
Computational Journal of Mathematical and Statistical Sciences

2(1), 52–79

DOI: 10.21608/cjmss.2023.189834.1002

https://cjmss.journals.ekb.eg/

Research article

A Simple Introduction to Regression Modeling using R

Amr R. Kamel 1, 2, Mohamed R. Abonazel 2 *

1Department of Basic Sciences, Elgazeera High Institute for Computers and Information Systems,

Ministry of Higher Education, Cairo, Egypt; amr_ragab@pg.cu.edu.eg.

2Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical

Research, Cairo University, Giza, Egypt; mabonazel@cu.edu.eg.

*Correspondence: mabonazel@cu.edu.eg

Abstract: In statistical modeling, regression analysis is a group of statistical processes used in R

programming and statistics to determine the relationship between dataset variables. It is a solid

technique for determining the factors that affect an issue of interest. You can confidently establish

which elements are most important, which ones can be ignored, and how these factors interact when

you do a regression. It can be used to simulate the long-term link between variables and gauge how

strongly the relationships between them are related. Regression analysis is typically used to ascertain

the relationship between the dataset’s dependent and independent variables. Generally, regression

analysis is used to determine the relationship between the dependent and independent variables of the

dataset. Understanding how dependent variables change when one of the independent variables

changes while the other independent variables remain constant is made easier with the use of

regression analysis. As a result, it is easier to create a regression model and forecast values in

response to changes in one of the independent variables. Based on the categories of dependent

variables, the quantity of independent variables, and the contour of the regression line. In this paper,

we use the R programming language to present various empirical investigations in statistics and

econometrics. We next consider problems involving modeling the relationship between response and

explanatory variables for linear and non-liner regression models.

Keywords: Diagnostics; Estimation Method; Graphical Presentation Methods; Model Visualization;

Non-linear Regression; Packages; Practical Introduction; Regression Analysis; R Software.

Mathematics Subject Classification: 62J05; 62G08; 62M10.

Received: 26 January 2023; Revised: 17 February 2023; Accepted: 18 February 2023; Published: 20 February 2023.

1. Introduction

Regression analysis is a powerful tool for uncovering the associations between variables

observed in data, but cannot easily indicate causation. It has several applications in the fields of

business, finance, and economics. It is used for employed to calculate the relationships between a

53

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

dependent variable (commonly referred to as the "outcome" or "response" variable) and one or more

independent variables (often referred to as "predictors," "covariates," "explanatory variables," or

"features"). In linear regression, the most typical type of regression analysis, the line (or a more

complicated linear combination) that most closely matches the data in terms of a given mathematical

criterion is found. The foundation of many significant statistical models is regression. The outcome

we care about in marketing applications is typically the dependent variable (e.g., sales), and the

instruments we use to get there are the independent variables (e.g., pricing or advertising). Few other

techniques can offer the insights that regression analysis can. The two theoretically separate uses of

regression analysis are as follows:

1. Regression analysis is frequently used for forecasting and prediction, where it has a lot in

common with machine learning.

2. Regression analysis can be used to infer causal links between the independent and dependent

variables in specific circumstances.

Importantly, regressions by themselves only reveal relationships between a dependent variable

and a collection of independent variables in a fixed dataset. To use regressions for prediction or to

infer causal relationships, respectively, a researcher must carefully justify why existing relationships

have predictive power for a new context or why a relationship between two variables has a causal

interpretation. The latter is especially important when researchers hope to estimate causal

relationships using observational data. Knowing about the effects of independent variables on

dependent variables can help market researchers in many different ways. For example, it can help

direct spending if we know promotional activities significantly increases sales. Knowing about the

relative strength of effects is useful for marketers because it may help answer questions such as

whether sales depend more on price or on promotions, see [1].

Regression analysis also allows us to compare the effects of variables measured on different

scales such as the effect of price changes (e.g., measured in $) and the number of promotional

activities. Regression analysis can also help to make predictions. For example, if we have estimated a

regression model using data on sales, prices, and promotional activities, the results from this

regression analysis could provide a precise answer to what would happen to sales if prices were to

increase by 5% and promotional activities were to increase by 10%. Such precise answers can help

(marketing) managers make sound decisions. Furthermore, by providing various scenarios, such as

calculating the sales effects of price increases of 5%, 10%, and 15%, managers can evaluate

marketing plans and create marketing strategies.

Regression measures whether or not correlations between variables in a data set are statistically

significant by capturing their magnitude. Although there are non-linear regression techniques for

more complex data and analysis, simple linear regression and multiple linear regression are the two

fundamental types of regression. While multiple linear regression employs two or more independent

factors to predict the outcome, simple linear regression just uses one independent variable to explain

or predict the outcome of the dependent variable 𝑦 (while holding all others constant).

54

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Professionals in other industries, including banking and investment, might benefit from

regression. Regression can also aid in predicting sales for a business based on external factors like

the weather, past sales, gross domestic product (GDP) growth, and other variables, see [2,3]. A

popular regression model in finance for valuing assets and calculating capital expenses is the capital

asset pricing model (CAPM). In addition, Econometrics has occasionally come under fire for

depending excessively on the interpretation of regression output without connecting it to economic

theory or looking for causal mechanisms. Even if that means creating your own explanation of the

underlying processes, it is essential that the findings presented in the data can be effectively

explained by a theory.

In this paper, we will review the basics R Programming and we provide R-codes for linear and

non-liner regression models with estimation. Also, we will investigate some diagnostic methods for

problems of regression analysis. This paper is organized as follows. Section 2 provides an

introduction to the R programming language. Section 3 presents regression modeling with examples.

In Section 4, the multiple linear regression and estimation have been discussed. While in Section 5,

the non-linear regression model will be introduced. Finally, Section 6 offers the concluding remarks.

