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tribution can model all types of data. Hence, the development of distributions with appropriate use-
fulness is very important for modeling purposes. In this study, a new lifetime distribution, known as
Chen Burr-Hatke exponential distribution is proposed. The objective of the study is to obtain a new
lifetime distribution which can serve as an alternative distribution to modeling lifetime data. Also,
such a distribution can be used to provide inferences via regression models. Plots of the density func-
tion of the new distribution show that the distribution can exhibit increasing, decreasing, right-skewed
and left-skewed shapes. Also, plots of the hazard rate function show that the distribution can exhibit
increasing, decreasing, and upside down bathtub shapes. Statistical properties, such as the quantile
function, moments, order statistics and inequality measures, are derived. Several estimation methods
are used to estimate the parameters of the distribution. Using Monte Carlo simulations, the estima-
tors were all consistent. However, maximum likelihood estimation method was observed to better
estimate the parameters of the distribution. Two regression models based on the distribution are estab-
lished. The usefulness of the distribution and its regression models are demonstrated using real lifetime
datasets. The results show that the models can provide a good fit to lifetime data, and hence can serve
as alternative models to fitting such data.
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1. Introduction

In biomedical sciences, the ability to appropriately describe variables related to the occurrence of
diseases and other health conditions, is very essential for proper treatment and development of response
systems. An inappropriate modeling of the data will result in wrong inference, which may have severe
consequences, especially for disease control. Parametric distributions are useful in modeling data from
these fields. Also, these distributions could be extended to model the effect of exogenous variables
on a response variable in the form of regression models. Recently, several new distributions and re-
gression models to provide inferences on these distributions have been developed for modeling health
and biomedical data, among other fields. Some distributions and classes of distributions developed
include exponentiated Burr XII Poisson distribution (da Silva et al. [1]), Weibull Burr XII (WBXII)
distribution (Afify et al. [2]), odd log-logistic Topp–Leone G family of distributions (Alizadeh et al.
[3]), Burr-Hatke exponential (BHE) distribution (Abouelmagd, [4]; Yadav et al. [5]), odd generalized
gamma-G family of distributions (Nasir et al. [6]), Chen-G family of distributions (Anzagra et al. [7]),
inverse-power Burr-Hatke distribution (Afify et al. [8]), harmonic mixture Weibull-G family of distri-
butions (Zamanah et al. [9]), harmonic mixture G family of distributions (Kharazmi et al. [10]) and
odd log-logistic Weibull-G family of distributions (Rasekhi et al. [11]).

In this study, the one parameter BHE distribution is modified using the Chen-G family of distribu-
tions proposed by Anzagra et al. [7]. The new distribution is known as the Chen Burr-Hatke exponen-
tial (CBHE) distribution. The BHE distribution, though has some usefulness, can only model datasets
which exhibit decreasing or are right-skewed shaped (Yadav et al. [5]). The motivation for this study
is in two folds. Firstly, this study seeks to improve upon the BHE distribution, making it more flexible
for modeling various types of data that exhibit different characteristics. Secondly, the study seeks to
develop regression models with different structures and link functions. This will enable researchers
model the effect of exogenous variables on a response variable which follows the CBHE distribution.
Thus, the objective of this study is to develop a more flexible alternative lifetime distribution, capable
of modeling lifetime data and also provide inferences via regression models.

The remaining article is organized as follows: Section 2 presents the CBHE distribution and the
expansion of its density function. Some statistical properties of the CBHE distribution are presented in
Section 3. Section 4 presents methods for estimating the CBHE parameters. Monte Carlo simulations
of the estimators are also presented in the section. The empirical applications of the CBHE distribution
are presented in Section 5 using real datasets. Regression models with the response variable following
the CBHE distribution are developed in Section 6. An empirical application of the regression models
is also presented in the section. The conclusion of the study is presented in Section 7.

2. Chen Burr-Hatke Exponential Distribution

A random variable X is said to follow the BHE distribution if its cumulative distribution function
(CDF) is given by

G(x) = 1 −
e−ςx

1 + ςx
, x > 0, ς > 0. (2.1)

Also, the CDF of the Chen-G family of distributions (Anzagra et al. [7]) is given as
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F(x) = P
[
1 − eυ

(
1−eG(x)ξ

)]
, x > 0, υ > 0, ξ > 0, (2.2)

where P =
(
1 − eυ(1−e)

)−1
and G(x) is the baseline distribution. Substituting the CDF of the BHE dis-

tribution given by equation (2.1) into the CDF of the Chen-G family of distributions given by equation
(2.2), gives the CDF of the CBHE distribution as

F(x) = P

1 − exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ


 , x > 0, υ > 0, ξ > 0, ς > 0, (2.3)

where P =
(
1 − eυ(1−e)

)−1
. Differentiating the CDF in equation (2.3) gives the probability density

function (PDF) of the CBHE distribution as

f (x) = Pυςξ
2 + ςx

(1 + ςx)2

(
1 −

e−ςx

1 + ςx

)ξ−1

e−ςx exp


(
1 −

e−ςx

1 + ςx

)ξ exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ

 , x > 0.

(2.4)
The survival and hazard rate functions of the CBHE distribution are, respectively, given by

s(x) = 1 − P

1 − exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ


 , x > 0, (2.5)

and

h(x) =
Pυςξ 2+ςx

(1+ςx)2

(
1 − e−ςx

1+ςx

)ξ−1
e−ςx exp

{(
1 − e−ςx

1+ςx

)ξ}
exp

{
υ
[
1 − exp

{(
1 − e−ςx

1+ςx

)ξ}]}
1 − P

[
1 − exp

{
υ
[
1 − exp

{(
1 − e−ςx

1+ςx

)ξ}]}] , x > 0. (2.6)

Plots of the PDF of the CBHE distribution for different combinations of the parameter values are dis-
played in Figure 1. The plots exhibit varying shapes including left-skewed, right-skewed and reversed
J shapes. This indicates the flexibility of the CBHE distribution.

Figure 2 shows the plots of the hazard rate function of the CBHE distribution. The plots exhibit
decreasing, increasing and upside-down bathtub failure shapes. Again, this indicates the flexibility of
the distribution.

