
Computational Journal of Mathematical and Statistical Sciences 

2(1), 52–79   

DOI: 10.21608/cjmss.2023.189834.1002 

https://cjmss.journals.ekb.eg/  
 

Research article 

A Simple Introduction to Regression Modeling using R 

Amr R. Kamel 1, 2, Mohamed R. Abonazel 2 * 

 

1Department of Basic Sciences, Elgazeera High Institute for Computers and Information Systems, 

Ministry of Higher Education, Cairo, Egypt; amr_ragab@pg.cu.edu.eg. 

2Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical 

Research, Cairo University, Giza, Egypt; mabonazel@cu.edu.eg. 

*Correspondence: mabonazel@cu.edu.eg 

 

Abstract: In statistical modeling, regression analysis is a group of statistical processes used in R 

programming and statistics to determine the relationship between dataset variables. It is a solid 

technique for determining the factors that affect an issue of interest. You can confidently establish 

which elements are most important, which ones can be ignored, and how these factors interact when 

you do a regression. It can be used to simulate the long-term link between variables and gauge how 

strongly the relationships between them are related. Regression analysis is typically used to ascertain 

the relationship between the dataset’s dependent and independent variables. Generally, regression 

analysis is used to determine the relationship between the dependent and independent variables of the 

dataset. Understanding how dependent variables change when one of the independent variables 

changes while the other independent variables remain constant is made easier with the use of 

regression analysis. As a result, it is easier to create a regression model and forecast values in 

response to changes in one of the independent variables. Based on the categories of dependent 

variables, the quantity of independent variables, and the contour of the regression line. In this paper, 

we use the R programming language to present various empirical investigations in statistics and 

econometrics. We next consider problems involving modeling the relationship between response and 

explanatory variables for linear and non-liner regression models. 
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1. Introduction  

Regression analysis is a powerful tool for uncovering the associations between variables 

observed in data, but cannot easily indicate causation. It has several applications in the fields of 

business, finance, and economics. It is used for employed to calculate the relationships between a 
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dependent variable (commonly referred to as the "outcome" or "response" variable) and one or more 

independent variables (often referred to as "predictors," "covariates," "explanatory variables," or 

"features"). In linear regression, the most typical type of regression analysis, the line (or a more 

complicated linear combination) that most closely matches the data in terms of a given mathematical 

criterion is found. The foundation of many significant statistical models is regression. The outcome 

we care about in marketing applications is typically the dependent variable (e.g., sales), and the 

instruments we use to get there are the independent variables (e.g., pricing or advertising). Few other 

techniques can offer the insights that regression analysis can. The two theoretically separate uses of 

regression analysis are as follows: 

1. Regression analysis is frequently used for forecasting and prediction, where it has a lot in 

common with machine learning. 

2. Regression analysis can be used to infer causal links between the independent and dependent 

variables in specific circumstances. 

Importantly, regressions by themselves only reveal relationships between a dependent variable 

and a collection of independent variables in a fixed dataset. To use regressions for prediction or to 

infer causal relationships, respectively, a researcher must carefully justify why existing relationships 

have predictive power for a new context or why a relationship between two variables has a causal 

interpretation. The latter is especially important when researchers hope to estimate causal 

relationships using observational data.  Knowing about the effects of independent variables on 

dependent variables can help market researchers in many different ways. For example, it can help 

direct spending if we know promotional activities significantly increases sales. Knowing about the 

relative strength of effects is useful for marketers because it may help answer questions such as 

whether sales depend more on price or on promotions, see [1]. 

Regression analysis also allows us to compare the effects of variables measured on different 

scales such as the effect of price changes (e.g., measured in $) and the number of promotional 

activities. Regression analysis can also help to make predictions. For example, if we have estimated a 

regression model using data on sales, prices, and promotional activities, the results from this 

regression analysis could provide a precise answer to what would happen to sales if prices were to 

increase by 5% and promotional activities were to increase by 10%. Such precise answers can help 

(marketing) managers make sound decisions. Furthermore, by providing various scenarios, such as 

calculating the sales effects of price increases of 5%, 10%, and 15%, managers can evaluate 

marketing plans and create marketing strategies. 

Regression measures whether or not correlations between variables in a data set are statistically 

significant by capturing their magnitude. Although there are non-linear regression techniques for 

more complex data and analysis, simple linear regression and multiple linear regression are the two 

fundamental types of regression. While multiple linear regression employs two or more independent 

factors to predict the outcome, simple linear regression just uses one independent variable to explain 

or predict the outcome of the dependent variable 𝑦 (while holding all others constant). 
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Professionals in other industries, including banking and investment, might benefit from 

regression. Regression can also aid in predicting sales for a business based on external factors like 

the weather, past sales, gross domestic product (GDP) growth, and other variables, see [2,3]. A 

popular regression model in finance for valuing assets and calculating capital expenses is the capital 

asset pricing model (CAPM). In addition, Econometrics has occasionally come under fire for 

depending excessively on the interpretation of regression output without connecting it to economic 

theory or looking for causal mechanisms. Even if that means creating your own explanation of the 

underlying processes, it is essential that the findings presented in the data can be effectively 

explained by a theory. 

In this paper, we will review the basics R Programming and we provide R-codes for linear and 

non-liner regression models with estimation. Also, we will investigate some diagnostic methods for 

problems of regression analysis. This paper is organized as follows. Section 2 provides an 

introduction to the R programming language. Section 3 presents regression modeling with examples. 

In Section 4, the multiple linear regression and estimation have been discussed.  While in Section 5, 

the non-linear regression model will be introduced. Finally, Section 6 offers the concluding remarks. 

