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SOME SUBORDINATION RESULTS FOR P-VALENT

FUNCTIONS ASSOCIATED WITH DIFFERINTEGRAL

OPERATOR

A. O. MOSTAFA, M.K.AOUF

Abstract. Making use of the prenciple of differential subordination, we in-

vestigate some inclusion relationships of certain subclasses of p-valent analytic
functions which are defined by certain differintegral operator.

1. Introduction

Let An(p) denote the class of analytic and p-valent functions in the open unit
disc U = {z ∈ C : |z| < 1} of the form:

f(z) = zp +

∞∑
k=n

ak+pz
k+p (p, n ∈ N = {1, 2, ...}), (1)

For convenience, we write A1(p) = A(p). For analytic functions f, g in U , we say
that f is subordinate to g, written f(z) ≺ g(z) if there exists a Schwarz function
w, which is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such
that f(z) = g(w(z)), z ∈ U. Furthermore, if g is univalent in U, then we have the
following equivalence, (cf., e.g.,[4], [5] see also [1]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

For functions fi ∈ An(p) (i = 1, 2) given by

fi(z) = zp +
∞∑

k=n

ak+p,iz
k+p (i = 1, 2; p, n ∈ N), (2)

the Hadamard product (or convolution) of f1 and f2 is defined by

(f1 ∗ f2)(z) = zp +
∞∑

k=n

ak+p,1ak+p,2z
k+p = (f2 ∗ f1)(z). (3)
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In this present investigation, we shall also make use of the Gaussian hypergeometric
function 2F1 defined by

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(a, b, c ∈ C; c /∈ Z0 = {0,−1,−2, ...}), (4)

where (d)k denotes the Pochhammer symbol given in terms of the Gamma function
Γ, by

(d)k =
Γ(d+ k)

Γ(d)

{
1 (k = 0; d ∈ C∗ = C\{0})
d(d+ 1)...(d+ k − 1) (k ∈ N; d ∈ C).

We note that the series defined by (4) converges absolutely for z ∈ U and hence

2F1 represents an analytic function in U [19 ,Ch.14]. With a view to introducing
an extended fractional differintegral operator, we begin by recalling the following
definitions of fractional calculus considered by Owa [9] ( see also [10] and [17] ). .
The fractional integral of order λ (λ > 0) is defined, for a function f , analytic in
a simply-connected region of the complex plane containing the origin by

D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(t)

(z − t)1−λ
dt, (5)

where the multiplicity of (z − t)λ−1 is removed by requiring log(z − t) to be real
when (z − t) > 0.

. Under the hypothesis of Definition 1, the fractional derivative of f of order λ
(λ > 0) is defined by

Dλ
z f(z) =

{
1

Γ(1−λ)
d
dz

∫ z

0
f(t)

(z−t)λ
dt (0 ≤ λ < 1)

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1;n ∈ N0 = N ∪ {0}),

(6)

where the multiplicity of (z − t)−λ is removed as in Definition 1.
In [13] Patel and Mishra defined the extended fractional differintegral operator

Ω
(λ,p)
z : A(p) → A(p) for a function f of the form (1.1) (with n = 1) and for a real

number λ (−∞ < λ < p+ 1) by:

Ω(λ,p)
z f(z) = zp +

∞∑
k=1

Γ(k + p+ 1)Γ(p+ 1− λ)

Γ(p+ 1)Γ(k + p+ 1− λ)
ak+pz

k+p

= zp 2F1(1, p+ 1; p+ 1− λ; z) ∗ f(z) (−∞ < λ < p+ 1; z ∈ U). (7)

It is easily seen from (7) that (see [13])

z(Ω(λ,p)
z f(z))′ = (p− λ)Ω(λ+1,p)

z f(z) + λΩ(λ,p)
z f(z) (−∞ < λ < p; z ∈ U). (8)

We also note that

Ω(0,p)
z f(z) = f(z), Ω(1,p)

z f(z) =
zf ′(z)

p
,

and ( in general )

Ω(λ,p)
z f(z) =

Γ(p+ 1− λ)