The mixture representation of the PDF of the CBHE distribution is obtained. The mixture represen-
tation is useful for the derivation of some properties of the distribution, especially properties involving
the integration of the PDF. The mixture presentation is obtained as follows. Using Taylor series ex-

pansion, given as ez =
∑∞

i=0
zi

i! , and binomial expansion, given as (1 − a)i =
∑i

j=0

(
i
j

)
a j (−1) j , |a| < 1,

gives

exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ

 = ∞∑

i=0

i∑
j=0

(
i
j

)
υi

i!
(−1)i+ j exp

(i − j)
(
1 −

e−ςx

1 + ςx

)ξ . (2.7)
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Figure 1. Plots of the PDF of CBHE Distribution
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Figure 2. Plots of Hazard Rate Function of CBHE Distribution
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Substituting equation (2.7) into the PDF in equation (2.4) gives the PDF as

f (x) = Pυςξ
2 + ςx

(1 + ςx)2

(
1 −

e−ςx

1 + ςx

)ξ−1

e−ςx
∞∑

i=0

i∑
j=0

(
i
j

)
υi

i!
(−1)i+ j exp

(i − j + 1)
(
1 −

e−ςx

1 + ςx

)ξ .
(2.8)

Again, using Taylor series expansion gives equation (2.8) as

f (x) = Pυςξ
2 + ςx

(1 + ςx)2 e−ςx
∞∑

i=0

i∑
j=0

∞∑
k=0

(
i
j

)
υi

i!
(−1)i+ j (i − j + 1)k

(
1 −

e−ςx

1 + ςx

)−(1−ξ(k+1))

.

Furthermore, using binomial expansion gives

f (x) = Pυςξ (2 + ςx)
∞∑

i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

(
i
j

) (
m − ξ (k + 1)

m

)
υi

i!
(−1)i+ j (i − j + 1)k e−(m+1)ςx

(1 + ςx)m+2 .

(2.9)
Using the Taylor series expansion defined as z−α =

∑∞
n=0

(−1)n

n! α
(n) (z − 1)n , where α(n) =

α (α + 1) (α + 2) . . . (α + n − 1) is the rising factorial, gives the PDF in equation (2.9) as

f (x) = Pςξ (2 + ςx)
∞∑

i=0

i∑
j=0

∞∑
k=0

∞∑
m=0

∞∑
n=0

(
i
j

) (
m − ξ (k + 1)

m

)
υi+1

i!n!
(−1)i+ j+n (i − j + 1)k (m + 2)(n) e−(m+1)ςx (ςx)n .

Thus, the PDF of the CBHE distribution can be written as

f (x) = (2 + ςx)
∞∑

i=0

Υ jkmnxne−(m+1)ςx, (2.10)

where Υ jkmn = Pξ
∑i

j=0
∑∞

k=0
∑∞

m=0
∑∞

n=0

(
i
j

) (
m − ξ (k + 1)

m

)
υi+1ςn+1

i!n! (−1)i+ j+n (i − j + 1)k (m + 2)(n).

3. Statistical properties

The statistical properties of the CBHE distribution are presented in this section. These include; the
quantile function, ordinary moments, incomplete moments, moments generating function and order
statistics.

3.1. Quantile function

The quantile function of a distribution is very useful for the characterization of the distribution,
especially for generating random numbers. The quantile function is obtained as the inverse of the CDF
of the distribution. Hence, the quantile function of the CBHE distribution is obtained by equating the
CDF of the distribution in equation (2.3) to u and making x the subject of the equation as follows:

u = P

1 − exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ


 .
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After some algebraic manipulations, we obtain

(1 + ςx) e1+ςx = e

1 − [
log

[
1 −

1
υ

log
(
1 −

u
P

)]] 1
ξ


−1

.

Introducing the Lambert function, defined as W(xex) = x, yields

W
(
(1 + ςx) e1+ςx

)
= W

e
1 − [

log
[
1 −

1
υ

log
(
1 −

u
P

)]] 1
ξ


−1 .

Making x the subject and letting Q(u) = x, gives the quantile function of the CBHE distribution as

Q(u) =
1
ς

W
e

1 − [
log

[
1 −

1
υ

log
(
1 −

u
P

)]] 1
ξ


−1 − 1

 , 0 ≤ u ≤ 1. (3.1)

3.2. Moments and Moments Generating Function

The study of important statistical measures, such as measures of central tendencies, skewness and
kurtosis among others, of a distribution require the use of moments of the distribution. The ordinary
and incomplete moments, and moments generating function of the CBHE distribution are presented in
this subsection.

3.2.1. Ordinary Moment

The rth ordinary moment of the CBHE random variable is defined as E(Xr) = µ
′

r =
∫ ∞

0
xr f (x)dx, r =

1, 2, .... Substituting the PDF of the CBHE distribution in equation (2.10) into the definition gives

µ′r =

∞∑
i=0

Υ jkmn

∫ ∞

0
xr+n (2 + ςx) e−(m+1)ςxdx,

=

∞∑
i=0

Υ jkmn

{
2
∫ ∞

0
xr+ne−(m+1)ςxdx + ς

∫ ∞

0
xr+n+1e−(m+1)ςxdx

}
. (3.2)

Let y = (m + 1) ςx. This implies that x = y
y(m+1)ς and dx = dy

y(m+1)ς . Also, as x → 0, y → 0 and as
x→ ∞, y→ ∞. Substituting these into equation (3.2) and simplifying gives

µ′r =

∞∑
i=0

Υ jkmn

{
2

[(m + 1) ς]r+n+1

∫ ∞

0
yr+ne−ydy +

ς

[(m + 1) ς]r+n+2

∫ ∞

0
yr+n+1e−ydy

}
.