 

2. Introduction to R Programming 

2.1  R Overview and History 

R is a widely used open-source programming language for statistical computing and data 

analysis. R typically includes a command-line interface. R is publicly accessible under the GNU 

General Public License, and binary versions that have already been pre-compiled for other operating 

systems including Linux, Windows, and Mac are also available. The newest cutting-edge technology 

is the R programming language. The environment for dealing with your data in R is comprehensive. 

Without building a whole program, you can just use the functions that are built into the environment 

to process your dataset. Additionally, you can create your own programs to carry out tasks that lack 

built-in functionalities or to repeatedly complete the same action, for example. R is simpler to code 

in and understand since it shares many syntactical similarities with other widely used languages. 

Programs can be written in R software in any of the widely used IDE like R Studio, Rattle, Tinn-R, 

etc, see [4,5]. 

Ross Ihaka and Robert Gentleman created R for the first time in 1992 at the University of 

Auckland in New Zealand. The S language, which was created (mostly) by John Chambers at Bell 

Laboratories, is a "dialect" of which the R language is a subset. The R Development Core Team, 

which has more than a dozen members, is presently responsible for maintaining this software. R has 

received a lot of additional coding contributions since it was first published. R is open source, which 

means that users may change, copy, and distribute the software or any derivatives as long as the 

modified source code is made public. 
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2.2  Finding and installing R 

The Comprehensive R Archive Network, or CRAN, is a network of computers that is maintained 

by the R Development Core Team and houses installation files and documentation for R. You can 

find it by searching for CRAN R on Google or visiting http://cran.r-project.org/. Windows, Mac, and 

Unix-like operating systems all support R. By clicking one of the download links at the top, users 

can get installation files and instructions from the CRAN website. While the R commands vary 

between systems (if they are available at all), the graphical user interfaces (GUIs) and their menus do 

not. An interpreted computer language called R, developed by the Development Core Team, supports 

branching and looping as well as modular programming with the use of functions. For increased 

efficiency, R enables integration with processes created in C, C++,.Net, Python, or FORTRAN. 

 

2.3  Features of R 

As stated earlier, R is a computer language and software environment used for statistical analysis, 

graphic representation, and reporting. The following are the important features of R: 

• R is a well-designed, easy-to-use programming language with input and output capabilities, 

conditionals, loops, and user-defined recursive functions. 

• For calculations on arrays, lists, vectors, and matrices, R offers a number of operators. 

• R has a reliable system in place for processing and storing data. 

• R offers graphical tools for data analysis and display that may be used on a computer or 

printed on paper. 

•  R offers a sizable, well-organized, and comprehensive library of tools for data analysis. 

As a conclusion, R is the most popular statistical programming language in the world. Data 

scientists rank it as their top option, and a robust and brilliant community of contributors backs it up. 

R is used in mission-critical corporate applications and is taught in universities. You will learn R 

programming in this lesson using appropriate examples and simple, straightforward techniques. The 

software is updated frequently, but the changes are typically not substantial, see [6,7,8]. 

 

3. Regression Modeling  

Linear regression is an approach to model the relationship between a scalar dependent variable y 

and one or more explanatory variables (independent variables) denoted by 𝑥𝑖  , 𝑖 = 1,2, . . . , 𝑛. The 

steps of regression analysis are as follows: 

1. Select the model’s goal and the suitable dependent variable to achieve it. 

2. Select independent factors. 

3. Calculate the regression equation’s parameters. 

4. Interpret parameters that have been estimated, the goodness of fit, and both qualitative and 

quantitative evaluations of the parameters. 

5. Evaluate whether assumptions are reasonable.  

6. Modify and amend the calculated equation if some assumptions are not met. 
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7. Validate the regression equation that was estimated. 

With the understanding that the goal of the model has already been determined and that only the 

last phases remain, we will look at these procedures. 

3.1  Simple Linear Regression 

We can better comprehend the relationships between the values of a quantitative explanatory (or 

predictor) variable and the values of a quantitative outcome (or response) by using linear regression. 

This method is frequently used to either produce anticipated values or draw conclusions about 

relationships in the dataset. In certain areas, the predictor is referred to as the independent variable 

and the outcome as the dependent. Since dependent and independent have so many different 

connotations in statistics, we refrain from using them in this way. A simple linear regression model 

for an outcome 𝑦 as a function of a predictor 𝑥 takes the form: 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖,     for 𝑖 = 1, … , 𝑛,                                             (1) 

where 𝑛 represents the number of observations (rows) in the data set. For this model, 𝛽0 is the 

population parameter corresponding to the intercept (i.e., the predicted value when = 0 ) and 𝛽1 is 

the true (population) slope coefficient (i.e., the predicted increase in 𝑦 for a unit increase in 𝑥 ). The 

errors are represented by the 𝜖i’s  (which are thought to be random noise with mean 0). 

We estimate the population parameters 𝛽0 and 𝛽1 using information from our sample because we 

hardly ever know their exact values. The "best" coefficients 𝛽0 and 𝛽1 are found using the lm() 

function (in the MASS package) when the fitted values (or predicted values) are given by  the 

following formula  𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥𝑖 [9]. What is left over is captured by the residuals(𝜖𝑖 = 𝑦𝑖 − 𝑦̂𝑖). 

The model almost never fits perfectly - if it did there would be no need for a model. 