Γ(p+ 1)
zλDλ

z f(z) (−∞ < λ < p+ 1; z ∈ U), (9)

where Dλ
z f(z) is, respectively, the fractional integral of f of order −λ when −∞ <

λ < 0 and the fractional derivative of f of order λ when 0 ≤ λ < p+ 1.
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For integral values of λ, (9) becomes:

Ω(j,p)
z f(z) =

(p− j)!zjf (j)(z)

p!
(j ∈ N ; j < p+ 1),

and

Ω(−m,p)
z f(z) =

p+m

zm

∫ z

0

tm−1Ω(−m+1,p)
z f(t)dt (m ∈ N)

= F1,p ◦ F2,p ◦ ... ◦ Fm,p(f)(z)

= F1,p

(
zp

1− z

)
∗ F2,p

(
zp

1− z

)
∗ ... ∗ Fm,p

(
zp

1− z

)
∗ f(z),

where Fµ,p is the familiar integral operator defined by (3.12) ( see Section 3) and ◦
denotes the usual composition of functions.

The fractional differential operator Ω
(λ,p)
z with 0 ≤ λ < 1 was investigated

by Srivastava and Aouf [15]. More recently, Srivastava and Mishra [16] obtained
several interesting properties and charactaristics for certain subclasses of p-valent

analytic functions involving the differintegral operator Ω
(λ,p)
z when −∞ < λ < 1.

The operator Ω
(λ,1)
z = Ωλ

z was introduced by Owa and Srivastava [10].

By using the extended fractional differintegral operator Ω
(λ,p)
z (−∞ < λ < p),

we introduce the following subclass of functions in An(p).
. For fixed parameters A,B(−1 ≤ B < A ≤ 1) , we say that a function f ∈ An(p)

is in the class Sλ
p,n(A,B) if it satisfies the following subordination condition:

(Ω
(λ,p)
z f(z))′

pzp−1
≺ 1 +Az

1 +Bz
(z ∈ U ; p ∈ N). (9)

In view of the definition of subordination, (10) is equivalent to the following con-
dition: ∣∣∣∣∣∣

(Ω(λ,p)
z f(z))′

pzp−1 − p

B (Ω
(λ,p)
z f(z))′

pzp−1 − pA

∣∣∣∣∣∣ < 1 (z ∈ U).

For convenience, we write Sλ
p,n(1 − 2η

p ,−1) = Sλ
p,n(η) (0 ≤ η < p), where Sλ

p,n(η)

denotes the class of functions in An(p) satisfying the inequality :

Re

{
(Ω

(λ,p)
z f(z))′

zp−1

}
> η (0 ≤ η < p; p ∈ N ; z ∈ U). (10)

Let us consider the first-order differential subordination

H(φ(z), zφ′(z)) ≺ h(z).

Then, a univalent function q is called its dominant, if φ(z) ≺ q(z) for all analytic
functions φ that satisfy this differential subordination. A dominant q̃ is called the
best dominant, if q̃(z) ≺ q(z) for all dominants q. For the general theory of the
first-order differential subordination and its applications, we refer the reader to [1]
and [5].
The object of the present paper is to obtain several inclusion relationships and
other interesting properties of functions belonging to the subclass Sλ

p,n(A,B) and

Sλ
p,n(η) by using the method of differential subordination.

with the initial conditions ([5]), where a1, a2, b1, b, c are positive constants.



14 A. O. MOSTAFA, M.K.AOUF JFCA-2014/5(1)

2. Preliminaries

To prove our main results, we shall need the following lemmas. [2]. Let h(z) be
analytic and convex (univalent) function in U with h(0) = 1. Also let the function
ϕ given by

ϕ(z) = 1 + cnz
n + cn+1z

n+1 + ... (11)

be analytic in U . If

ϕ(z) +
zϕ′(z)

δ
≺ h(z) (Re(δ) > 0; δ ̸= 0), (12)

then

ϕ(z) ≺ ψ(z) =
δ

n
z−

δ
n

∫ z

0

t
δ
n−1h(t)dt ≺ h(z), (13)

and ψ is the best dominant of (13).
With a view to stating a well-known result ( Lemma 2 below), we denote by

P (δ) the class of functions Φ given by

Φ(z) = 1 + c1z + c1z
2 + ... (14)

which are analytic in U and satisfy the following inequality :

Re {Φ(z)} > δ (0 ≤ δ < 1).