Using the gamma function defined as Γ (a) =
∫ ∞

0
ta−1e−tdt, the rth ordinary moment of the CBHE

distribution is obtained as

µ′r =

∞∑
i=0

Υ jkmn

{
2Γ (r + n + 1)

[(m + 1) ς]r+n+1 +
ςΓ (r + n + 2)

[(m + 1) ς]r+n+2

}
, r = 1, 2, .... (3.3)
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The mean of the CBHE distribution is obtained by letting r = 1 in equation (3.3). This gives

µ =

∞∑
i=0

Υ jkmn

{
2Γ (n + 2)

[(m + 1) ς]n+2 +
ςΓ (n + 3)

[(m + 1) ς]n+3

}
. (3.4)

Central moments of the CBHE distribution, defined as E
[
(X − µ)r] , r = 1, 2, . . ., can be obtained using

the ordinary moments. For r = 2, 3 and 4, the central moments are given as E
[
(X − µ)2

]
= σ2 = µ′2−µ

2,

E
[
(X − µ)3

]
= µ′3 − 3µ′2µ+ 2µ3 and E

[
(X − µ)4

]
= µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ4. Therefore, the coefficients
of skewness and kurtosis of the distribution can be obtained, respectively, as

CS =
E

[
(X − µ)3

]
σ3 and CK =

E
[
(X − µ)4

]
σ4 .

Table 1 shows the first five ordinary moments, standard deviation (SD), coefficient of variation
(CV), CS and CK of the CBHE distribution for the following selected parameter sets: I =
(υ = 0.1, ξ = 30.5, ς = 200), II = (υ = 0.01, ξ = 38.7, ς = 80.1), III = (υ = 2.0, ξ = 1.1, ς = 1.4) and
IV = (υ = 0.2, ξ = 0.4, ς = 1.3). It can be observed that the distribution can exhibit both right and left
skewness, and various degrees of kurtosis.

Table 1. Moments, SD, CV, CS and CK of CBHE Distribution

µ′r I II III IV
µ′1 0.014775 0.039795 0.234099 0.284516
µ′2 2.47 × 10−4 0.001773 0.139608 0.267893
µ′3 4.40 × 10−6 8.87 × 10−5 0.165835 0.441450
µ′4 8.73 × 10−8 4.88 × 10−6 0.323470 1.052015
µ′5 2.21 × 10−9 3.12 × 10−7 0.889695 3.295082
SD 0.005389 0.013754 0.291215 0.432369
CV 0.364739 0.345614 1.243982 1.519664
CS -0.695284 1.187088 3.783779 3.202499
CK 9.564007 2.271058 28.514464 18.887401

3.2.2. Incomplete Moments

Incomplete moments are quite useful, especially in deriving other quantities such as inequality
measures and mean residual life of a distribution. The rth incomplete moment of a CBHE random
variable is defined as mr(x) =

∫ x

0
yr f (y)dy, r = 1, 2, .... Substituting the PDF of the CBHE distribution

in equation (2.10) into the definition gives

mr(x) =
∞∑

i=0

Υ jkmn

∫ x

0
yr+n (2 + ςy) e−(m+1)ςydy,

=

∞∑
i=0

Υ jkmn

{
2
∫ x

0
yr+ne−(m+1)ςydx + ς

∫ x

0
yr+n+1e−(m+1)ςydy

}
. (3.5)
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Let u = (m + 1) ςy. This implies that y = u
(m+1)ς and dy = du

(m+1)ς . Also, as y → 0, u → 0 and as
y→ x, u→ (m + 1) ςx. Substituting these into equation (3.5) gives

mr(x) =
∞∑

i=0

Υ jkmn

{
2

[(m + 1) ς]r+n+1

∫ (m+1)ςx

0
ur+ne−udu +

ς

[(m + 1) ς]r+n+2

∫ (m+1)ςx

0
ur+n+1e−ydu

}
.

Using the incomplete gamma function defined as γ (a, y) =
∫ y

0
ta−1e−tdt, the rth incomplete moment of

the CBHE distribution is obtained as

mr (x) =
∞∑

i=0

Υ jkmn

{
2γ (r + n + 1, (m + 1) ςx)

[(m + 1) ς]r+n+1 +
ςγ (r + n + 2, (m + 1) ςx)

[(m + 1) ς]r+n+2

}
, r = 1, 2, .... (3.6)

When r = 1 in equation (3.6), the first incomplete moment of the CBHE distribution is obtained as

m1 (x) =
∞∑

i=0

Υ jkmn

{
2γ (n + 2, (m + 1) ςx)

[(m + 1) ς]n+2 +
ςγ (n + 3, (m + 1) ςx)

[(m + 1) ς]n+3

}
. (3.7)

Lorenz and Bonferroni curves, which are used to study income inequality, can be obtained using the
incomplete moment of a distribution. Lorenz and Bonferroni curves are defined, respectively, as

L (x) =
1
µ

∫ x

0
y f (y)dy=

m1 (x)
µ

and B (x) =
1
µF(x)

∫ x

0
y f (y)dy =

m1 (x)
µF (x)

,

where µ and m1(x) are the first ordinary and first incomplete moments of the distribution. Thus, substi-
tuting the first incomplete moment in equation (3.7) into the definitions give the Lorenz and Bonferroni
curves of the CBHE distribution, respectively, as

L(x) =
1
µ

∞∑
i=0

Υ jkmn

{
2γ (n + 2, (m + 1) ςx)

[(m + 1) ς]n+2 +
ςγ (n + 3, (m + 1) ςx)

[(m + 1) ς]n+3

}
and

B(x) =
1
µF(x)

∞∑
i=0

Υ jkmn

{
2γ (n + 2, (m + 1) ςx)

[(m + 1) ς]n+2 +
ςγ (n + 3, (m + 1) ςx)

[(m + 1) ς]n+3

}
.

Gastwirth [12] has shown that Lorenz curve can be defined as

L(u) =
∫ u

0
Q (t) dt, u ∈ (0, 1) ,

where Q (t) is the quantile function of the distribution. Similarly, the Bonferroni curve can be defined
as

B(u) =
L(u)

u
, u ∈ (0, 1) .