Typically, an ordinary least square (OLS) criterion that minimizes the sum of the squared 

residuals is used to identify the regression line that fits the data the best. There is only one least 

squares regression line, which is determined by the values of 𝛽̂0 and 𝛽̂1. The OLS method is one of 

the oldest estimation methods and is common used in most applications, because it given best linear 

unbiased estimators (BLUEs). The formula of OLS estimator of the model in Equation (1) is:  

 

𝛽̂OLS = (𝑥𝑇𝑥)−1(𝑥𝑇𝑦).                                                           (2) 

When the errors have finite variances, the OLS method offers minimum-variance mean-unbiased 

estimation. OLS is the maximum likelihood estimator when the extra supposition that the errors are 

normally distributed is held. 

 

3.2 Inspirational Example 

In our example, for ninety days the Pioneer Valley Planning Commission (PVPC) in Florence, 

Massachusetts, gathered information north of Chestnut Street. When a rail-trail user passed the data 

collecting point, a laser sensor put up by data collectors recorded the event (in mosaicData package).  
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##=== Prepare the R console 
rm(list = ls(all = TRUE)) # Remove all objects in R console 
set.seed(09061982) # Set the seed for reproducible results 
######################### Installing the packages ####################### 

## install.packages("Name") 
PackageNames <- c("stats4",  
                  "Metrics",  
                  "graphics", 
                  "ggplot2", 
                  " car",  
                  "MASS",  
                  "MVTests",  
                  " mosaic", 
                  " mosaicData",  
                    "vtable" 
                    ) 
for(i in PackageNames){ 
  if(!require(i, character.only = T)){ 
    install.packages(i, dependencies = T) 
    require(i, character.only = T) 
  } 
} 

glimpse(RailTrail)    ## Load data. View structure 

Rows: 90 

Columns: 11 

$ hightemp   <int> 83, 73, 74, 95, 44, 69, 66, 66, 80, 79, 78, 65, 41, ~ 

$ lowtemp    <int> 50, 49, 52, 61, 52, 54, 39, 38, 55, 45, 55, 48, 49, ~ 

$ avgtemp    <dbl> 66.5, 61.0, 63.0, 78.0, 48.0, 61.5, 52.5, 52.0, 67.5~ 

$ spring     <int> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1~ 

$ summer     <int> 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0~ 

$ fall       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0~ 

$ cloudcover <dbl> 7.6, 6.3, 7.5, 2.6, 10.0, 6.6, 2.4, 0.0, 3.8, 4.1, 8~ 

$ precip     <dbl> 0.00, 0.29, 0.32, 0.00, 0.14, 0.02, 0.00, 0.00, 0.00~ 

$ volume     <int> 501, 419, 397, 385, 200, 375, 417, 629, 533, 547, 43~ 

$ weekday    <lgl> TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FA~ 

$ dayType    <chr> "weekday", "weekday", "weekday", "weekend", "weekday~ 

 

 

 

On the other hand, Monte Carlo simulation (MCS) techniques were employed to produce data 

that was identical to data gathered from real phenomena and complied with our model’s parameters. 

The most common application of MCS approaches is to empirically investigate the characteristics of 

theoretical models because of their special suitability for doing so, for more details about MCS using 

R, see [10,11,12]. 

The PVPC is trying to figure out how daily ridership the number of people who utilize the bike 

path each day relates to a range of explanatory factors like temperature, precipitation, cloud cover, 

and day of the week. In order to obtain summary statistics for each variable in the data frame we will 

be used; 
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### Descriptive Statistics for RailTrail Dataset ### 

 

library("vtable") 

st(RailTrail)  # in table or using; 

summary(RailTrail) 

 

 

 

 

 

 

 

Table 1, presents some descriptive statistics for the variables (dependent and independent 

variables). Moreover, when the dataset are contaminated with a single or few outliers, the problem of 

identifying such observations is a serious problem. We note that in most cases datasets contain more 

outliers or a group of influential observations. 

 

Table1: Descriptive statistics for rail-trail dataset. 

 

Moreover, the process of identifying or diagnosing outliers in regression analysis is crucial; 

hence some techniques for doing so will be demonstrated. These techniques involve statistics that 

concentrate on observations that have an impact on the OLS estimate. The OLS estimator is 

extremely vulnerable to outliers value, hence the model needs a robust estimator that is unaffected by 

outliers in the dataset in order to produce an accurate estimation. In various regression models, many 

papers discuss a variety of robust estimators; see e.g. [13-18]. 

On the other hand, the OLS estimator is best in the class of linear unbiased estimators when the 

errors are homoscedastic and serially uncorrelated and consistent when the regressors are exogenous 

and there is no multicollinearity. When the explanatory factors are highly correlated, this issue 
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### Correlation Analysis ### 

 

library("corrplot") 

RailTrail_data <- RailTrail[,-c(10,11)] 

## Correlation Matrix between all variables 

Correlation_Matrix <- cor(RailTrail_data)   

print(Correlation_Matrix) 
 