[11] .Let the function Φ, given by (15), be in the class P (δ). Then

Re {Φ(δ)} > 2δ − 1 +
2(1− δ)

1 + |z|
(0 ≤ δ < 1).

[18] . For 0 ≤ δ1, δ2 < 1,

P (δ1) ∗ P (δ2) ⊂ P (δ3) (δ3 = 1− 2(1− δ1)(1− δ2)).

The result is the best possible.
[7] .Let ϕ be analytic in U with ϕ(0) = 1 and ϕ(z) ̸= 0 for 0 < |z| < 1,and let

A,B ∈ C with A ̸= B, |B| ≤ 1.

(i) Let B ̸= 0 and γ ∈ C∗ satisfy either
∣∣∣γ(A−B)

B − 1
∣∣∣ ≤ 1 or∣∣∣γ(A−B)

B + 1
∣∣∣≤ 1 .

If ϕ satisfies

1 +
zϕ′(z)

γϕ(z)
≺ 1 +Az

1 +Bz
,

then

ϕ(z) ≺ (1 +Bz)γ(
A−B

B )

and this is the best dominant.
(ii) Let B = 0 and γ ∈ C∗ be such that |γA| < π, and if ϕ satisfies

1 +
zϕ′(z)

γϕ(z)
≺ 1 +Az ,

then

ϕ(z) ≺ eγAz

and this is the best dominant.
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[14] . Let the function g be analytic in U , with

g(0) = 1 and Re{g(z)} > 1

2
(z ∈ U).

Then, for any function F analytic in U , (g ∗F )(U) is contained in the convex hull
of F (U).

[20] .Let µ be a positive measure on the unit interval [0, 1] . Let g(z, t) be a com-
plex valued function defined on U × [0, 1] such that g(., t) is analytic in U for each
t ∈ [0, 1], and such that g(z, .) is µ integrable on [0, 1], for all z ∈ U .In addition,
suppose that Re {g(z, t)} > 0, g(−r, t) is real and

Re

{
1

g(z, t)

}
> 1

g(−r, t)
(|z| ≤ r < 1; t ∈ [0, 1]).

If the function G(z) is defined by

G(z) =

∫ 1

0

g(z, t)dµ(t),

then

Re

{
1

G(z)

}
> 1

G(−r)
(|z| ≤ r < 1).

Each of the identities ( asserted by Lemma 7 below ) is fairly well known [19, Ch.
14 ] for the Gauss hypergeometric function 2F1 defined by (1.4).

[19] . For real or complex numbers a, b and c (c ̸= 0,−1,−2, ...),∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt = Γ(b)Γ(c−b)
Γ(c) 2F1(a, b; c; z) (Re(c) > Re(b) > 0);

(15)

2F1(a, b; c; z) = (1− z)−a
2 F1(a, c− b; c;

z

z − 1
); (16)

and

2F1(a, b; c; z) =2 F1(b, a; c; z). (17)

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that: λ < p;−1 ≤
B < A ≤ 1, 0 < α ≤ 1, z ∈ U and the powers are considered principal ones. . Let
the function f(z) given by (1) satisfy the following subordination condition:

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

≺ 1 +Az

1 +Bz
, (18)

then (
Ω

(λ,p)
z f(z)

)′
pzp−1

≺ Q(z) ≺ 1 +Az

1 +Bz
, (19)

where the function Q given by

Q(z) =

{
A
B + (1− A

B )(1 +Bz)−1
2F1(1, 1;

p−λ
nα + 1; Bz

1+Bz ) (B ̸= 0)

1 + p−λ
nα+p−λAz (B = 0),

(20)
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is the best dominant of (20). Furtheremore,

Re


(
Ω

(λ,p)
z f(z)

)′
pzp−1

 > η , (it22)

where

η =

{
A
B + (1− A

B )(1−B)−1
2F1(1, 1;

p−λ
nα + 1; B

B−1 ) (B ̸= 0)

1− p−λ
nα+p−λA (B = 0).