Figure 3 shows the plots of Lorenz and Bonferroni curves of the CBHE distribution. Lorenz curves
of a distribution are usually convex in shapes. This is demonstrated by the plots of the CBHE Lorenz
curves. When L (u) = u, then the point of minimal inequality or equidistribution line is obtained.
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Figure 3. Plots of Lorenz (Left) and Bonferroni (Right) Curves

3.2.3. Moments Generating Function

The moment generating function (MGF) of a distribution, if it exists, is useful in deriving the mo-
ments of a distribution. MGF is defined as MX(t) = E(etX). Using Taylor series expansion, MGF can
be obtained as MX(t) =

∑∞
r=0

tr
r!µ
′
r, where µ′r is the rth ordinary moment of the distribution. Thus, substi-

tuting the rth ordinary moment of the CBHE distribution in equation (3.3) into the definition gives the
MGF of the CBHE distribution as

MX(t) =
∞∑

r=0

∞∑
i=0

tr

r!
Υ jkmn

{
2Γ (r + n + 1)

[(m + 1) ς]r+n+1 +
ςΓ (r + n + 2)

[(m + 1) ς]r+n+2

}
. (3.8)

3.3. Order statistics

The PDF for the pth order statistic xp:n, of an independent and identically distributed random sample
x1, x2, ..., xn of size n, fp:n(x), is defined as

fp:n(x) =
n!

(p − 1)!(n − p)!
[F(x)]p−1 [1 − F(x)]n−p f (x), p = 1, 2, ..., n.

Using binomial series expansion, the PDF can be written as

fp:n(x) =
n!

(p − 1)!(n − p)!

n−p∑
l=0

(−1)l

(
n − p

l

)
[F(x)]p+l−1 f (x). (3.9)

From the CDF of the CBHE distribution in equation (2.3), we have

[F(x)]p+l−1 = Pp+l−1

1 − exp

υ
1 − exp


(
1 −

e−ςx

1 + ςx

)ξ


p+l−1

,

= Pp+l−1
p+l−1∑
q=0

(
p + l − 1

q

)
(−1)q exp

qυ

1 − exp


(
1 −

e−ςx

1 + ςx

)ξ

 . (3.10)
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Substituting equation (3.10) and the PDF of the CBHE distribution in equation (2.4) into equation (3.9)
gives the PDF of the pth order statistic of the CBHE distribution as

fp:n(x) =
n!υςξ (2 + ςx) e−ςx

(p − 1)!(n − p)! (1 + ςx)2

(
1 −

e−ςx

1 + ςx

)ξ−1

exp


(
1 −

e−ςx

1 + ςx

)ξ
×

n−p∑
l=0

p+l−1∑
q=0

(
n − p

l

) (
p + l − 1

q

)
(−1)l+qPp+l exp

(q + 1) υ

1 − exp


(
1 −

e−ςx

1 + ςx

)ξ

 .

Also, the PDF of the first and nth order statistics of a distribution are defined, respectively, as

f1:n(x) = n
n−1∑
l=0

(
n − 1

l

)
(−1) j [F(x)] j f (x) and fn:n(x) = n [F(x)]n−1 f (x).

For the CBHE distribution, the PDF of the first and nth order statistics are given, respectively, as

f1:n(x) =
nυςξ (2 + ςx) e−ςx

(1 + ςx)2

(
1 −

e−ςx

1 + ςx

)ξ−1

exp


(
1 −

e−ςx

1 + ςx

)ξ
×

n−1∑
l=0

j∑
q=0

(
n − 1

l

) (
l
q

)
(−1)l+qPl+l exp

(q + 1) υ

1 − exp


(
1 −

e−ςx

1 + ςx

)ξ



and

fn:n(x) =
nυςξ (2 + ςx) e−ςx

(1 + ςx)2

(
1 −

e−ςx

1 + ςx

)ξ−1

exp


(
1 −

e−ςx

1 + ςx

)ξ
×

n−1∑
q=0

(
n − 1

q

)
(−1)qPn exp

(q + 1) υ

1 − exp


(
1 −

e−ςx

1 + ςx

)ξ

 .

Figure 4 shows the minimum-maximum (min-max) plots of the order statistics of the CBHE distribu-
tion. The plots are based on the expectation of the first and nth order statistics. The min-max plots
gives information, such as skewness and kurtosis, of a distribution. From the plots, it can be observed
that the CBHE distribution can exhibit symmetric, right-skewed and left-skewed shapes.

4. Parameter Estimation

The parameters of the CBHE distribution are estimated in this section using maximum likelihood,
maximum product spacing, ordinary least squares, weighted least squares, Cramér-von Mises, per-
centile and Anderson–Darling estimation methods. Recently papers have been discussed the estimation
methods for parameter of distribution modeling as [13, 14, 15].

4.1. Maximum Likelihood Estimation Method

Let the random samples x1, x2, ..., xn of size n be from the CBHE distribution. The maximum like-
lihood estimates (MLE) of the parameters of the distribution are obtained by first obtaining the log-
likelihood function given as
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Figure 4. Minimum-Maximum Plots of Order Statistics of the CBHE Distribution

ℓ = n log (Pυςξ) +
n∑

i=1

log
(

2 + ςxi

(1 + ςxi)2

)
+ (ξ − 1)

n∑
i=1

log
(
1 −

e−ςxi

1 + ςxi

)
− ς

n∑
i=1

xi +

n∑
i=1

(
1 −

e−ςxi

1 + ςxi

)ξ
+ υ

n∑
i=1

[
1 − e

(
1− e−ςxi

1+ςxi

)ξ]
.

Partially differentiating the likelihood function with respect to the parameters υ, ξ and ς, gives the
score functions as

∂ℓ

∂ξ
=

n
ξ
+

n∑
i=1

log
(
1 −

e−ςxi

1 + ςxi

)
+

n∑
i=1

(
1 −

e−ςxi

1 + ςxi

)ξ
log

(
1 −

e−ςxi

1 + ςxi

)
− υ

n∑
i=1

(
1 −

e−ςxi

1 + ςxi

)ξ
e
(
1− e−ςxi

1+ςxi

)ξ
log

(
1 −

e−ςxi

1 + ςxi

)
, (4.1)

∂ℓ

∂ς
=

n
ς
−

n∑
i=1

xi − ς

n∑
i=1

(
3 + ςxi

(1 + ςxi) (2 + ςxi)

)
+ (ξ − 1)

n∑
i=1

(
ςe−ςxi (2 + ςxi)

(1 + ςxi)2

) (
1 −

e−ςxi

1 + ςxi

)−1

+ ξ

n∑
i=1

(
ςe−ςxi (2 + ςxi)

(1 + ςxi)2

) (
1 −

e−ςxi

1 + ςxi

)ξ−1

+ υξ

n∑
i=1

(
ςe−ςxi (2 + ςxi)