##             hightemp    lowtemp    avgtemp      spring     summer        fall  cloudcover 

## hightemp    1.00000000  0.6598839  0.9196439 -0.33333833  0.6669179 -0.39625396 -0.09557041 

## lowtemp     0.65988392  1.0000000  0.9019603 -0.38873326  0.7374661 -0.40902843  0.36599773 

## avgtemp     0.91964390  0.9019603  1.0000000 -0.39477095  0.7687716 -0.44153789  0.13638819 

## spring     -0.33333833 -0.3887333 -0.3947710  1.00000000 -0.7422503 -0.46944033 -0.10242904 

## summer      0.66691793  0.7374661  0.7687716 -0.74225033  1.0000000 -0.24325213  0.17035425 

## fall       -0.39625396 -0.4090284 -0.4415379 -0.46944033 -0.2432521  1.00000000 -0.07620144 

## cloudcover -0.09557041  0.3659977  0.1363882 -0.10242904  0.1703542 -0.07620144  1.00000000 

## precip      0.13431718  0.3737956  0.2725832 -0.24646475  0.3409780 -0.09253473  0.36914883 

## volume      0.58257188  0.1760858  0.4268535 -0.03531086  0.2274170 -0.24853781 -0.37456168 

##             precip      volume 

## hightemp    0.13431718  0.58257188 

## lowtemp     0.37379561  0.17608580 

## avgtemp     0.27258316  0.42685354 

## spring     -0.24646475 -0.03531086 

## summer      0.34097796  0.22741700 

## fall       -0.09253473 -0.24853781 

## cloudcover  0.36914883 -0.37456168 

## precip      1.00000000 -0.23238396 

## volume     -0.23238396  1.00000000 

### plot Correlation Matrix 

corrplot.mixed(Correlation_Matrix, bg = "black")  

hist(volume) # Histogram for dependent variable 

boxplot(volume) # Boxplot for dependent variable 

 

 

 

occurs. The correlation matrix and variance inflation factor (VIF), it is used to diagnostics of the 

multicollinearity problem, see Figure 1. The distinct effects of each of the explanatory variables on 

the response variable are then challenging to separate. As a result, the computed regression 

parameters could have unexpectedly divergent signs or be statistically insignificant. Thus, it would 

be challenging for the researcher to draw a significant statistical inference. For information on how 

to handle and resolve this issue in other regression models; see e.g. [19-22]. On the other hand, 

Figure 2 displays the histogram and boxplot for dependent variable in rail-trail dataset. 
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Figure 1: Correlation matrix for rail-trail dataset. 

 

  
Figure 2: Histogram and Boxplot for dependent variable in rail-trail dataset. 
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### Simple Linear Regression ### 
 

library("MASS") 

simple_Model <- lm(volume ~ hightemp, data = RailTrail) 

print(simple_Model) 

 

## Call: 

## lm(formula = volume ~ hightemp, data = RailTrail) 

## 

## Coefficients: 

## (Intercept)     hightemp   

##    -17.079        5.702   

 

 

 

 

 

 

coeffs <- coefficients(simple_Model); coeffs 
 

## (Intercept)     hightemp   

##    -17.079        5.702   

 

 

library("mosaic") 

plotModel(simple_Model, system = "ggplot2") 

 

The main regression function in R used for modelling linear regression is lm(). R also includes 

with a wealth of tools for modelling that is more complicated, including gam() for generalized 

additive models and glm() for generalized linear models, se [23,24]. By applying the following 

formula to the lm(dependent variable ~ Independent variable), the fitted coefficient are displayed 

below; 

 The estimated parameters coefficients are extracted as follows; 

 The following plot, Figure 3 displays a scatterplot of ridership (volume) versus high temperature 

(hightemp), with a simple linear regression line superimposed. 

 
Figure 3: Scatterplot for simple linear regression. 
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## To get more information about the fitted model; 

summary(simple_Model) # same as summary.lm(simple_Model) 
## Call: 

## lm(formula = volume ~ hightemp, data = RailTrail) 
## 
## Residuals: 

##      Min       1Q   Median       3Q      Max  

##  -254.562  -57.800    8.737   57.352  314.035  
## 
## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  -17.079     59.395  -0.288    0.774     

## hightemp       5.702      0.848   6.724 1.71e-09 *** 

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
## 
## Residual standard error: 104.2 on 88 degrees of freedom 

## Multiple R-squared:  0.3394, Adjusted R-squared:  0.3319  

## F-statistic: 45.21 on 1 and 88 DF,  p-value: 1.705e-09 

 

 

 

 

 

 

 

summary.aov(simple_Model) # ANOVA Table  
1 

##           Df Sum Sq Mean Sq F value   Pr(>F)     
## hightemp     1 490744  490744   45.21 1.71e-09 *** 
## Residuals   88 955214   10855                      
## --- 
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

n <- nrow(RailTrail) 

SST <- var(~volume, data = RailTrail) * (n - 1) 

SSE <- var(residuals(simple_Model)) * (n - 1) 

1 - SSE / SST 

## [1] 0.33939 
 

rsquared(simple_Model)  # using function rsquared 

## [1] 0.33939 

 

 

 

3.3 Measuring the Strength of Fit 

To get more information about the fitted model, summary (the model’s name) can be used to get 

details about Residuals, Coefficients, Residual standard error, 𝑅2 , Adjusted 𝑅2 . Moreover, the 

function summary.anova (the model’s name) used to get ANOVA table. 

The definition of 𝑅2 is given by: 

𝑅2  = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
=

𝑆𝑆𝑀

𝑆𝑆𝑇

 = 1 −
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)
2

∑  𝑛
𝑖=1   (𝑦𝑖 − 𝑦‾)2

 = 1 −
𝑆𝑆𝐸

(𝑛 − 1)Var (𝑦)
,

 

where SST is the total sum of squares, SSM is the sum of squares ascribed to the model, and SSE is 

the sum of squared residuals. For the rail trail dataset, let’s determine these values; 
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newRailTrail = data.frame(hightemp=4.5) 

predict(simple_Model, newRailTrail, interval = 'confidence') 
 

##        fit       lwr      upr 

##   1 8.579171 -102.0126 119.1709 

 

 

 

 

 

 

predict(simple_Model, newRailTrail, interval = 'predict') 
 

##       fit       lwr      upr 

## 1 8.579171 -226.1531 243.3115 

 

 

 

 

 

                    ## For regression diagnostics ## 

Aov <- aov (volume ~ hightemp) 

## Call: 

##    aov(formula = volume ~ hightemp) 

## Terms: 

## 

##                 hightemp Residuals 

## Sum of Squares  490743.5  955214.1 

## Deg. of Freedom        1        88 

## Residual standard error: 104.1859 

## Estimated effects may be unbalanced 

 

 

 

 

On the other hand, the 𝑅2 of the regression model on the right is 0.3394. We say that the 

regression model based on average daily temperature explained about 33% of the variation in daily 

ridership. 