2. Introduction to R Programming

2.1 R Overview and History

R is a widely used open-source programming language for statistical computing and data

analysis. R typically includes a command-line interface. R is publicly accessible under the GNU

General Public License, and binary versions that have already been pre-compiled for other operating

systems including Linux, Windows, and Mac are also available. The newest cutting-edge technology

is the R programming language. The environment for dealing with your data in R is comprehensive.

Without building a whole program, you can just use the functions that are built into the environment

to process your dataset. Additionally, you can create your own programs to carry out tasks that lack

built-in functionalities or to repeatedly complete the same action, for example. R is simpler to code

in and understand since it shares many syntactical similarities with other widely used languages.

Programs can be written in R software in any of the widely used IDE like R Studio, Rattle, Tinn-R,

etc, see [4,5].

Ross Ihaka and Robert Gentleman created R for the first time in 1992 at the University of

Auckland in New Zealand. The S language, which was created (mostly) by John Chambers at Bell

Laboratories, is a "dialect" of which the R language is a subset. The R Development Core Team,

which has more than a dozen members, is presently responsible for maintaining this software. R has

received a lot of additional coding contributions since it was first published. R is open source, which

means that users may change, copy, and distribute the software or any derivatives as long as the

modified source code is made public.

55

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

2.2 Finding and installing R

The Comprehensive R Archive Network, or CRAN, is a network of computers that is maintained

by the R Development Core Team and houses installation files and documentation for R. You can

find it by searching for CRAN R on Google or visiting http://cran.r-project.org/. Windows, Mac, and

Unix-like operating systems all support R. By clicking one of the download links at the top, users

can get installation files and instructions from the CRAN website. While the R commands vary

between systems (if they are available at all), the graphical user interfaces (GUIs) and their menus do

not. An interpreted computer language called R, developed by the Development Core Team, supports

branching and looping as well as modular programming with the use of functions. For increased

efficiency, R enables integration with processes created in C, C++,.Net, Python, or FORTRAN.

2.3 Features of R

As stated earlier, R is a computer language and software environment used for statistical analysis,

graphic representation, and reporting. The following are the important features of R:

• R is a well-designed, easy-to-use programming language with input and output capabilities,

conditionals, loops, and user-defined recursive functions.

• For calculations on arrays, lists, vectors, and matrices, R offers a number of operators.

• R has a reliable system in place for processing and storing data.

• R offers graphical tools for data analysis and display that may be used on a computer or

printed on paper.

• R offers a sizable, well-organized, and comprehensive library of tools for data analysis.

As a conclusion, R is the most popular statistical programming language in the world. Data

scientists rank it as their top option, and a robust and brilliant community of contributors backs it up.

R is used in mission-critical corporate applications and is taught in universities. You will learn R

programming in this lesson using appropriate examples and simple, straightforward techniques. The

software is updated frequently, but the changes are typically not substantial, see [6,7,8].

3. Regression Modeling

Linear regression is an approach to model the relationship between a scalar dependent variable y

and one or more explanatory variables (independent variables) denoted by 𝑥𝑖 , 𝑖 = 1,2, . . . , 𝑛. The

steps of regression analysis are as follows:

1. Select the model’s goal and the suitable dependent variable to achieve it.

2. Select independent factors.

3. Calculate the regression equation’s parameters.

4. Interpret parameters that have been estimated, the goodness of fit, and both qualitative and

quantitative evaluations of the parameters.

5. Evaluate whether assumptions are reasonable.

6. Modify and amend the calculated equation if some assumptions are not met.

56

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

7. Validate the regression equation that was estimated.

With the understanding that the goal of the model has already been determined and that only the

last phases remain, we will look at these procedures.

3.1 Simple Linear Regression

We can better comprehend the relationships between the values of a quantitative explanatory (or

predictor) variable and the values of a quantitative outcome (or response) by using linear regression.

This method is frequently used to either produce anticipated values or draw conclusions about

relationships in the dataset. In certain areas, the predictor is referred to as the independent variable

and the outcome as the dependent. Since dependent and independent have so many different

connotations in statistics, we refrain from using them in this way. A simple linear regression model

for an outcome 𝑦 as a function of a predictor 𝑥 takes the form:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖, for 𝑖 = 1, … , 𝑛, (1)

where 𝑛 represents the number of observations (rows) in the data set. For this model, 𝛽0 is the

population parameter corresponding to the intercept (i.e., the predicted value when = 0) and 𝛽1 is

the true (population) slope coefficient (i.e., the predicted increase in 𝑦 for a unit increase in 𝑥). The

errors are represented by the 𝜖i’s (which are thought to be random noise with mean 0).

We estimate the population parameters 𝛽0 and 𝛽1 using information from our sample because we

hardly ever know their exact values. The "best" coefficients 𝛽0 and 𝛽1 are found using the lm()

function (in the MASS package) when the fitted values (or predicted values) are given by the

following formula 𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥𝑖 [9]. What is left over is captured by the residuals(𝜖𝑖 = 𝑦𝑖 − 𝑦̂𝑖).

The model almost never fits perfectly - if it did there would be no need for a model.

Typically, an ordinary least square (OLS) criterion that minimizes the sum of the squared

residuals is used to identify the regression line that fits the data the best. There is only one least

squares regression line, which is determined by the values of 𝛽̂0 and 𝛽̂1. The OLS method is one of

the oldest estimation methods and is common used in most applications, because it given best linear

unbiased estimators (BLUEs). The formula of OLS estimator of the model in Equation (1) is:

𝛽̂OLS = (𝑥𝑇𝑥)−1(𝑥𝑇𝑦). (2)

When the errors have finite variances, the OLS method offers minimum-variance mean-unbiased

estimation. OLS is the maximum likelihood estimator when the extra supposition that the errors are

normally distributed is held.

3.2 Inspirational Example

In our example, for ninety days the Pioneer Valley Planning Commission (PVPC) in Florence,

Massachusetts, gathered information north of Chestnut Street. When a rail-trail user passed the data

collecting point, a laser sensor put up by data collectors recorded the event (in mosaicData package).

