليون NAA ، و 80 كجم 200 + 10 جزء في المليون 500 ، و 10 جزء في المليون من 10 م التداخل الأول بين أزواج ثلاثة عوامل رئيسية ، كانت أفضل التداخلات 80 كجم 10 ها موات المليون NAA ، و 80 كجم 10 م الموسمين. علاوة على ذلك ، وجذ أن التداخل من الدرجة في المليون من 10 م الثيون 10 م الميون على معيع الصفات المدروسة مع تفوق المعاملة الثانية بين العوامل الثلاثة المدروسة أثر معنويا على جميع الصفات المدروسة مع تفوق المعاملة الثانية بين العوامل الثلاثة المدروسة أثر معنويا على جميع الصفات المدروسة مع تفوق المعاملة من در نات البطاطس مع الحفاظ على جودة عالي ذرات ، 10 م مر من 200 م من مر در نات البطاطس مع الحفاظ على جودة عالية