 

3.4 Confidence interval and predicted confidence interval 

To estimate the confidence interval for our model; we run the below function; 

For estimating a predicted confidence interval for the estimated model, we can use predict 

instead of confidence. 

 

3.5 Diagnostics: Assessing the Regression Model Fit 

An important part of any statistical analysis is assessment of how well the chosen model fits the 

data. In regression, estimation of the linear slope (𝛽̂) is not sufficient to understand whether a linear 

model is appropriate. Six aspects of the model should be assessed; 

(i) Independence;  

(ii) Normality; 

(iii) Linearity; 

(iv) Constant variance; 

(v) Presence of outliers; and 

(vi) Need for additional predictor variables. 

For diagnosing the model, the graphical plots can be used in Figures 4, 5 and 6. Diagnostic plots 

provide checks for heteroscedasticity, normality, influential observations, and post fit model 

examination. 
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residuals <-residuals(Aov)      # to find residual values 

volume.hat<- fitted.values(Aov) # to find fitted values of dependent var. 

par(mfrow = c(2,2))             # plot Normality of Residuals 

plot(simple_Model) 

 

 

 
Figure 4: Residuals of OLS estimation results. 

 

250 350 450

-3
0
0

0
2
0
0

Fitted values

R
e
s
id

u
a
ls

Residuals vs Fitted

34
8

18

-2 -1 0 1 2

-2
0

1
2

3
Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q-Q

34
8

18

250 350 450

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Scale-Location
34

818

0.00 0.02 0.04 0.06

-3
-1

1
3

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Cook's distance

Residuals vs Leverage

1778

34

library("car") 

library("lmtest") 

residualPlots(simple_Model)            # residual plots 
 

##              Test stat   Pr(>|Test stat|)    

## hightemp     -3.2581         0.001601 ** 

## Tukey test   -3.2581         0.001122 ** 

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



65 
 

Computational Journal of Mathematical and Statistical Sciences                 Volume 2, Issue 1, 52–79 

library("lmtest") 

ncvTest(simple_Model)             # Testing for heteroskedasticity 
 

## Non-constant Variance Score Test  

## Variance formula: ~ fitted.values  

## Chisquare = 6.425507, Df = 1, p = 0.011249 
 

outlierTest(simple_Model)         # Outliers-Bonferonni test 
 

## No Studentized residuals with Bonferroni p < 0.05 

## Largest |rstudent|: 

##    rstudent unadjusted p-value Bonferroni p 

## 34 3.192585          0.0019631      0.17668 
 

dwtest(simple_Model)            # Durban Watson test for autocorrelation 
 

## Durbin-Watson test 

## 

## data:  simple_Model 

## DW = 1.8916, p-value = 0.3011 

## alternative hypothesis: true autocorrelation is greater than 0. 
 

# Test Shapiro Wilk Test of residuals (Null: distribution is normal) 
 

shapiro.test(simple_Model$residuals)  
 
 

## Shapiro-Wilk normality test 

## data:  simple_Model$residuals 

## W = 0.97838, p-value = 0.139 

 
Figure 5: Residuals and fitted values for simple linear regression. 

40 50 60 70 80 90

-2
0

0
-1

0
0

0
1

0
0

2
0

0
3

0
0

hightemp

P
e

a
rs

o
n

 r
e

si
d

u
a

ls

250 350 450
-2

0
0

-1
0

0
0

1
0

0
2

0
0

3
0

0

Fitted values

P
e

a
rs

o
n

 r
e

si
d

u
a

ls



66 
 

Computational Journal of Mathematical and Statistical Sciences                 Volume 2, Issue 1, 52–79 

library("lmtest") 

ncvTest(simple_Model)             # Testing for heteroscedasticity 

 

## Post Fit Model Examination 

volume.Hat <- predict(simple_Model, interval="prediction") 

temp_df <- cbind(newRailTrail, volume.Hat) 

gg <- ggplot(temp_df, aes(x=volume, y=hightemp)) 

gg <- gg + geom_line(aes(y=lwr), color = "red", linetype = "dashed") 

gg <- gg + geom_line(aes(y=upr), color = "red", linetype = "dashed") 

gg <- gg + geom_smooth(method=lm, level=.95, se=TRUE) 

gg <- gg + geom_point() 

gg <- gg + xlab("volume") + ylab("hightemp") 

gg <- gg + ggtitle("Simple Linear Fit w 95% CI's of Mean and Individual 

Predictions") 

plot_CIboth <- gg + theme_bw() 

print(plot_CIboth) 

 

 

Figure 6: Post fit for simple linear regression examination. 
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## Multiple Linear Regression 

Multiple_Model <- lm(volume ~ hightemp + lowtemp + cloudcover+ precip 

                     , data = RailTrail) 

summary(Multiple_Model) 
 

## Call: 

## lm(formula = volume ~ hightemp + lowtemp + cloudcover + precip,  

##     data = RailTrail) 

## 

## Residuals: 

##      Min       1Q   Median       3Q      Max  

## -269.447  -37.449    4.186   41.178  299.266  

## 

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept)   35.308     59.796   0.590   0.5564     