57

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

##=== Prepare the R console
rm(list = ls(all = TRUE)) # Remove all objects in R console
set.seed(09061982) # Set the seed for reproducible results
######################### Installing the packages #######################

install.packages("Name")
PackageNames <- c("stats4",
 "Metrics",
 "graphics",
 "ggplot2",
 " car",
 "MASS",
 "MVTests",
 " mosaic",
 " mosaicData",
 "vtable"
)
for(i in PackageNames){
 if(!require(i, character.only = T)){
 install.packages(i, dependencies = T)
 require(i, character.only = T)
 }
}

glimpse(RailTrail) ## Load data. View structure

Rows: 90

Columns: 11

$ hightemp <int> 83, 73, 74, 95, 44, 69, 66, 66, 80, 79, 78, 65, 41, ~

$ lowtemp <int> 50, 49, 52, 61, 52, 54, 39, 38, 55, 45, 55, 48, 49, ~

$ avgtemp <dbl> 66.5, 61.0, 63.0, 78.0, 48.0, 61.5, 52.5, 52.0, 67.5~

$ spring <int> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1~

$ summer <int> 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0~

$ fall <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0~

$ cloudcover <dbl> 7.6, 6.3, 7.5, 2.6, 10.0, 6.6, 2.4, 0.0, 3.8, 4.1, 8~

$ precip <dbl> 0.00, 0.29, 0.32, 0.00, 0.14, 0.02, 0.00, 0.00, 0.00~

$ volume <int> 501, 419, 397, 385, 200, 375, 417, 629, 533, 547, 43~

$ weekday <lgl> TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FA~

$ dayType <chr> "weekday", "weekday", "weekday", "weekend", "weekday~

On the other hand, Monte Carlo simulation (MCS) techniques were employed to produce data

that was identical to data gathered from real phenomena and complied with our model’s parameters.

The most common application of MCS approaches is to empirically investigate the characteristics of

theoretical models because of their special suitability for doing so, for more details about MCS using

R, see [10,11,12].

The PVPC is trying to figure out how daily ridership the number of people who utilize the bike

path each day relates to a range of explanatory factors like temperature, precipitation, cloud cover,

and day of the week. In order to obtain summary statistics for each variable in the data frame we will

be used;

58

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Descriptive Statistics for RailTrail Dataset ###

library("vtable")

st(RailTrail) # in table or using;

summary(RailTrail)

Table 1, presents some descriptive statistics for the variables (dependent and independent

variables). Moreover, when the dataset are contaminated with a single or few outliers, the problem of

identifying such observations is a serious problem. We note that in most cases datasets contain more

outliers or a group of influential observations.

Table1: Descriptive statistics for rail-trail dataset.

Moreover, the process of identifying or diagnosing outliers in regression analysis is crucial;

hence some techniques for doing so will be demonstrated. These techniques involve statistics that

concentrate on observations that have an impact on the OLS estimate. The OLS estimator is

extremely vulnerable to outliers value, hence the model needs a robust estimator that is unaffected by

outliers in the dataset in order to produce an accurate estimation. In various regression models, many

papers discuss a variety of robust estimators; see e.g. [13-18].

On the other hand, the OLS estimator is best in the class of linear unbiased estimators when the

errors are homoscedastic and serially uncorrelated and consistent when the regressors are exogenous

and there is no multicollinearity. When the explanatory factors are highly correlated, this issue

59

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Correlation Analysis ###

library("corrplot")

RailTrail_data <- RailTrail[,-c(10,11)]

Correlation Matrix between all variables

Correlation_Matrix <- cor(RailTrail_data)

print(Correlation_Matrix)

hightemp lowtemp avgtemp spring summer fall cloudcover

hightemp 1.00000000 0.6598839 0.9196439 -0.33333833 0.6669179 -0.39625396 -0.09557041

lowtemp 0.65988392 1.0000000 0.9019603 -0.38873326 0.7374661 -0.40902843 0.36599773

avgtemp 0.91964390 0.9019603 1.0000000 -0.39477095 0.7687716 -0.44153789 0.13638819

spring -0.33333833 -0.3887333 -0.3947710 1.00000000 -0.7422503 -0.46944033 -0.10242904

summer 0.66691793 0.7374661 0.7687716 -0.74225033 1.0000000 -0.24325213 0.17035425

fall -0.39625396 -0.4090284 -0.4415379 -0.46944033 -0.2432521 1.00000000 -0.07620144

cloudcover -0.09557041 0.3659977 0.1363882 -0.10242904 0.1703542 -0.07620144 1.00000000

precip 0.13431718 0.3737956 0.2725832 -0.24646475 0.3409780 -0.09253473 0.36914883

volume 0.58257188 0.1760858 0.4268535 -0.03531086 0.2274170 -0.24853781 -0.37456168

precip volume

hightemp 0.13431718 0.58257188

lowtemp 0.37379561 0.17608580

avgtemp 0.27258316 0.42685354

spring -0.24646475 -0.03531086

summer 0.34097796 0.22741700

fall -0.09253473 -0.24853781

cloudcover 0.36914883 -0.37456168

precip 1.00000000 -0.23238396

volume -0.23238396 1.00000000

plot Correlation Matrix

corrplot.mixed(Correlation_Matrix, bg = "black")

hist(volume) # Histogram for dependent variable

boxplot(volume) # Boxplot for dependent variable

occurs. The correlation matrix and variance inflation factor (VIF), it is used to diagnostics of the

multicollinearity problem, see Figure 1. The distinct effects of each of the explanatory variables on

the response variable are then challenging to separate. As a result, the computed regression

parameters could have unexpectedly divergent signs or be statistically insignificant. Thus, it would

be challenging for the researcher to draw a significant statistical inference. For information on how

to handle and resolve this issue in other regression models; see e.g. [19-22]. On the other hand,

Figure 2 displays the histogram and boxplot for dependent variable in rail-trail dataset.