(1 + ςxi)2

) (
1 −

e−ςxi

1 + ςxi

)ξ−1

e
(
1− e−ςxi

1+ςxi

)ξ
,

(4.2)

and
∂ℓ

∂υ
=

n
υ
+

n(1 − e)eυ(1−e)(
1 − eυ(1−e)) + n∑

i=1

[
1 − e

(
1− e−ςxi

1+ςxi

)ξ]
. (4.3)

Setting the score functions in equations (4.1), (4.2) and (4.3) to zero and solving them simultaneously,
the estimators of the parameters are obtained. Due to the non-linear nature of the score functions,
numerical methods are employed to solve the equations.
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4.2. Maximum Product Spacing Method

Let x(1), x(2), ..., x(n) be ordered random samples from CBHE distribution. Define the uniform spac-
ing,

∆i = F(x(i); υ, ξ, ς) − F(x(i−1); υ, ξ, ς),

where F(x(0); υ, ξ, ς) = 0, F(x(n+1); υ, ξ, ς) = 1 and
∑n+1

i=0 ∆i = 1. The maximum product spacing (MPS)
estimators of the parameters are then obtained by maximizing the logarithm of the geometric mean of
the spacing given by

LM =
1

n + 1

n+1∑
i=1

log∆i, i = 1, 2, ..., n + 1

with respect to υ, ξ and ς.

4.3. Ordinary Least Squares Estimation Method

Given ordered random samples x(1), x(2), ..., x(n) of size n from the CBHE distribution with CDF
F(x). The ordinary least squares (OLS) estimators are obtained by minimizing the function

L =
n∑

i=1

[
F(xi; υ, ξ, ς) −

i
n + 1

]2

=

n∑
i=1

[(
1 − P

(
1 − exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)}))
−

i
n + 1

]2

, (4.4)

with respect to υ, ξ and ς. The parameter estimators are then obtained by simultaneously solving the
resulting system of linear equations given by

∂L
∂ξ
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ1(xi; υ, ξ, ς),

∂L
∂ς
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ2(xi; υ, ξ, ς)

and
∂L
∂υ
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ3(xi; υ, ξ, ς),

where

Υ1(xi; υ, ξ, ς) =
(

2υ
1 − eυ(1−e)

)
e
(
1− e−ςxi

1+ςxi

)ξ
exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)} (
1 −

e−ςxi

1 + ςxi

)ξ
log

(
1 −

e−ςxi

1 + ςxi

)
, (4.5)

Υ2(xi; υ, ξ, ς) =
(

2υξ
1 − eυ(1−e)

)
e
(
1− e−ςxi

1+ςxi

)ξ
exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)} (
1 −

e−ςxi

1 + ςxi

)ξ−1 (
(2 + ςxi) xie−ςxi

(1 + ςxi)2

)
,

(4.6)

and

Υ3(xi; υ, ξ, ς) =
 2(

1 − eυ(1−e))2

 (1 − e)
(
eυ(1−e)

) (
1 − exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)})
−

(
2

1 − eυ(1−e)

) (
1 − e

(
1− e−ςxi

1+ςxi

)ξ)
exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)}
. (4.7)
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4.4. Weighted Least Square Estimation Method

Let x(1), x(2), ..., x(n) denote ordered random samples of size n with CDF, F(x), from the CBHE dis-
tribution. The weighted least squares (WLS) estimators are then obtained by minimizing the function

W =
n∑

i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F(x(i)) −

i
n + 1

]
,

=

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
1

1 − eυ(1−e)

(
1 − exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)})
−

i
n + 1

]2

, (4.8)

with respect to υ, ξ and ς. Thus, solving the following system of equations will give the parameter
estimators of the CBHE distribution:

∂W
∂ξ
=

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ1(xi; υ, ξ, ς), (4.9)

∂W
∂ς
=

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ2(xi; υ, ξ, ς) (4.10)

and
∂W
∂υ
=

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F(xi; υ, ξ, ς) −

i
n + 1

]
Υ3(xi; υ, ξ, ς). (4.11)

where Υ1(xi; υ, ξ, ς), Υ2(xi; υ, ξ, ς) and Υ3(xi; υ, ξ, ς) are given by equations (4.5), (4.6), and (4.7) re-
spectively.

4.5. Cramér-von Mises Estimation Method

Given the ordered random samples x(1), x(2), ..., x(n) from the CBHE distribution, the Cramér-von
Mises (CVM) estimators are obtained by minimizing the function

C =
1

12n
+

n∑
i=1

[
F(x(i)) −

2i − 1
2n

]2

=
1

12n
+

n∑
i=1

[
1

1 − eυ(1−e)

(
1 − exp

{
υ

(
1 − e

(
1− e−ςxi

1+ςxi

)ξ)})
−

2i − 1
2n

]2

,

(4.12)
with respect to υ, ξ and ς. The CVM estimates are obtained by solving the system of linear equations
obtained as follows

∂C
∂ξ
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

2i − 1
2n

]
Υ1(xi; υ, ξ, ς), (4.13)

∂C
∂ς
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

2i − 1
2n

]
Υ2(xi; υ, ξ, ς) (4.14)

and
∂C
∂υ
=

n∑
i=1

[
F(xi; υ, ξ, ς) −

2i − 1
2n

]
Υ3(xi; υ, ξ, ς), (4.15)

where Υ1(xi; υ, ξ, ς), Υ2(xi; υ, ξ, ς) and Υ3(xi; υ, ξ, ς) are given by equations (4.5), (4.6), and (4.7) re-
spectively.
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4.6. Percentile Estimation Method

Let x(1), x(2), ..., x(n) denote ordered random samples from the CBHE distribution with quantile func-
tion Q(ui), where ui =

i
n+1 is an unbiased estimator of F

(
x(i)

)
. The percentile (PC) estimators of the

CBHE distribution are obtained by minimizing the function

P =
n∑

i=1

(
x(i) − Q(ui)

)2
=

n∑
i=1

x(i) −

1
ς

W
e

1 − [
log

[
1 −

1
υ

log
(
1 −

ui

P

)]] 1
ξ


−1 − 1





2

, (4.16)

with respect to υ, ξ and ς.