(21)

The estimate in (22) is the best possible.

Proof. Let

ϕ(z) =

(
Ω

(λ,p)
z f(z)

)′
pzp−1

. (24)

Then ϕ is of the form (12) and analytic in U . Applying the identity (8) in (24) and
differentiating the resulting equation with respect to z, we get

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

= ϕ(z) +
αz

p− λ
ϕ′(z) ≺ 1 +Az

1 +Bz
(z ∈ U).

Now, by using Lemma 1 for δ = p−λ
α we deduce that(

Ω
(λ,p)
z f(z)

)′
pzp−1

≺ Q(z) =
p− λ

nα
z−

p−λ
nα

∫ z

0

t
p−λ
nα −1(

1 +At

1 +Bt
)dt

=

{
A
B + (1− A

B )(1 +Bz)−1
2F1(1, 1;

p−λ
nα + 1; Bz

1+Bz ) (B ̸= 0)

1 + p−λ
nα+p−λAz (B = 0),

where we have made a change of variables followed by the use of the identities
(16), (17) and (18) ( with a = 1, b = p−λ

nα and c = b+ 1). This proves the assertion
(20) of Theorem 1.

Next, in order to prove the assertion (22) of Theorem 1, it sufficies to show that

inf
|z|<1

{Re(Q(z))} = Q(−1). (25)

Indeed, we have for, |z| ≤ r < 1,

Re

{
1 +Az

1 +Bz

}
> 1−Ar

1−Br
.

Setting G(z, s) =
1 +Asz

1 +Bsz
and dν(s) = p−λ

nα s
p−λ
nα −1ds (0 ≤ s ≤ 1), which is a

positive measure on the closed interval [0, 1], we get

Q(z) =

∫ 1

0

G(z, s)dν(s),

so that

Re {Q(z)} >
∫ 1

0

1−Asr

1−Bsr
dν(s) = Q(−r) (|z| ≤ r < 1).
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Letting r → 1− in the above inequality, we obtain the assertion (22). Finally, the
estimate (22) is the best possible as the function Q(z) is the best dominant of (20).

Taking α = 1, A = 1− 2η
p (0 ≤ η < p) and B = −1 in Theorem 1, we obtain the

following corollary.
. The following inclusion property holds true for the function class Sλ

p,n(η) :

Sλ+1
p,n (η) ⊂ Sλ

p,n(β(p, n, λ, η)) ⊂ Sλ
p,n(η),

where

β(p, n, λ, η) = η + (p− η){ 2F1(1, 1;
p− λ

n
+ 1;

1

2
)}.

The result is the best possible.
Taking α = 1, λ = 0, A = 1 − 2η

p (0 ≤ η < p) and B = −1 in Theorem 1, we

obtain
.Let the function f(z) given by (1) satisfy the following inequality:

Re

{
(zf ′(z))′

p2zp−1

}
> η (z ∈ U),

then

Re

{
f ′(z)

pzp−1

}
> η + (1− η)[2F1(1, 1;

p

n
+ 1;

1

2
)− 1].

The result is the best possible.
Taking α = 1 in Theorem 1, we obtain
. The following inclusion property holds true for the function class Sλ

p,n(A,B) :

Sλ+1
p,n (A,B) ⊂ Sλ

p,n(1−
2ρ

p
,−1) ⊂ Sλ

p,n(A,B) (0 ≤ ρ < p),

where

ρ =

{
A
B + (1− A

B )(1−B)−1
2F1(1, 1;

p−λ
n + 1; B

B−1 ) (B ̸= 0)

1− p−λ
n+p−λA (B = 0).

The result is the best possible.
. If f ∈ Sλ

p,n(η) (0 ≤ η < p), then

Re

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

 > η (|z| < R), (it26)

where

R =

{√
(p− λ)2 + n2α2 − λα

p− λ

} 1

n
.

The result is the best possible.