## hightemp       6.571      1.153   5.699  1.7e-07 *** 

## lowtemp       -1.290      1.387  -0.930   0.3551     

## cloudcover    -7.501      3.851  -1.948   0.0547 .   

## precip      -100.616     42.064  -2.392   0.0190 *   

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

## 

## Residual standard error: 93.2 on 85 degrees of freedom 

## Multiple R-squared:  0.4894, Adjusted R-squared:  0.4654  

## F-statistic: 20.37 on 4 and 85 DF,  p-value: 8.537e-12 

 

4. Multiple Linear Regression 

Multiple regression is a natural extension of simple linear regression that incorporates multiple 

explanatory (or predictor) variables. It has the general form: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖,  where 𝜖 ∼ 𝒩(0, 𝜎𝜖).                            (3) 

The estimated coefficients (i.e., 𝛽̂i’s) are now interpreted as “conditional on” the other variables -

each 𝛽i reflects the predicted change in y associated with a one-unit increase in 𝑥i, conditional upon 

the rest of the 𝑥i’s. This type of model can help to disentangle more complex relationships between 

three or more variables [25]. The value of 𝑅2 from a multiple regression model has the same 

interpretation as before: the proportion of variability explained by the model.  

In the case of multiple linear regression; we use the same function lm(), but her it takes more than 

one dependent variable lm(dependent variable ~ independent 𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 +. . . +𝑉𝑎𝑟𝑛) as follows; 
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summary.aov(Multiple_Model)  # testing the significance of predictors 
 

##             Df Sum Sq Mean Sq F value   Pr(>F)     

## hightemp     1 490744  490744  56.500 5.26e-11 *** 

## lowtemp      1 111176  111176  12.800 0.000575 *** 

## cloudcover   1  56061   56061   6.454 0.012885 *   

## precip       1  49695   49695   5.721 0.018964 *   

## Residuals   85 738282    8686                      

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
In the case of multiple regression with a categorical variable, consider first the case where x2 is 

an indicator variable that can only be “true or false” 0 or 1 (e.g., weekday). Then; 

 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2𝑥2.                                                                  (4) 

In the case where 𝑥1 is quantitative but 𝑥2 is an indicator variable, we have: 

  For weekends,  𝑦̂|𝑥1,𝑥2=0 = 𝛽̂0 + 𝛽̂1𝑥1 

                  For weekdays,  𝑦̂|𝑥1,𝑥2=1 = 𝛽̂0 + 𝛽̂1𝑥1 + 𝛽̂2(1) = (𝛽̂0 + 𝛽̂2) + 𝛽̂1𝑥1.  

This is called a parallel slopes model  since the predicted values of the model take the geometric 

shape of two parallel lines with slope 𝛽̂1 : one with 𝑦-intercept 𝛽̂0 for weekends, and another with 𝑦-

intercept 𝛽̂0 + 𝛽̂2 for weekdays, see Figure 7. 

 

 

Multiple_Model2 <- lm(volume ~ hightemp + weekday, data = RailTrail) 

summary(Multiple_Model2) 
 

## Call: 

## lm(formula = volume ~ hightemp + weekday, data = RailTrail) 

## 

## Residuals: 

##    Min      1Q  Median      3Q     Max  

## -236.34  -59.86   12.38   60.88  281.41  

## 

## Coefficients: 

##            Estimate Std. Error t value Pr(>|t|)     

## (Intercept)  42.8066    64.3444   0.665   0.5076     

## hightemp      5.3478     0.8463   6.319 1.09e-08 *** 

## weekdayTRUE -51.5535    23.6744  -2.178   0.0321 *   

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

## Residual standard error: 102 on 87 degrees of freedom 

## Multiple R-squared:  0.3735, Adjusted R-squared:  0.3591  

## F-statistic: 25.94 on 2 and 87 DF,  p-value: 1.462e-09 
 

plotModel(Multiple_Model2, system = "ggplot2") 
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# Testing for multicolinearity, A vif > 5 suggests collinearity 

vif(Multiple_Model) 

## hightemp    lowtemp cloudcover     precip  

## 2.310808   2.765642   1.581822   1.254962  

 

 

 

Figure 7: Scatterplot for multiple regression with a categorical variable. 

 

5. Non-linear Regression Model 

We consider standard non-linear regression models of the following form: 

 

𝑦 = 𝑓(𝜃, 𝑥) + 𝜖,  𝜖 ∼ 𝒩(0, 𝜎2).                                                     (5) 

 

with y being the response (the dependent variable), 𝑥 the (possibly multivariate) independent 

variable, which is often controlled by the experimenter, 𝜃 the vector of model parameters 

characterizing the relationship between x and y through the function f, and ϵ the residual error term 

that is assumed to be normally distributed, centered around 0 and with unknown variance (𝜎2). 

Furthermore, we assume that the residual error terms are mutually independent as is usually assumed 

for standard non-linear regression analysis. In R, this non-linear regression model may be fitted using 

nls () in the standard R installation (the package stats). Parameter estimation is based on an iterative 

procedure that involves a linearization approximation leading to a least-squares problem at each step. 

Note that functions gnls () and nlme() in nlme allow fitting of non-linear regression models for 

several curves corresponding to different covariate configurations (such as different treatments) and 

thus necessitating the use of correlation structures (e.g., random effects). However, for building these 
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more complex models (i.e., obtaining model fits that converge), nls () is often used initially to 

produce fits of individual curves, which may then subsequently be combined and supplied to enable 

fitting more complex non-linear regression models (e.g., through the use of the wrapper nlsList()). 