60

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Figure 1: Correlation matrix for rail-trail dataset.

Figure 2: Histogram and Boxplot for dependent variable in rail-trail dataset.

Histogram of volume

volume

F
re

q
u

e
n

c
y

100 200 300 400 500 600 700 800

0
5

1
0

1
5

2
0

2
5

61

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Simple Linear Regression ###

library("MASS")

simple_Model <- lm(volume ~ hightemp, data = RailTrail)

print(simple_Model)

Call:

lm(formula = volume ~ hightemp, data = RailTrail)

Coefficients:

(Intercept) hightemp

-17.079 5.702

coeffs <- coefficients(simple_Model); coeffs

(Intercept) hightemp

-17.079 5.702

library("mosaic")

plotModel(simple_Model, system = "ggplot2")

The main regression function in R used for modelling linear regression is lm(). R also includes

with a wealth of tools for modelling that is more complicated, including gam() for generalized

additive models and glm() for generalized linear models, se [23,24]. By applying the following

formula to the lm(dependent variable ~ Independent variable), the fitted coefficient are displayed

below;

 The estimated parameters coefficients are extracted as follows;

 The following plot, Figure 3 displays a scatterplot of ridership (volume) versus high temperature

(hightemp), with a simple linear regression line superimposed.

Figure 3: Scatterplot for simple linear regression.

62

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

To get more information about the fitted model;

summary(simple_Model) # same as summary.lm(simple_Model)
Call:

lm(formula = volume ~ hightemp, data = RailTrail)

Residuals:

Min 1Q Median 3Q Max

-254.562 -57.800 8.737 57.352 314.035

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.079 59.395 -0.288 0.774

hightemp 5.702 0.848 6.724 1.71e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 104.2 on 88 degrees of freedom

Multiple R-squared: 0.3394, Adjusted R-squared: 0.3319

F-statistic: 45.21 on 1 and 88 DF, p-value: 1.705e-09

summary.aov(simple_Model) # ANOVA Table
1

Df Sum Sq Mean Sq F value Pr(>F)
hightemp 1 490744 490744 45.21 1.71e-09 ***
Residuals 88 955214 10855

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

n <- nrow(RailTrail)

SST <- var(~volume, data = RailTrail) * (n - 1)

SSE <- var(residuals(simple_Model)) * (n - 1)

1 - SSE / SST

[1] 0.33939

rsquared(simple_Model) # using function rsquared

[1] 0.33939

3.3 Measuring the Strength of Fit

To get more information about the fitted model, summary (the model’s name) can be used to get

details about Residuals, Coefficients, Residual standard error, 𝑅2 , Adjusted 𝑅2 . Moreover, the

function summary.anova (the model’s name) used to get ANOVA table.

The definition of 𝑅2 is given by:

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
=

𝑆𝑆𝑀

𝑆𝑆𝑇

 = 1 −
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)
2

∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦‾)2

 = 1 −
𝑆𝑆𝐸

(𝑛 − 1)Var (𝑦)
,

where SST is the total sum of squares, SSM is the sum of squares ascribed to the model, and SSE is

the sum of squared residuals. For the rail trail dataset, let’s determine these values;

63

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

newRailTrail = data.frame(hightemp=4.5)

predict(simple_Model, newRailTrail, interval = 'confidence')

fit lwr upr

1 8.579171 -102.0126 119.1709

predict(simple_Model, newRailTrail, interval = 'predict')

fit lwr upr

1 8.579171 -226.1531 243.3115

 ## For regression diagnostics ##

Aov <- aov (volume ~ hightemp)

Call:

aov(formula = volume ~ hightemp)

Terms:

hightemp Residuals

Sum of Squares 490743.5 955214.1

Deg. of Freedom 1 88

Residual standard error: 104.1859

Estimated effects may be unbalanced

On the other hand, the 𝑅2 of the regression model on the right is 0.3394. We say that the

regression model based on average daily temperature explained about 33% of the variation in daily

ridership.

3.4 Confidence interval and predicted confidence interval

To estimate the confidence interval for our model; we run the below function;

For estimating a predicted confidence interval for the estimated model, we can use predict

instead of confidence.

3.5 Diagnostics: Assessing the Regression Model Fit

An important part of any statistical analysis is assessment of how well the chosen model fits the

data. In regression, estimation of the linear slope (𝛽̂) is not sufficient to understand whether a linear

model is appropriate. Six aspects of the model should be assessed;

(i) Independence;

(ii) Normality;

(iii) Linearity;

(iv) Constant variance;

(v) Presence of outliers; and

(vi) Need for additional predictor variables.

For diagnosing the model, the graphical plots can be used in Figures 4, 5 and 6. Diagnostic plots

provide checks for heteroscedasticity, normality, influential observations, and post fit model

examination.

64

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

residuals <-residuals(Aov) # to find residual values

volume.hat<- fitted.values(Aov) # to find fitted values of dependent var.

par(mfrow = c(2,2)) # plot Normality of Residuals

plot(simple_Model)

Figure 4: Residuals of OLS estimation results.

250 350 450

-3
0
0

0
2
0
0

Fitted values

R
e
s
id

u
a
ls

Residuals vs Fitted

34
8

18

-2 -1 0 1 2

-2
0

1
2

3
Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q-Q

34
8

18

250 350 450

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Scale-Location
34

818

0.00 0.02 0.04 0.06

-3
-1

1
3

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Cook's distance

Residuals vs Leverage

1778

34

library("car")

library("lmtest")

residualPlots(simple_Model) # residual plots

Test stat Pr(>|Test stat|)

hightemp -3.2581 0.001601 **

Tukey test -3.2581 0.001122 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

65

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

library("lmtest")

ncvTest(simple_Model) # Testing for heteroskedasticity

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 6.425507, Df = 1, p = 0.011249

outlierTest(simple_Model) # Outliers-Bonferonni test

No Studentized residuals with Bonferroni p < 0.05

Largest |rstudent|:

rstudent unadjusted p-value Bonferroni p

34 3.192585 0.0019631 0.17668

dwtest(simple_Model) # Durban Watson test for autocorrelation

Durbin-Watson test

data: simple_Model

DW = 1.8916, p-value = 0.3011

alternative hypothesis: true autocorrelation is greater than 0.