Proof. Since f ∈ Sλ
p,n(η), we write(

Ω
(λ,p)
z f(z)

)′
pzp−1

= η + (1− η)u(z) (z ∈ U). (27)
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Then, u is of the form (12) , analytic in U and has a positive real part in U. Making
use of (8) in (27) and differentiating the resulting equation with respect to z, we
have

1

1− η

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

− η

 = u(z) +
α

p− λ
zu′(z).

(28)
Applying the following well-known estimate [3] :

|zu′(z)|
Re {u(z)}

≤ 2nrn

1− r2n
(|z| = r < 1),

in (28), we get

1

1− η
Re

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

− η


> Re(u(z))

(
1− 2αnrn

(p− λ)[1− r2n]

)
. (29)

It is easily seen that the right-hand side of (29) is positive, if r < R, where R is
given by (26).

In order to show that the the bound R is the best possible, we consider the
function f ∈ An(p) defined by(

Ω
(λ,p)
z f(z)

)′
pzp−1

= η + (1− η)
1 + zn

1− zn
(0 ≤ η < 1; z ∈ U).

Noting that

1

1− η

(1− α)

(
Ω

(λ,p)
z f(z)

)′
pzp−1

+ α

(
Ω

(λ+1,p)
z f(z)

)′
pzp−1

− η


=

(p− λ)(1− z2n)− 2αnzn

(p− λ)(1− zn)2
= 0,

for z = R. exp{ iπ
n }. This completes the proof of Theorem 2.

Putting α = 1 in Theorem 2, we obtain the following result.

. If f ∈ Sλ
p,n(η) (0 ≤ η < p), then f ∈ Sλ+1

p,n (η) for |z| < R̃, where

R̃ =

{√
(p− λ)2 + n2 − λ

p− λ

} 1

n
.

The result is the best possible.
For a function f ∈ An(p) the generalized Bernardi-Libera-Livingston integeral

operator Fp,δ is defined by

Fp,δ(f)(z) =
δ + p

zp

z∫
0

tδ−1f(t)dt
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= (zp +
∞∑
k=1

δ + p

δ + p+ k
zp+k) ∗ f(z) (δ > −p)

= zp 2F1(1, δ + p; δ + p+ 1; z) ∗ f(z). (30)

. Let f ∈ Sλ
p,n(A,B) and let the function Fp,δ defined by (30). Then(

Ω
(λ,p)
z Fp,δf(z)

)′
pzp−1

≺ K(z) ≺ 1 +Az

1 +Bz
, (it31)

where the function K given by

K(z) =

{
A
B + (1− A

B )(1 +Bz)−1
2F1(1, 1;

δ+p
n + 1; Bz

1+Bz ) (B ̸= 0)

1 + δ+p
δ+p+nAz (B = 0),

(it32)

is the best dominant of (31). Furtheremore,

Re


(
Ω

(λ,p)
z Fp,δf(z)

)′
pzp−1

 > χ, (it33)

where

χ =

{
A
B + (1− A

B )(1−B)−1
2F1(1, 1;

δ+p
n + 1; B

B−1 ) (B ̸= 0)

1− δ+p
δ+p+nA (B = 0).

The result is the best possible.

Proof. From the identity (8) and (30) we have

z
(
Ω(λ,p)

z Fp,δf(z)
)′

= (p+ δ)Ω(λ,p)
z f(z)− δΩ(λ,p)

z Fp,δf(z). (34)

Let

ϕ(z) =
(Ω

(λ,p)
z Fδ,p(f)(z))

′

pzp−1
, (35)

then ϕ is of the form (12) and is analytic in U . Using the identity (34) in (35), and
differentiating the resulting equation with respect to z, we have

(Ω
(λ,p)
z f(z))′

pzp−1
= ϕ(z) +

zϕ′(z)

p+ δ
≺ 1 +Az

1 +Bz
.

Imploying the same technique that used in proving Theorem 1, the reminder part
of the theorem can be proved.