4.7. Anderson-Darling Estimation Method

The Anderson–Darling (AD) estimators of the parameters are obtained by minimizing the function

AD = −n −
1
n

n∑
i=1

(2i − 1)
[
log F(xi; υ, ξ, ς) + log (1 − F(xn+1−i; υ, ξ, ς))

]
, (4.17)

with respect to υ, ς and ξ. The AD estimators of the parameters for the CBHE distribution are then
obtained by solving the nonlinear equations

∂AD
∂ξ
= −

1
n

n∑
i=1

(2i − 1)
[
Υ1(xi; υ, ξ, ς)
F(xi; υ, ξ, ς)

+
Υ1(xn+1−i; υ, ξ, ς)

(1 − F(xn+1−i; υ, ξ, ς))

]
= 0, (4.18)

∂AD
∂υ
= −

1
n

n∑
i=1

(2i − 1)
[
Υ2(xi; υ, ξ, ς)
F(xi; υ, ξ, ς)

+
Υ2(xn+1−i; υ, ξ, ς)

(1 − F(xn+1−i; υ, ξ, ς))

]
= 0, (4.19)

and
∂AD
∂ς
= −

1
n

n∑
i=1

(2i − 1)
[
Υ1(x3; υ, ξ, ς)
F(xi; υ, ξ, ς)

+
Υ3(xn+1−i; υ, ξ, ς)

(1 − F(xn+1−i; υ, ξ, ς))

]
= 0, (4.20)

where Υ1(∗; υ, ξ, ς), Υ2(∗; υ, ξ, ς) and Υ3(∗; υ, ξ, ς) are given by equations (4.5), (4.6), and (4.7), re-
spectively.

4.8. Monte Carlo Simulations

In this section, Monte Carlo simulations are carried out to compare the performance of the proposed
estimation techniques for estimating the parameters of the CBHE distribution. The estimation of the
parameters is carried out by using the following procedure:

i. Generate random samples of size n = 25, 50, 100, 250 and 500 from the CBHE distribution using
its quantile function in equation (3.1).

ii. Estimate the parameters of the distribution using MLE, MPS, OLS, WLS, AD, CVM and PC
estimation methods.

iii. Steps i-ii are repeated for N = 1000 times.
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iv. The average bias (AB) and root mean square error (RMSE) are computed for each parameter, υ, ξ
and ς, using the following equations, respectively;

AB =
1

1000

1000∑
i=1

(
Θ̂i − Θ

)
and RMS E =

√√
1

1000

1000∑
i=1

(
Θ̂i − Θ

)2
. (4.21)

v. Steps i-iv are repeated for the parameter sets: (υ, ξ, ς) = (0.8, 2.4, 1.2) and (υ, ξ, ς) =
(1.2, 0.9, 1.9).

The results of the simulation studies are presented in Figure 5 and Figure 6. Generally, it can be
observed that the plots decrease with increasing sample size. This indicates that all the estimators are
consistent. However, it can be observed that MLE estimates are generally lesser that the estimates
of the other estimation methods. This suggests that MLE better estimates the parameters of CBHE
distribution. Thus, MLE is used to estimate the parameters of the CBHE distribution for application
purposes.

Figure 5. Plots of Simulated Results for (υ, ξ, ς) = (0.8, 2.4, 1.2)

5. Empirical Applications

The usefulness of CBHE distribution is demonstrated in this section using two real datasets. The
performance of the CBHE distribution is compared with the performance of Chen exponential (CE)
(Anzagra et al. [7]), exponential (E), BHE, Weibull (W) and WBXII distributions. The performance
of the distributions are compared using Akaike information criterion (AIC), Bayesian information
criterion (BIC), Cramér–von Mises (CVM), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS)
measures, with the corresponding p-values of CVM, AD and KS measures. The distribution with the
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Figure 6. Plots of Simulated Results for (υ, ξ, ς) = (1.2, 0.9, 1.9)

least of these measures and the highest of the corresponding p-values of the goodness-of-fit measures
is considered to be the best distribution for modeling a dataset.

5.1. Bladder Cancer Dataset

The first dataset consists of 128 monthly remission times of random samples of bladder cancer
patients. The datasets can be found in Lee and Wang (2003) and are given as: 0.08, 2.09, 3.48, 4.87,
6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22,
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26,
0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19,
2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 1.46, 18.10, 11.79, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 13.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 12.07, 6.76, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Figure 7 shows the kernel density and violin plots of the bladder cancer data. The shapes of the
kernel density and violin plots indicate that the data is right skewed. This implies that the CBHE
distribution can be used to model the dataset.

Table 2 shows the parameter estimates and the corresponding standard errors of the fitted distribu-
tions.

The information criteria and goodness-of-fit measures are presented in Table 3. It can be observed
that CBHE distribution has the least of all the information criteria except for BIC measure, in which
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Figure 7. Kernel Density and Violin Plots of Bladder Cancer Dataset

Table 2. Parameter Estimates and Standard Errors of Fitted Distributions for Bladder Cancer
Dataset

Distribution
υ̂ ξ̂ ς̂ α̂

Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error
CBHE 2.1012 1.3427 1.427 0.1829 0.0428 0.0242

CE 2.2836 1.0500 1.2979 0.1382 0.0660 0.0262
E 0.1059 0.0094

BHE 0.0618 0.0061
W 1.0527 0.0680 0.0919 0.0188

WBXII 0.8455 0.3128 0.2869 0.1493 1.7374 3.2358 2.1844 0.6472
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the CBHE distribution has the second least measure. Also, the CBHE distribution has the least statistic
and the highest corresponding p-values of the goodness-of-fit measures. This implies that the CBHE
distribution is the best in modeling the bladder cancer dataset.