 

5.1 About nlstools package 

The package nlstools provides a number of tools to facilitate fitting standard non-linear 

regression models (Equation (5)) and is specifically designed to work directly with nls(). The 

package contains functions and graphical tools that will help users to create nls() objects and carry 

out various diagnostic tests. More specifically, the nlstools toolbox will assist users in: 

• Fitting non-linear models using function nls() by means of graphical tools. 

• Getting a summary of parameter estimates, confidence intervals, residual standard error and 

sum of squares, and correlation matrix of the estimates 

• Visualizing the fitted curve superimposed on the observations. 

• Checking the validity of the error model by carrying out tests and graphical checks of 

residuals.  

• Inspecting the contours of the residual sum of squares (likelihood contours) to detect possible 

structural correlations between parameters and the presence of potential local minimum.  

• Visualizing the projection of confidence regions and investigate the nature of correlations. 

• Using resampling techniques in order to detect influential observations and obtain non-

parametric confidence intervals of the parameter estimates. 

 We will elaborate on these features in the next section, using a concrete data example from 

pulmonary medicine. 

 

5.2 Non-linear Model Fitting in R 

As mentioned in the introduction, fitting non-linear regression models requires the provision of 

starting values for model parameters. A poor choice of starting values may cause non-convergence or 

convergence to an unwanted local (rather than global) minimum when trying to minimize the least-

squares criterion. Biologically interpretable parameter often allows the user to guess adequate 

starting values by assessing (often graphically) a set of plausible candidate model parameter values. 

For this purpose, nlstools provides the graphical function preview(), which can be used to assess the 

suitability of the chosen starting values, prior to fitting the model. This graphical approach for 

assessing candidate starting values is also used by Ritz and Streibig [26], but it was not wrapped up 

in a single function. Below is an example of usage. First, you should specify the model equation to 

be used in the non-linear regression as a formula in R. Use this formula as first argument of the 

function preview(), then supply the name of your dataset as second argument, and finally provide a 

list of values for the model parameters as third argument. An additional argument variable can be 

used to specify which independent variable is plotted against the dependent variable (column index 

of the original dataset; default is 1) when more than one independent variable is modeled. 
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# Non-linear Model fitting in R 

library("nlstools") 

formulaExp <- as.formula(VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) * 

                           (VO2rest + (VO2peak - VO2rest) * 

                              (1 - exp(-(t - 5.883) / mu)))) 

preview(formulaExp, data = O2K, 

        start = list(VO2rest = 400, VO2peak = 1600, mu = 1)) 

 
 

Figure 7, shows good agreement between the data and the theoretical model based on the 

provided set of starting values. Judged by the figure, the chosen starting values seem to be suitable 

for initializing nls(). Note that next to the plot, the residual sum of squares measuring the discrepancy 

between the model (based on the chosen starting values) and the observed data is provided. This 

value gives an idea of the magnitude of the residual sum of squares to expect from the model fit 

based on nls(). 

 

 

Figure 7: Graphically assessing the starting values prior the fit of a non-linear model. 

 

Once suitable starting values are obtained, the model may be fitted using nls() and then the 

function overview() in nlstools may be used for providing a single display with all relevant pieces of 

information about the model fit. 
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O2K.nls1 <- nls(formulaExp, start = list(VO2rest = 400, VO2peak = 1600, 

                                         mu = 1), data = O2K) 

overview(O2K.nls1) 
 

## Formula: VO2 ~ (t <= 5.883) * VO2rest + (t > 5.883) * (VO2rest +      

## (VO2peak -VO2rest) * (1 - exp(-(t - 5.883)/mu))) 

## 

## Parameters: 

##         Estimate Std. Error t value Pr(>|t|)     

## VO2rest 3.568e+02  1.141e+01   31.26   <2e-16 *** 

## VO2peak 1.631e+03  2.149e+01   75.88   <2e-16 *** 

## mu      1.186e+00  7.661e-02   15.48   <2e-16 *** 

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

## 

## Residual standard error: 49.59 on 33 degrees of freedom 

## 

## Number of iterations to convergence: 5  

## Achieved convergence tolerance: 7.598e-06 

## ------ 

## Residual sum of squares: 81200  

## ------ 

## t-based confidence interval: 

##               2.5%       97.5% 

## VO2rest  333.537401  379.980302 

## VO2peak 1587.155300 1674.611703 

## mu         1.030255    1.342002 

## ------ 

## Correlation matrix: 

##           VO2rest    VO2peak        mu 

## VO2rest 1.00000000 0.07907046 0.1995377 

## VO2peak 0.07907046 1.00000000 0.7554924 

## mu      0.19953773 0.75549241 1.0000000 

 
plotfit(O2K.nls1, smooth = TRUE) 

 

       In order to facilitate the visualization of the model fit together with the data, nlstools provides 

the function plotfit(), which offers functionality similar to abline() with a simple linear regression 

model fit as argument. Thus plotfit() avoids manual definition of a grid of values for the independent 

variable, subsequent prediction, and use of lines().The function superimposes the fitted curve on top 

of the plot of the data in Figure 8. Be aware that the fitted regression curve is represented more 

smoothly when the option smooth = TRUE is used. Only when a single (one-dimensional) 

independent variable is involved is this option accessible. The input variable in the function plotfit() 



73 
 

Computational Journal of Mathematical and Statistical Sciences                 Volume 2, Issue 1, 52–79 

O2K.res1 <- nlsResiduals(O2K.nls1) 

plot(O2K.res1) 

must be specified in order to select which independent variable will be used for the x axis for plots of 

a model fit containing multiple independent variables (for an example, see the worked example 

michaelis in nlstools). As it would also depend on the other independent variables in this scenario, 

smoothing is not an option, hence smooth = FALSE. 