. We observe that

(Ω
(λ,p)
z Fδ,p(f)(z))

′

pzp−1
=

p+ δ

pzp+δ

∫ z

0

tδ(Ω(λ,p)
z f(z))′dt (f ∈ Ap(n)). (it36)

In view of (36), Theorem 3 for A = 1− 2η
p (0 ≤ η < p; p ∈ N) and B = −1 yields

. If δ > 0 and if f ∈ An(p) satisfies the following inequality:

Re

{
(Ω

(λ,p)
z f(z))′

pzp−1

}
> η (0 ≤ η < 1; p ∈ N ; z ∈ U),
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then

Re

{
p+ δ

pzp+δ

∫ z

0

tδ(Ω(λ,p)
z f(t))′dt

}
> η+(1−η)

[
2F1(1, 1;

δ + p

n
+ 1;

1

2
)− 1

]
(z ∈ U).

The result is the best possible.
. Let the function f defined by (1) be in the class An(p). Let also that g ∈ An(p)

satisfies the following inequality:

Re

{
Ω

(λ,p)
z g(z)

zp

}
> 0 (z ∈ U).

If ∣∣∣∣∣Ω(λ,p)
z f(z)

Ω
(λ,p)
z g(z)

− 1

∣∣∣∣∣ < 1 (z ∈ U),

then

Re


z
(
Ω

(λ,p)
z f(z)

)′
Ω

(λ,p)
z f(z)

 > 0 (|z| < R0),

where

R0 =

√
9n2 + 4p(p+ n)− 3n

2(p+ n)
. (37)

Proof. Let

φ(z) =
Ω

(λ,p)
z f(z)

Ω
(λ,p)
z g(z)

− 1 = enz
n + en+1z

n+1 + ... , (38)

we note that φ is analytic in U , with

φ(0) = 0 and |φ(z)| ≤ |z|n .

Then, by applying the familiar Schwarz lemma [6], we have

φ(z) = znΨ(z),

where, the function Ψ is analytic in U and |Ψ(z)| ≤ 1 (z ∈ U). Therefore, (3.20)
leads to

Ω(λ,p)
z f(z) = Ω(λ,p)

z g(z)(1 + znΨ(z)). (39)

Differentiating (39) logarithmically with respect to z, we obtain

z(Ω
(λ,p)
z f(z))′

Ω
(λ,p)
z f(z)

=
z(Ω

(λ,p)
z g(z))′

Ω
(λ,p)
z g(z)

+
zn {nΨ(z) + zΨ′(z)}

1 + znΨ(z)
. (40)

Letting χ(z) =
Ω(λ,p)

z g(z)
zp , we see that the function χ is of the form (12), analytic in

U , Reχ(z) > 0 and

z(Ω
(λ,p)
z g(z))′

Ω
(λ,p)
z g(z)

=
zχ′(z)

χ(z)
+ p.

So that , we find from (40) that

Re

{
z(Ω

(λ,p)
z f(z))′

Ω
(λ,p)
z f(z)

}
> p−

∣∣∣∣zχ′(z)

χ(z)

∣∣∣∣− ∣∣∣∣zn {nΨ(z) + zΨ′(z)}
1 + znΨ(z)

∣∣∣∣ . (41)
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Now, by using the following known estimates [12] ( see also [3]) :∣∣∣∣χ′(z)

χ(z)

∣∣∣∣ ≤ 2nrn−1

1− r2n
and

∣∣∣∣nΨ(z) + zΨ′(z)

1 + znΨ(z)

∣∣∣∣ ≤ n

1− rn
(|z| = r < 1),

in (41), we have

Re

{
z(Ω

(λ,p)
z f(z))′

Ω
(λ,p)
z f(z)

}
> p− 3nrn − (p+ n)r2n

1− r2n
(|z| = r < 1),

which is certainly positive, provided that r < R0, R0 given by (3.19).
. Let −1 ≤ Bi < Ai ≤ 1 (i = 1, 2). If each of the functions fi(z) ∈ An(p)

satisfies the following subordination condition:

(1− α)
Ω

(λ,p)
z fi(z)

zp
+ α

Ω
(λ+1,p)
z fi(z)

zp
≺ 1 +Aiz

1 +Biz
(i = 1, 2), (it42)

then

(1− α)
Ω

(λ,p)
z F (z)

zp
+ α

Ω
(λ+1,p)
z F (z)

zp
≺ 1 + (1− 2η)z

1− z
, (it43)

where

F (z) = Ω(λ,p)
z (f1 ∗ f2)(z) (it44)

and

η = 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− 1

2
2F1(1, 1;

p− λ

α
+ 1;

1

2
)

]
. (it45)

The result is the best possible when B1 = B2 = −1.