Table 3. Information Criteria and Goodness-of-fit Measures for Bladder Cancer Dataset

Distribution AIC BIC CVM AD KS
Statistic p-value Statistic p-value Statistic p-value

CBHE 828.1176 836.6737 0.0198 0.9973 0.1358 0.9994 0.0367 0.9953
CE 828.9441 837.5002 0.0313 0.9722 0.2070 0.9884 0.0413 0.9813
E 832.8104 835.6624 0.1697 0.3351 1.1273 0.2968 0.0832 0.3383

BHE 834.0375 836.8895 0.2901 0.1441 1.8172 0.1161 0.1060 0.1127
W 834.1968 839.9009 0.1380 0.4287 0.8744 0.4301 0.0663 0.6276

WBXII 832.5345 843.9426 0.0470 0.8950 0.3127 0.9282 0.0472 0.9381

Probability-probability (P-P) plots of the fitted distributions are obtained and given in Figure 8. It
can be observed that the CBHE distribution provides a comparatively better fit to the dataset as its plots
cluster more along the diagonal line.
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Figure 8. P-P Plots of Fitted Distributions for Bladder Cancer Dataset

5.2. Head and Neck Cancer Data

The second dataset consist of survival times of a group of patients suffering from head and neck
cancer, and treated using a combination of radiotherapy and chemotherapy (RT+CT). The dataset was
obtained from Efron [16] are given as: 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46,
58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159,
173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.
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The kernel density and violin plots of the head and neck cancer dataset are shown in Figure 9. The
shapes of the plots indicate that the data is right skewed. This implies that the CBHE distribution can
be used to model the dataset.
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Figure 9. Kernel Density and Violin Plots of Head and Neck Cancer Dataset

Table 4 presents the estimated parameters of the fitted distributions with their corresponding stan-
dard errors.

Table 4. Parameter Estimates and Standard Errors of Fitted Distributions for Head and Neck
Cancer Dataset

Distribution
υ̂ ξ̂ ς̂ α̂

Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error
CBHE 1.7870 1.1368 1.4365 0.2984 0.0023 0.0013

CE 1.8047 0.8345 1.2291 0.2293 0.0033 0.0012
E 0.0045 0.0007

BHE 0.0027 0.0005
W 0.9234 0.1051 0.0071 0.0045

WBXII 1.4435 0.5713 0.1044 0.0422 0.4876 0.5226 3.4630 0.4730

Table 5 presents the information criteria and goodness-of-fit measures of the fitted distributions. It
can be observed that CBHE has the second least AIC measure after BHE distribution, and also has
the third least BIC measure, after E and BHE distributions. This can be attributed to the fact CBHE
distribution has more parameters than E and BHE distributions. However, the CBHE distribution has
the least of CVM, AD and KS measures, with high p-values, which are significantly different from the
other distributions. This implies that the CBHE distribution best models the dataset, comparatively.

Figure 10 shows P-P plots of the fitted distributions. It can be observed that the CBHE distribution
has its plots clustering more around the diagonal as compared to the other distributions. Therefore,
it can be concluded that the CBHE distribution best describes the neck and head cancer dataset as
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Table 5. Information Criteria and Goodness-of-fit Measures for Head and Neck Cancer
Dataset

Distribution AIC BIC
CVM AD KS

Statistic p-value Statistic p-value Statistic p-value
CBHE 564.3278 569.6804 0.0363 0.9531 0.3544 0.8919 0.0673 0.9805

CE 566.0809 571.4334 0.0926 0.6248 0.5616 0.6841 0.1066 0.6599
E 566.0224 567.8065 0.1677 0.3409 0.9324 0.3942 0.1420 0.3073

BHE 563.9277 565.7119 0.1094 0.5427 0.7253 0.5372 0.1125 0.5941
W 567.7156 571.2840 0.1354 0.4388 0.8665 0.4348 0.1242 0.4684

WBXII 566.3276 573.4644 0.0840 0.6715 0.4765 0.7699 0.1121 0.5981

compared to the other competing distributions.
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Figure 10. P-P Plots of Fitted Distributions for Head and Neck Cancer Dataset

6. Chen Burr-Hatke Exponential Regression Models

Regression models are useful in explaining the effects of some exogenous variables on a response
variable. Therefore, in this section two regression models are proposed for response variables following
the CBHE distribution.

6.1. CBHE Regression with Different Structures

Let x1, x2, . . . , xn be random samples from the CBHE distribution. A CBHE regression model with
different structures is established by relating the parameters υ and ξ to the covariates using an appro-
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priate link function. That is
h (υi) = ZT

i α, i = 1, 2, . . . , n (6.1)

and
h (ξi) = ZT

i β, i = 1, 2, . . . , n, (6.2)

where ZT
i = (zi1, zi2, . . . , zik) is an ith vector of covariates, α = (α0, α1, . . . , αk)T and β = (β0, β1, . . . , βk)T

are the vectors of regression coefficients, and h (•) is an appropriate link function. In this study the log,
inverse, square root and inverse square root link functions are used.

The parameters ς,α, and β, can be estimated by maximizing the log-likelihood function given as

ℓ = n log (Pς) + log
l∑

i=1

log (υiξi) +
n∑

i=1

log
(

2 + ςxi

(1 + ςxi)2

)
+

n∑
i=1

log
(
1 −

e−ςxi

1 + ςxi

)ξi−1

− ς

n∑
i=1

xi +

n∑
i=1

(
1 −

e−ςxi

1 + ςxi

)ξi
+ υ

n∑
i=1

[
1 − e

(
1− e−ςxi

1+ςxi

)ξi ]
. (6.3)

6.2. Quantile Regression Model

Quantile regression models are appropriate in modeling data which are skewed or with outliers.
Regression models which relate the covariates to the mean of the response variable fail to capture the
variations in the response variable appropriately, as the mean fails to be the best measure of central
tendency in the presence of outliers or when the data is skewed. This subsection presents CBHE
quantile regression model. To achieve this, let λ = Q (u) , λ > 0 and make ξ the subject. This gives

ξ =

(
log

{
log

[
1 −

1
υ

log
(
1 −

u
P

)]}) (
log

{(
1 −

e−ςλ

1 + ςλ

)})−1

. (6.4)

Substituting equation (6.4) into the PDF of CBHE distribution, gives a re-parameterized PDF as

f (x) = Pυς
(2 + ςx) log A
(1 + ςx)2 log R

H
log A
log R−1e−ςx exp

{
H

log A
log R

}
exp

{
υ
[
1 − exp

{
H

log A
log R

}]}
, (6.5)

where A = log
[
1 − 1

υ
log

(
1 − u

P

)]
, H =

(
1 − e−ςx

1+ςx

)
and R =

(
1 − e−ςλ

1+ςλ

)
.