 

Figure 8: Plot of the data (dependent vs. independent variable) with the fitted model superimposed. 

 

5.3 Assessing the goodness of fit through the residuals 

An examination of the quality of the obtained non-linear regression model fit may be based on 

the residuals calculated from the fit as follows: 

𝜖 = 𝑦 − 𝑓(𝜃̂, 𝑥).                                                                   (6) 

Standardized residuals are obtained by dividing the centered residuals by the residual standard 

error. nlstools provides the function nlsResiduals (), which extracts the residuals from an nls object. 

The Ritz and Streibig [26] diagnostic plots can be conveniently displayed using the related plot() 

method. For the model fit O2K.nls1 the resulting plots are shown in Figure 9. 

The top left panel of this figure displays the fitted values vs the raw residuals. The standardized 

residuals (with a mean of 0 and a standard deviation of 1) are displayed alongside the fitted values in 

the top right panel. The autocorrelation plot is displayed in the bottom left panel, and the QQ plot of 

the standardized residuals is displayed in the bottom right panel. 

The residuals appear to be about normally distributed (a clear alignment along the diagonal in the 

QQ plot), and there is no sign of autocorrelation or heteroscedastic variance in the figure, which 

means there are no issues with the model assumptions. 
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test.nlsResiduals(O2K.res1)         # normality and autocorrelation test 

## ------ 

## Shapiro-Wilk normality test 

## 

## data:  stdres 

## W = 0.95205, p-value = 0.1214 

## ------ 

##  Runs Test 

## data:  as.factor(run) 

## Standard Normal = 0.76123, p-value = 0.4465 

## alternative hypothesis: two.sided 

 

 

Figure 9: Residuals of non-linear model. 

Moreover, the Shapiro-Wilk test can be used to assess the normality of residuals in addition to 

visually assessing the model assumptions. One of the more effective tests for normalcy is this one 

(the function shapiro.test() is included in the stats package in the default R installation). Similar to 

the runs test, the runs.test() function in the tseries package can be used to determine whether the 

residuals lack autocorrelation. But keep in mind that this is not a particularly reliable test since it 

effectively simply makes use of the residuals signals rather than their real values. We view these 

tests as complements to the standard visual evaluation of the model assumptions that are occasionally 

helpful. The test.nlsResiduals() function makes both tests available. 
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O2K.cont1 <- nlsContourRSS(O2K.nls1) 

plot(O2K.cont1, col = FALSE, nlev = 5) 

In our example, the null hypothesis (𝐻0) of normal distribution could not be rejected (since 

Shapiro-Wilk test: 𝑝 =  0.12) and there was also no indication of autocorrelation (since runs test:              

𝑝 =  0.45). 

 

5.4 Confidence regions 

We use the following inequality to establish the 1 − 𝛼 joint confidence region for the model 

parameters. If the matching residual sum of squares (RSS) falls within the margin specified in the 

following Equation (7) (often known as Beale’s criterion), then the supplied set of parameters is said 

to be inside the confidence region, see [27]. 

 

𝑅𝑆𝑆(𝜃) < 𝑅𝑆𝑆min [1 +
𝑝

𝑛−𝑝
𝐹1−𝛼(𝑝, 𝑛 − 𝑝)],                                                  (7) 

with 𝐹1−𝛼 the appropriate quantile of the F-distribution with (𝑝, 𝑛 − 𝑝) degrees of freedom, and 

𝑅𝑆𝑆𝑚𝑖𝑛 the minimum residual sum of squares obtained from the least-squares estimation (previously 

defined for the function overview ()), where 𝑛 is the number of observations and 𝑝 is the number of 

model parameters in 𝑓. The joint confidence zone specified in Equation (7) is visualized using two 

functions in nlstools: one that displays projections and the other that displays contours. 

 

Figure 10: The panel contours based on the residual sum of squares. 
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O2K.conf1 <- nlsConfRegions(O2K.nls1, exp = 2, length = 2000) 

plot(O2K.conf1, bounds = TRUE) 

 

 

Figure 11: The projections of the confidence region according to the Beale’s criterion. 

 

The contours based on the residual sum of squares are shown in Figure 10. The Beale’s 95% 

confidence zone is depicted by the contours shown by a red dotted line. According to Beale’s 

criterion, the projections of the confidence region are displayed in Figure 11. The boundaries of the 

sample regions are indicated by the dashed red frames surrounding the confidence regions. Users can 

plot a different illustration of the Beale’s confidence region, also known as the joint parameter 

likelihood region, using the function nlsConfRegions(), see [28, 29]. 

With a global minimum in the middle and excellent elliptical outlines in our case, the non-linear 

regression model fits the data well. The comparatively high connection between these two measures 

is reflected by the thinner elliptic shape of Beale’s confidence zone between VO2peak and 𝜇. 

 

6. Conclusions 

R is a programming language and an analytics tool; it is extensively used by Software 

Programmers, Statisticians, Data Scientists, and Data Miners. It is one of the most popular Data 
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analytics tools used in Data Analytics and Business Analytics. It has numerous applications in 

domains like healthcare, academics, consulting, finance, media, and many more. Its vast applicability 

in Statistics, Data Visualization, and Machine Learning have given rise to the demand for certified 

trained professionals in R. Therefore, in this paper, we studied the basics of R Programming 

language and we provide R-codes for linear and non-linear regression models with estimation. 

Practical evidence was provided to researchers to diagnose some problems in regression with R and 

test all assumptions.  
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