Test Shapiro Wilk Test of residuals (Null: distribution is normal)

shapiro.test(simple_Model$residuals)

Shapiro-Wilk normality test

data: simple_Model$residuals

W = 0.97838, p-value = 0.139

Figure 5: Residuals and fitted values for simple linear regression.

40 50 60 70 80 90

-2
0

0
-1

0
0

0
1

0
0

2
0

0
3

0
0

hightemp

P
e

a
rs

o
n

 r
e

si
d

u
a

ls

250 350 450
-2

0
0

-1
0

0
0

1
0

0
2

0
0

3
0

0

Fitted values

P
e

a
rs

o
n

 r
e

si
d

u
a

ls

66

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

library("lmtest")

ncvTest(simple_Model) # Testing for heteroscedasticity

Post Fit Model Examination

volume.Hat <- predict(simple_Model, interval="prediction")

temp_df <- cbind(newRailTrail, volume.Hat)

gg <- ggplot(temp_df, aes(x=volume, y=hightemp))

gg <- gg + geom_line(aes(y=lwr), color = "red", linetype = "dashed")

gg <- gg + geom_line(aes(y=upr), color = "red", linetype = "dashed")

gg <- gg + geom_smooth(method=lm, level=.95, se=TRUE)

gg <- gg + geom_point()

gg <- gg + xlab("volume") + ylab("hightemp")

gg <- gg + ggtitle("Simple Linear Fit w 95% CI's of Mean and Individual

Predictions")

plot_CIboth <- gg + theme_bw()

print(plot_CIboth)

Figure 6: Post fit for simple linear regression examination.

67

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Multiple Linear Regression

Multiple_Model <- lm(volume ~ hightemp + lowtemp + cloudcover+ precip

 , data = RailTrail)

summary(Multiple_Model)

Call:

lm(formula = volume ~ hightemp + lowtemp + cloudcover + precip,

data = RailTrail)

Residuals:

Min 1Q Median 3Q Max

-269.447 -37.449 4.186 41.178 299.266

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.308 59.796 0.590 0.5564

hightemp 6.571 1.153 5.699 1.7e-07 ***

lowtemp -1.290 1.387 -0.930 0.3551

cloudcover -7.501 3.851 -1.948 0.0547 .

precip -100.616 42.064 -2.392 0.0190 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 93.2 on 85 degrees of freedom

Multiple R-squared: 0.4894, Adjusted R-squared: 0.4654

F-statistic: 20.37 on 4 and 85 DF, p-value: 8.537e-12

4. Multiple Linear Regression

Multiple regression is a natural extension of simple linear regression that incorporates multiple

explanatory (or predictor) variables. It has the general form:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖, where 𝜖 ∼ 𝒩(0, 𝜎𝜖). (3)

The estimated coefficients (i.e., 𝛽̂i’s) are now interpreted as “conditional on” the other variables -

each 𝛽i reflects the predicted change in y associated with a one-unit increase in 𝑥i, conditional upon

the rest of the 𝑥i’s. This type of model can help to disentangle more complex relationships between

three or more variables [25]. The value of 𝑅2 from a multiple regression model has the same

interpretation as before: the proportion of variability explained by the model.

In the case of multiple linear regression; we use the same function lm(), but her it takes more than

one dependent variable lm(dependent variable ~ independent 𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 +. . . +𝑉𝑎𝑟𝑛) as follows;

68

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

summary.aov(Multiple_Model) # testing the significance of predictors

Df Sum Sq Mean Sq F value Pr(>F)

hightemp 1 490744 490744 56.500 5.26e-11 ***

lowtemp 1 111176 111176 12.800 0.000575 ***

cloudcover 1 56061 56061 6.454 0.012885 *

precip 1 49695 49695 5.721 0.018964 *

Residuals 85 738282 8686

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the case of multiple regression with a categorical variable, consider first the case where x2 is

an indicator variable that can only be “true or false” 0 or 1 (e.g., weekday). Then;

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2. (4)

In the case where 𝑥1 is quantitative but 𝑥2 is an indicator variable, we have:

 For weekends, 𝑦̂|𝑥1,𝑥2=0 = 𝛽̂0 + 𝛽̂1𝑥1

 For weekdays, 𝑦̂|𝑥1,𝑥2=1 = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2(1) = (𝛽̂0 + 𝛽̂2) + 𝛽̂1𝑥1.

This is called a parallel slopes model since the predicted values of the model take the geometric

shape of two parallel lines with slope 𝛽̂1 : one with 𝑦-intercept 𝛽̂0 for weekends, and another with 𝑦-

intercept 𝛽̂0 + 𝛽̂2 for weekdays, see Figure 7.

Multiple_Model2 <- lm(volume ~ hightemp + weekday, data = RailTrail)

summary(Multiple_Model2)

Call:

lm(formula = volume ~ hightemp + weekday, data = RailTrail)

Residuals:

Min 1Q Median 3Q Max

-236.34 -59.86 12.38 60.88 281.41

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.8066 64.3444 0.665 0.5076

hightemp 5.3478 0.8463 6.319 1.09e-08 ***

weekdayTRUE -51.5535 23.6744 -2.178 0.0321 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 102 on 87 degrees of freedom

Multiple R-squared: 0.3735, Adjusted R-squared: 0.3591

F-statistic: 25.94 on 2 and 87 DF, p-value: 1.462e-09

plotModel(Multiple_Model2, system = "ggplot2")

69

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Testing for multicolinearity, A vif > 5 suggests collinearity

vif(Multiple_Model)

hightemp lowtemp cloudcover precip

2.310808 2.765642 1.581822 1.254962

Figure 7: Scatterplot for multiple regression with a categorical variable.