Let x1, x2, . . . , xn be random samples from the CBHE distribution. Then the quantile regression
structure used in this study is given as

h (λi) = ZT
i α, i = 1, 2, . . . , n, (6.6)

where ZT
i = (zi1, zi2, . . . , zik) is the ith vector of covariates, α = (α0, α1, . . . , αk)T is a vector of regression

coefficients and h (•) is an appropriate link function. In this study, the log link function is used for this
regression model. Therefore,

log (λi) = ZT
i α, i = 1, 2, . . . , n (6.7)

The parameters of the distribution can be obtained via maximum likelihood method by maximizing the
log-likelihood function given as

ℓ = n log (Pυς) +
n∑

i=1

log Di +

n∑
i=1

log
(

2 + ςxi

(1 + ςxi)2

)
+

n∑
i=1

log
(
1 −

e−ςxi

1 + ςxi

)Di−1

− ς

n∑
i=1

xi

Computational Journal of Mathematical and Statistical Sciences Volume 2, Issue 1, 80–105



101

+

n∑
i=1

(
1 −

e−ςxi

1 + ςxi

)Di

+ υ

n∑
i=1

[
1 − e

(
1− e−ςxi

1+ςxi

)Di
]
, (6.8)

where Di =
(
log

{
log

[
1 − 1

υ
log

(
1 − u

P

)]}) (
log

{(
1 − e−ςe

ZT
i α

1+ςeZT
i α

)})−1

.

6.3. Residual Analysis

Residual analysis is essential to ascertain the adequacy of a fitted model. The Cox-Snell (Cox and
Snell, [17]) residuals analysis is used in this study. Cox-Snell residuals are defined as

ri = − log
(
1 − F

(
xi; θ̂

))
, i = 1, 2, . . . , n, (6.9)

where θ̂ is a vector of estimated parameters. The residuals are expected to follow the standard expo-
nential distribution if the model is adequate.

6.4. Application

The CBHE regression models developed are demonstrated in this subsection using real dataset. The
effect of gender on the survival times (in years) until the onset of hypertension of 119 random samples
and gender from the Bolgatanga Regional Hospital in the Upper East Region of Ghana is modeled.
The dataset is obtained from Zamanah et al. [9]. The survival times, with gender (male = 1, female
= 0) in brackets, is given as: 71(1), 5(1), 39(1), 62(1), 52(0), 71(0), 38(0), 56(1), 35(1), 69(1), 34(1),
71(1), 66(0), 70(1), 52(0), 37(0), 35(0), 71(1), 73(1), 19(0), 74(0), 74(1), 75(1), 51(0), 76(1), 49(0),
19(1), 76(0), 78(1), 76(0), 76(0), 49(1), 47(1), 48(0), 48(0), 46(0), 46(1), 46(1), 41(0), 40(0), 43(1),
45(0), 47(0), 47(0), 44(0), 45(1), 46(1), 42(1), 43(0), 42(0), 20(1), 28(0), 26(0), 60(0), 27(1), 24(0),
29(0), 60(1), 25(1), 60(1), 69(1), 36(1), 69(0), 69(1), 68(0), 68(0), 67(1), 67(0), 67(0), 52(0), 35(0),
66(0), 55(0), 66(1), 61(1), 61(0), 64(0), 64(0), 65(0), 65(0), 63(1), 63(1), 62(0), 39(1), 62(0), 62(0),
62(0), 59(1), 59(0), 59(1), 58(0), 58(0), 58(0), 18(1), 57(0), 57(0), 56(0), 56(0), 37(1), 53(0), 53(0),
53(0), 53(1), 54(1), 54(1), 66(0), 17(0), 50(0), 75(0), 51(0), 38(0), 52(1), 66(0), 4(1), 52(0), 55(0),
19(1), 58(1) ,73(0).

The following regression models are used:

A. h (υi) = α0 + α1zi1 and h (ξi) = β0 + β1zi1, i = 1, 2, . . . , 119 with the following link functions: log:
h (•) = log (•); inverse: h (•) = (•)−1; square root: h (•) = (•)

1
2 and inverse square: h (•) = (•)−2

are used.
B. Quantile regression: log (λi) = α0 + α1zi1, i = 1, 2, . . . , 119 with the quantiles u = 0.2, 0.25, 0.5

and 0.75 are also used.

The models are compared using negative log-likelihood (−ℓ), AIC and BIC measures.
Table 6 shows the parameter estimates, standard errors, p-values and information criteria of the

fitted regression models. It can be observed that the covariate, that is gender, is significant for CBHE
regression with different structures but not significant for the quantile regression model for all the
quantiles at 5% significance level. It can also be observed that the parametric model with log link
function has the least −ℓ, AIC and BIC measures. This is followed by the quantile regression model
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u = 0.75. For the best model, the covariate has a negative impact on the survival time until the onset
of hypertension.

Figure 11 shows the P-P plots of the Cox-Snell residuals. It can be observed that the CBHE re-
gression model with log link function has more of its plots clustering along the diagonal than the other
regression models. This implies that it best models the dataset.
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Figure 11. Cox-Snell P-P Plots of Fitted Regression Models
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7. Conclusion

In this study, a new lifetime distribution, called Chen Burr-Hatke exponential (CBHE) distribution,
was developed. Various plots of the density function showed that the distribution can exhibit increasing,
decreasing, right-skewed and left-skewed shapes, whiles plots of the hazard rate function showed that
the distribution can exhibit increasing, decreasing, and upside-down bathtub shapes. Several statistical
properties including quantile function, moments, order statistics and inequality measures were derived.
The parameters of the distribution were estimated using seven estimation methods. The estimators
were all consistent, however, maximum likelihood was observed to better estimate the parameters of
the distribution via simulation studies. Associated regression models of the CBHE distribution were
developed. The applications and usefulness of the CBHE distribution and its regression models were
demonstrated for real datasets. The results showed that the distribution performed better than the
competing distributions. Therefore, it can be concluded that the CBHE distribution and its regression
models can serve as alternative models to describing datasets from biomedical sciences and other
fields, which exhibit various characteristics. The CBHE distribution is therefore recommended for use
in modeling such datasets.
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