Proof. Suppose that the functions fi(z) ∈ An(p) (i = 1, 2) satisfy the condition
(42). Then by setting

pi(z) = (1− α)
Ω

(λ,p)
z fi(z)

zp
+ α

Ω
(λ+1,p)
z fi(z)

zp
(i = 1, 2), (46)

then, we have

pi(z) ∈ P (δi) (δi =
1−Ai

1−Bi
, i = 1, 2).

Thus, by making use of the identity (8) in (46), we get

Ω(λ,p)
z fi(z) =

p− λ

α
zp−

p−λ
α

∫ z

0

t
p−λ
α −1pi(t)dt (i = 1, 2), (47)

which, in view of the definition of F given by (44) and (46), yields

Ω(λ,p)
z F (z) =

p− λ

α
zp−

p−λ
α

∫ z

0

t
p−λ
α −1P (t)dt, (48)

where

P (z) = (1−α)Ω
(λ,p)
z F (z)

zp
+α

Ω
(λ+1,p)
z F (z)

zp

=
p− λ

α
z−

p−λ
α

∫ z

0

t
p−λ
α −1(p1 ∗ p2)(t)dt. (49)

Since pi(z) ∈ P (δi) (i = 1, 2), it follows from Lemma 3 that

(p1 ∗ p2)(z) ∈ P (δ3) (δ3 = 1− 2(1− δ1)(1− δ2)). (50)
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Now, by using (50) in (49) and then appealing to Lemma 2 and Lemma 3, we have

Re {P (z)} =
p− λ

α

∫ 1

0

u
p−λ
α −1Re {(p1 ∗ p2)(uz)} du

> p− λ

α

∫ 1

0

u
p−λ
α −1

(
2δ3 − 1 +

2(1− δ3)

1 + u |z|

)
du

>
p− λ

α

∫ 1

0

u
p−λ
α −1

(
2δ3 − 1 +

2(1− δ3)

1 + u

)
du

= 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− p−λ

α

∫ 1

0

u
p−λ
α −1(1 + u)−1du

]
= 1− 4(A1 −B1)(A2 −B2)

(1−B1)(1−B2)

[
1− 1

2
2F1(1, 1;

p−λ
α + 1;

1

2
)

]
= η.

When B1 = B2 = −1, we consider the functions fi(z) ∈ An(p) (i = 1, 2) which
satisfy the condition (42) of Theorem 5 and are defined by

Ω(λ,p)
z fi(z) =

p−λ
α z−

p−λ
α

∫ z

0

t
p−λ
α −1(

1 +Ait

1− t
)dt (i = 1, 2).

Thus it follows from (39) and Lemma 2 that

P (z) = p−λ
α

∫ 1

0

u
p−λ
α −1

[
1− (1 +A1)(1 +A2) +

(1 +A1)(1 +A2)

(1− uz)

]
du

= 1− (1 +A1)(1 +A2) + (1 +A1)(1 +A2)(1− z)−1
2F1(1, 1;

p−λ
α + 1;

z

z − 1
)

→ 1− (1 +A1)(1 +A2) +
1

2
(1 +A1)(1 +A2) 2F1(1, 1;

p−λ
α + 1;

1

2
) as z → −1,

which evidently completes the proof of Theorem 5.
Taking Ai = 1− 2ηi , Bi = −1 (i = 1, 2) and λ = 0 in Theorem 5, we obtain
. If the functions fi ∈ An(p) (i = 1, 2) satisfy the following inequality:

Re

{
(1− α)

fi(z)

zp
+ α

f ′i(z)

pzp−1

}
> ηi (0 ≤ ηi < 1; i = 1, 2),

then

Re

{
(1− α)

(f1 ∗ f2)(z)
zp

+ α
(f1 ∗ f2)′(z)

pzp−1

}
> η0 ,

where

η0 = 1− 4(1− η1)(1− η2)

[
1− 1

2
2F1(1, 1;

p

α
+ 1;

1

2
)

]
.