5. Non-linear Regression Model

We consider standard non-linear regression models of the following form:

𝑦 = 𝑓(𝜃, 𝑥) + 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2). (5)

with y being the response (the dependent variable), 𝑥 the (possibly multivariate) independent

variable, which is often controlled by the experimenter, 𝜃 the vector of model parameters

characterizing the relationship between x and y through the function f, and ϵ the residual error term

that is assumed to be normally distributed, centered around 0 and with unknown variance (𝜎2).

Furthermore, we assume that the residual error terms are mutually independent as is usually assumed

for standard non-linear regression analysis. In R, this non-linear regression model may be fitted using

nls () in the standard R installation (the package stats). Parameter estimation is based on an iterative

procedure that involves a linearization approximation leading to a least-squares problem at each step.

Note that functions gnls () and nlme() in nlme allow fitting of non-linear regression models for

several curves corresponding to different covariate configurations (such as different treatments) and

thus necessitating the use of correlation structures (e.g., random effects). However, for building these

200

400

600

40 60 80 100

hightemp

v
o
lu

m
e .color

FALSE

TRUE

70

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

more complex models (i.e., obtaining model fits that converge), nls () is often used initially to

produce fits of individual curves, which may then subsequently be combined and supplied to enable

fitting more complex non-linear regression models (e.g., through the use of the wrapper nlsList()).

5.1 About nlstools package

The package nlstools provides a number of tools to facilitate fitting standard non-linear

regression models (Equation (5)) and is specifically designed to work directly with nls(). The

package contains functions and graphical tools that will help users to create nls() objects and carry

out various diagnostic tests. More specifically, the nlstools toolbox will assist users in:

• Fitting non-linear models using function nls() by means of graphical tools.

• Getting a summary of parameter estimates, confidence intervals, residual standard error and

sum of squares, and correlation matrix of the estimates

• Visualizing the fitted curve superimposed on the observations.

• Checking the validity of the error model by carrying out tests and graphical checks of

residuals.

• Inspecting the contours of the residual sum of squares (likelihood contours) to detect possible

structural correlations between parameters and the presence of potential local minimum.

• Visualizing the projection of confidence regions and investigate the nature of correlations.

• Using resampling techniques in order to detect influential observations and obtain non-

parametric confidence intervals of the parameter estimates.

 We will elaborate on these features in the next section, using a concrete data example from

pulmonary medicine.

5.2 Non-linear Model Fitting in R

As mentioned in the introduction, fitting non-linear regression models requires the provision of

starting values for model parameters. A poor choice of starting values may cause non-convergence or

convergence to an unwanted local (rather than global) minimum when trying to minimize the least-

squares criterion. Biologically interpretable parameter often allows the user to guess adequate

starting values by assessing (often graphically) a set of plausible candidate model parameter values.

For this purpose, nlstools provides the graphical function preview(), which can be used to assess the

suitability of the chosen starting values, prior to fitting the model. This graphical approach for

assessing candidate starting values is also used by Ritz and Streibig [26], but it was not wrapped up

in a single function. Below is an example of usage. First, you should specify the model equation to

be used in the non-linear regression as a formula in R. Use this formula as first argument of the

function preview(), then supply the name of your dataset as second argument, and finally provide a

list of values for the model parameters as third argument. An additional argument variable can be

used to specify which independent variable is plotted against the dependent variable (column index

of the original dataset; default is 1) when more than one independent variable is modeled.

71

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

Non-linear Model fitting in R

library("nlstools")

formulaExp <- as.formula(VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) *

 (VO2rest + (VO2peak - VO2rest) *

 (1 - exp(-(t - 5.883) / mu))))

preview(formulaExp, data = O2K,

 start = list(VO2rest = 400, VO2peak = 1600, mu = 1))

Figure 7, shows good agreement between the data and the theoretical model based on the

provided set of starting values. Judged by the figure, the chosen starting values seem to be suitable

for initializing nls(). Note that next to the plot, the residual sum of squares measuring the discrepancy

between the model (based on the chosen starting values) and the observed data is provided. This

value gives an idea of the magnitude of the residual sum of squares to expect from the model fit

based on nls().

Figure 7: Graphically assessing the starting values prior the fit of a non-linear model.

Once suitable starting values are obtained, the model may be fitted using nls() and then the

function overview() in nlstools may be used for providing a single display with all relevant pieces of

information about the model fit.

0 2 4 6 8 10 12

4
0

0
6

0
0

8
0

0
1

0
0

0
1

4
0

0

t

P
re

d
ic

te
d

+ + + + + + + + + + + + + + + + + +

+

+

+

+

+

+
+

+
+ + + + + + + + + +

72

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

O2K.nls1 <- nls(formulaExp, start = list(VO2rest = 400, VO2peak = 1600,

 mu = 1), data = O2K)

overview(O2K.nls1)

Formula: VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) * (VO2rest +

(VO2peak -VO2rest) * (1 - exp(-(t - 5.883)/mu)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

VO2rest 3.568e+02 1.141e+01 31.26 <2e-16 ***

VO2peak 1.631e+03 2.149e+01 75.88 <2e-16 ***

mu 1.186e+00 7.661e-02 15.48 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 49.59 on 33 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 7.598e-06

Residual sum of squares: 81200

t-based confidence interval:

2.5% 97.5%

VO2rest 333.537401 379.980302

VO2peak 1587.155300 1674.611703

mu 1.030255 1.342002

Correlation matrix:

VO2rest VO2peak mu

VO2rest 1.00000000 0.07907046 0.1995377

VO2peak 0.07907046 1.00000000 0.7554924

mu 0.19953773 0.75549241 1.0000000

plotfit(O2K.nls1, smooth = TRUE)

 In order to facilitate the visualization of the model fit together with the data, nlstools provides

the function plotfit(), which offers functionality similar to abline() with a simple linear regression

model fit as argument. Thus plotfit() avoids manual definition of a grid of values for the independent

variable, subsequent prediction, and use of lines().The function superimposes the fitted curve on top

of the plot of the data in Figure 8. Be aware that the fitted regression curve is represented more

smoothly when the option smooth = TRUE is used. Only when a single (one-dimensional)

independent variable is involved is this option accessible. The input variable in the function plotfit()

73

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

O2K.res1 <- nlsResiduals(O2K.nls1)

plot(O2K.res1)

must be specified in order to select which independent variable will be used for the x axis for plots of

a model fit containing multiple independent variables (for an example, see the worked example

michaelis in nlstools). As it would also depend on the other independent variables in this scenario,

smoothing is not an option, hence smooth = FALSE.