The result is the best possible.
. Let the function f ∈ An(p) and let g ∈ An(p) satisfies the following inequality:

Re

(
g(z)

zp

)
>

1

2
.

Then

(f ∗ g)(z) ∈ Sλ
p (A,B).
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Proof. We have(
Ω

(λ,p)
z (f ∗ g)(z)

)′
pzp−1

=

(
Ω

(λ,p)
z f(z)

)′
pzp−1

∗ zpg(z) (z ∈ U).

Since

Re

(
g(z)

zp

)
>

1

2
(z ∈ U),

and the function
1 +Az

1 +Bz

is convex (univalent) in U , it follows from (10) and Lemma 5 that (f ∗ g)(z) ∈
Sλ
p (A,B), which completes the proof of Theorem 6.
. Let p > λ, ν ∈ C∗ and let A,B ∈ C with A ̸= B and |B| ≤ 1.Suppose that∣∣∣∣ν(p− λ)(A−B)

B
− 1

∣∣∣∣ ≤ 1 or

∣∣∣∣ν(p− λ)(A−B)

B
+ 1

∣∣∣∣ ≤ 1 if B ̸= 0,

|ν| ≤ π

(p− λ)
, if B = 0.

If f ∈ An(p) with Ω
(λ,p)
z f(z) ̸= 0 for all z ∈ U∗ = U\{0}, then

Ω
(λ+1,p)
z f(z)

Ω
(λ,p)
z f(z)

≺ 1 +Az

1 +Bz
,

implies (
Ω

(λ,p)
z f(z)

zp

)ν

≺ q1,

where

q1 =

{
(1 +Bz)ν(p−λ)(A−B)/B , if B ̸= 0,
eν(p−λ)Az , if B = 0,

is the best dominant.

Proof. Let us put

ϕ(z) =

(
Ω

(λ,p)
z f(z)

zp

)ν

, (51)

where the power is the princiapal one.
Then ϕ is analytic in U , ϕ(0) = 1 and ϕ(z) ̸= 0 for all z ∈ U. Taking the logarithmic
derivatives in both sides of (51) and using the identity (8) we have

1 +
zϕ′(z)

ν(p− λ)ϕ(z)
=

Ω
(λ+1,p)
z f(z)

Ω
(λ,p)
z f(z)

≺ 1 +Az

1 +Bz
.

Now the assertions of Theorem 7 follows by using Lemma 4 with γ = ν(p−λ). This
completes the proof of Theorem 7.

Putting A = 1 − 2ρ, 0 ≤ ρ < 1 and B = −1, in Theorem 7, we obtain the
following result.

. Assume that p > λ and ν ∈ C∗ satisfies either
|2ν(p− λ)(1− ρ)− 1| ≤ 1 or |2ν(p− λ)(1− ρ) + 1| ≤ 1.
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If f ∈ An(p) with Ω
(λ,p)
z f(z) ̸= 0 for z ∈ U∗, then

Re

{
Ω

(λ+1,p)
z f(z)

Ω
(λ,p)
z f(z)

}
> ρ,

implies (
Ω

(λ,p)
z f(z)

zp

)ν

≺ q2 = (1− z)−2ν(p−λ)(1−ρ),

and q2 is the best dominant.
Putting A = 1− 2η

p (0 ≤ η < p), B = −1 and λ = 0 in Theorem 7, we have

. Assume that ν ∈ C∗ satisfies either |2ν(η − p)− 1| ≤ 1 or |2ν(η − p) + 1| ≤ 1.
If f ∈ An(p) with f(z) ̸= 0 for all z ∈ U∗, then

Re

{
zf ′(z)

f(z)

}
> η (0 ≤ η < p),

implies (
f(z)

zp

)ν

≺ q3 = (1− z)−2ν(η−p),

where q3 is the best dominant.
. Putting p = 1 in Corollary 8, we obtain the corresponding result obtained by

Obradović et al.[8, Theorem 1 with b = 1− η, 0 ≤ η < 1].
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