Figure 8: Plot of the data (dependent vs. independent variable) with the fitted model superimposed.

5.3 Assessing the goodness of fit through the residuals

An examination of the quality of the obtained non-linear regression model fit may be based on

the residuals calculated from the fit as follows:

𝜖 = 𝑦 − 𝑓(𝜃̂, 𝑥). (6)

Standardized residuals are obtained by dividing the centered residuals by the residual standard

error. nlstools provides the function nlsResiduals (), which extracts the residuals from an nls object.

The Ritz and Streibig [26] diagnostic plots can be conveniently displayed using the related plot()

method. For the model fit O2K.nls1 the resulting plots are shown in Figure 9.

The top left panel of this figure displays the fitted values vs the raw residuals. The standardized

residuals (with a mean of 0 and a standard deviation of 1) are displayed alongside the fitted values in

the top right panel. The autocorrelation plot is displayed in the bottom left panel, and the QQ plot of

the standardized residuals is displayed in the bottom right panel.

The residuals appear to be about normally distributed (a clear alignment along the diagonal in the

QQ plot), and there is no sign of autocorrelation or heteroscedastic variance in the figure, which

means there are no issues with the model assumptions.

0 2 4 6 8 10 12

4
0

0
6

0
0

8
0

0
1

0
0

0
1

4
0

0

t

V
O

2

74

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

test.nlsResiduals(O2K.res1) # normality and autocorrelation test

Shapiro-Wilk normality test

data: stdres

W = 0.95205, p-value = 0.1214

Runs Test

data: as.factor(run)

Standard Normal = 0.76123, p-value = 0.4465

alternative hypothesis: two.sided

Figure 9: Residuals of non-linear model.

Moreover, the Shapiro-Wilk test can be used to assess the normality of residuals in addition to

visually assessing the model assumptions. One of the more effective tests for normalcy is this one

(the function shapiro.test() is included in the stats package in the default R installation). Similar to

the runs test, the runs.test() function in the tseries package can be used to determine whether the

residuals lack autocorrelation. But keep in mind that this is not a particularly reliable test since it

effectively simply makes use of the residuals signals rather than their real values. We view these

tests as complements to the standard visual evaluation of the model assumptions that are occasionally

helpful. The test.nlsResiduals() function makes both tests available.

400 600 800 1200 1600

-1
5
0

-5
0

0
5
0

Residuals

Fitted values

R
e
s
id

u
a
ls

400 600 800 1200 1600

-3
-1

0
1

2

Standardized Residuals

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

-150 -100 -50 0 50

-1
5
0

-5
0

0
5
0

Autocorrelation

Residuals i

R
e
s
id

u
a
ls

 i
+

1

-2 -1 0 1 2

-3
-2

-1
0

1

Normal Q-Q Plot of

 Standardized Residuals

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

75

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

O2K.cont1 <- nlsContourRSS(O2K.nls1)

plot(O2K.cont1, col = FALSE, nlev = 5)

In our example, the null hypothesis (𝐻0) of normal distribution could not be rejected (since

Shapiro-Wilk test: 𝑝 = 0.12) and there was also no indication of autocorrelation (since runs test:

𝑝 = 0.45).

5.4 Confidence regions

We use the following inequality to establish the 1 − 𝛼 joint confidence region for the model

parameters. If the matching residual sum of squares (RSS) falls within the margin specified in the

following Equation (7) (often known as Beale’s criterion), then the supplied set of parameters is said

to be inside the confidence region, see [27].

𝑅𝑆𝑆(𝜃) < 𝑅𝑆𝑆min [1 +
𝑝

𝑛−𝑝
𝐹1−𝛼(𝑝, 𝑛 − 𝑝)], (7)

with 𝐹1−𝛼 the appropriate quantile of the F-distribution with (𝑝, 𝑛 − 𝑝) degrees of freedom, and

𝑅𝑆𝑆𝑚𝑖𝑛 the minimum residual sum of squares obtained from the least-squares estimation (previously

defined for the function overview ()), where 𝑛 is the number of observations and 𝑝 is the number of

model parameters in 𝑓. The joint confidence zone specified in Equation (7) is visualized using two

functions in nlstools: one that displays projections and the other that displays contours.

Figure 10: The panel contours based on the residual sum of squares.

76

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

O2K.conf1 <- nlsConfRegions(O2K.nls1, exp = 2, length = 2000)

plot(O2K.conf1, bounds = TRUE)

Figure 11: The projections of the confidence region according to the Beale’s criterion.

The contours based on the residual sum of squares are shown in Figure 10. The Beale’s 95%

confidence zone is depicted by the contours shown by a red dotted line. According to Beale’s

criterion, the projections of the confidence region are displayed in Figure 11. The boundaries of the

sample regions are indicated by the dashed red frames surrounding the confidence regions. Users can

plot a different illustration of the Beale’s confidence region, also known as the joint parameter

likelihood region, using the function nlsConfRegions(), see [28, 29].

With a global minimum in the middle and excellent elliptical outlines in our case, the non-linear

regression model fits the data well. The comparatively high connection between these two measures

is reflected by the thinner elliptic shape of Beale’s confidence zone between VO2peak and 𝜇.

6. Conclusions

R is a programming language and an analytics tool; it is extensively used by Software

Programmers, Statisticians, Data Scientists, and Data Miners. It is one of the most popular Data

77

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

analytics tools used in Data Analytics and Business Analytics. It has numerous applications in

domains like healthcare, academics, consulting, finance, media, and many more. Its vast applicability

in Statistics, Data Visualization, and Machine Learning have given rise to the demand for certified

trained professionals in R. Therefore, in this paper, we studied the basics of R Programming

language and we provide R-codes for linear and non-linear regression models with estimation.

Practical evidence was provided to researchers to diagnose some problems in regression with R and

test all assumptions.

Conflict of interest

The authors state that they have no financial or other conflicts of interest to disclose with

connection to this paper.

References

1. Chatterjee, S., & Hadi, A. S. (2006). Regression analysis by example. John Wiley & Sons.

2. Abonazel, M., & Rabie, A. (2019). The impact of using robust estimations in regression

models: An application on the Egyptian economy. Journal of Advanced Research in Applied

Mathematics and Statistics, 4(2), 8-16.

3. Abonazel, M. R., & Abd-Elftah, A. I. (2019). Forecasting Egyptian GDP using ARIMA

models. Reports on Economics and Finance, 5(1), 35-47.

4. Crawley, M. J. (2012). The R book. John Wiley & Sons.

5. Venables, W. N., Smith, D. M., & R Development Core Team. (2009). An introduction to R.

John Wiley & Sons.

6. Winter, B. (2019). Statistics for linguists: An introduction using R. Routledge.

7. Chambers, J. (2008). Software for Data Analysis: Programming with R. New York: Springer.

8. Dalgaard, P., & Dalgaard, P. (2008). Advanced data handling. Introductory Statistics with R,

163-184.

9. Faraway, J. 2005. Linear Models with R. New York: Chapman and Hall/CRC.

10. Abonazel, M. R. (2018). A practical guide for creating Monte Carlo simulation studies using

R. International Journal of Mathematics and Computational Science, 4(1), 18-33.

11. Robert, C. P., Casella, G., & Casella, G. (2010). Introducing monte carlo methods with

r (Vol. 18). New York: Springer.

12. Abonazel, M. R. (2015). How to create a Monte Carlo simulation study using R: with

applications on econometric models. In annual conference on statistics, computer sciences

and operations research. Faculty of Graduate Studies for Statistical Research, Cairo

University, Egypt (Vol. 50).

13. Youssef, A. H., Kamel, A. R., & Abonazel, M. R. (2021). Robust SURE estimates of

profitability in the Egyptian insurance market. Statistical journal of the IAOS, 37(4), 1275-

1287.

78

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

14. Abonazel, M.R., & Gad, A. E. (2020). Robust partial residuals estimation in semiparametric

partially linear model. Communications in Statistics-Simulation and Computation, 49(5),

1223-1236.

15. Abonazel, M. R., & Dawoud, I. (2022). Developing robust ridge estimators for Poisson

regression model. Concurrency and Computation: Practice and Experience, 34(15), e6979.

16. Youssef, A. H., Abonazel, M. R., & Kamel, A. R. (2022). Efficiency comparisons of robust

and non-robust estimators for seemingly unrelated regressions model. WSEAS Transactions

on Mathematics, 21, 218-244.

17. Kamel, A. R. (2021). Handling outliers in seemingly unrelated regression equations model,

MSc thesis, Faculty of graduate studies for statistical research (FGSSR), Cairo University,

Egypt.

18. Kamel, A. R., & Alqarni, A. A. (2022). A New Approach for Model Selection with Two

Qualitative Regressors. Computational Journal of Mathematical and Statistical Sciences, 1(1),

63-79.

19. Abonazel, M. R. (2019). New ridge estimators of SUR model when the errors are serially

correlated. International Journal of Mathematical Archive, 10(7), 53-62.

20. Abonazel, M. R., & Taha, I. M. (2021). Beta ridge regression estimators: simulation and

application. Communications in Statistics-Simulation and Computation, 1-13.

21. Algamal, Z. Y., Lukman, A. F., Abonazel, M. R., & Awwad, F. A. (2022). Performance of

the Ridge and Liu Estimators in the zero-inflated Bell Regression Model. Journal of

Mathematics, 2022.

22. Dawoud, I., Abonazel, M. R., Awwad, F., & Tag Eldin, E. (2022). A New Tobit Ridge-Type

Estimator of the Censored Regression Model with Multicollinearity Problem. Frontiers in

Applied Mathematics and Statistics, 68.

23. Murrell, P. 2005. R Graphics. London: CRC Press.

24. Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize,

and model data. " O'Reilly Media, Inc.".

25. Roback, P., & Legler, J. (2021). Beyond multiple linear regression: applied generalized

linear models and multilevel models in R. Chapman and Hall/CRC.

26. Ritz, C., & Streibig, J. C. (2008). Non-linear regression with R. New York, NY: Springer

New York.

27. Alharbi, Y. S., & Kamel, A. (2022). Fuzzy System Reliability Analysis for Kumaraswamy

Distribution: Bayesian and Non-Bayesian Estimation with Simulation and an Application on

Cancer Data Set. WSEAS Transactions on Biology and Biomedicine, 19, 118-139.

28. Bates, D., & Watts, D. G. (1988). Non-linear Regression Analysis and Its Applications. John

Wiley & Sons, Chichester, UK.

79

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 52–79

29. Hamdy, A., & Almetwally, E. M. (2023). Bayesian and Non-Bayesian Inference for The

Generalized Power Akshaya Distribution with Application in Medical. Computational

Journal of Mathematical and Statistical Sciences, 2(1), 31-51.

©2023 the Author(s), licensee the scientific association for

studies and applied research (SASAR).

This is an open access article distributed under the

terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

