SOME SUBORDINATION RESULTS FOR P-VALENT FUNCTIONS ASSOCIATED WITH DIFFERINTEGRAL OPERATOR

A. O. MOSTAFA, M.K.AOUF

Abstract

Making use of the prenciple of differential subordination, we investigate some inclusion relationships of certain subclasses of p-valent analytic functions which are defined by certain differintegral operator.

1. Introduction

Let $A_{n}(p)$ denote the class of analytic and p-valent functions in the open unit $\operatorname{disc} U=\{z \in \mathbb{C}:|z|<1\}$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{k+p} z^{k+p}(p, n \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

For convenience, we write $A_{1}(p)=A(p)$. For analytic functions f, g in U, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function w, which is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if g is univalent in U, then we have the following equivalence, (cf., e.g.,[4], [5] see also [1]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

For functions $f_{i} \in A_{n}(p)(i=1,2)$ given by

$$
\begin{equation*}
f_{i}(z)=z^{p}+\sum_{k=n}^{\infty} a_{k+p, i} z^{k+p}(i=1,2 ; p, n \in \mathbb{N}) \tag{2}
\end{equation*}
$$

the Hadamard product (or convolution) of f_{1} and f_{2} is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{k=n}^{\infty} a_{k+p, 1} a_{k+p, 2} z^{k+p}=\left(f_{2} * f_{1}\right)(z) \tag{3}
\end{equation*}
$$

[^0]In this present investigation, we shall also make use of the Gaussian hypergeometric function ${ }_{2} F_{1}$ defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}\left(a, b, c \in \mathbb{C} ; c \notin \mathbb{Z}_{0}=\{0,-1,-2, \ldots\}\right), \tag{4}
\end{equation*}
$$

where $(d)_{k}$ denotes the Pochhammer symbol given in terms of the Gamma function Γ, by

$$
(d)_{k}=\frac{\Gamma(d+k)}{\Gamma(d)} \begin{cases}1 & \left(k=0 ; d \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \\ d(d+1) \ldots(d+k-1) & (k \in \mathbb{N} ; d \in \mathbb{C})\end{cases}
$$

We note that the series defined by (4) converges absolutely for $z \in U$ and hence ${ }_{2} F_{1}$ represents an analytic function in U [19, Ch.14]. With a view to introducing an extended fractional differintegral operator, we begin by recalling the following definitions of fractional calculus considered by Owa [9] (see also [10] and [17]). . The fractional integral of order $\lambda(\lambda>0)$ is defined, for a function f, analytic in a simply-connected region of the complex plane containing the origin by

$$
\begin{equation*}
D_{z}^{-\lambda} f(z)=\frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(t)}{(z-t)^{1-\lambda}} d t \tag{5}
\end{equation*}
$$

where the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$.
. Under the hypothesis of Definition 1, the fractional derivative of f of order λ $(\lambda \geqslant 0)$ is defined by

$$
D_{z}^{\lambda} f(z)=\left\{\begin{array}{l}
\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\lambda}} d t \quad(0 \leq \lambda<1) \tag{6}\\
\frac{d^{n}}{d z^{n}} D_{z}^{\lambda-n} f(z) \quad\left(n \leq \lambda<n+1 ; n \in N_{0}=N \cup\{0\}\right)
\end{array}\right.
$$

where the multiplicity of $(z-t)^{-\lambda}$ is removed as in Definition 1.
In [13] Patel and Mishra defined the extended fractional differintegral operator $\Omega_{z}^{(\lambda, p)}: A(p) \rightarrow A(p)$ for a function f of the form (1.1) (with $n=1$) and for a real number $\lambda(-\infty<\lambda<p+1)$ by:

$$
\begin{align*}
\Omega_{z}^{(\lambda, p)} f(z) & =z^{p}+\sum_{k=1}^{\infty} \frac{\Gamma(k+p+1) \Gamma(p+1-\lambda)}{\Gamma(p+1) \Gamma(k+p+1-\lambda)} a_{k+p} z^{k+p} \\
& =z^{p}{ }_{2} F_{1}(1, p+1 ; p+1-\lambda ; z) * f(z)(-\infty<\lambda<p+1 ; z \in U) . \tag{7}
\end{align*}
$$

It is easily seen from (7) that (see [13])

$$
\begin{equation*}
z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}=(p-\lambda) \Omega_{z}^{(\lambda+1, p)} f(z)+\lambda \Omega_{z}^{(\lambda, p)} f(z)(-\infty<\lambda<p ; z \in U) \tag{8}
\end{equation*}
$$

We also note that

$$
\Omega_{z}^{(0, p)} f(z)=f(z), \quad \Omega_{z}^{(1, p)} f(z)=\frac{z f^{\prime}(z)}{p}
$$

and (in general)

$$
\begin{equation*}
\Omega_{z}^{(\lambda, p)} f(z)=\frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} D_{z}^{\lambda} f(z)(-\infty<\lambda<p+1 ; z \in U) \tag{9}
\end{equation*}
$$

where $D_{z}^{\lambda} f(z)$ is, respectively, the fractional integral of f of order $-\lambda$ when $-\infty<$ $\lambda<0$ and the fractional derivative of f of order λ when $0 \leq \lambda<p+1$.

For integral values of λ, (9) becomes:

$$
\Omega_{z}^{(j, p)} f(z)=\frac{(p-j)!z^{j} f^{(j)}(z)}{p!}(j \in N ; j<p+1)
$$

and

$$
\begin{aligned}
\Omega_{z}^{(-m, p)} f(z) & =\frac{p+m}{z^{m}} \int_{0}^{z} t^{m-1} \Omega_{z}^{(-m+1, p)} f(t) d t(m \in N) \\
& =F_{1, p} \circ F_{2, p} \circ \ldots \circ F_{m, p}(f)(z) \\
& =F_{1, p}\left(\frac{z^{p}}{1-z}\right) * F_{2, p}\left(\frac{z^{p}}{1-z}\right) * \ldots * F_{m, p}\left(\frac{z^{p}}{1-z}\right) * f(z),
\end{aligned}
$$

where $F_{\mu, p}$ is the familiar integral operator defined by (3.12) (see Section 3) and 。 denotes the usual composition of functions.

The fractional differential operator $\Omega_{z}^{(\lambda, p)}$ with $0 \leq \lambda<1$ was investigated by Srivastava and Aouf [15]. More recently, Srivastava and Mishra [16] obtained several interesting properties and charactaristics for certain subclasses of p-valent analytic functions involving the differintegral operator $\Omega_{z}^{(\lambda, p)}$ when $-\infty<\lambda<1$. The operator $\Omega_{z}^{(\lambda, 1)}=\Omega_{z}^{\lambda}$ was introduced by Owa and Srivastava [10].

By using the extended fractional differintegral operator $\Omega_{z}^{(\lambda, p)}(-\infty<\lambda<p)$, we introduce the following subclass of functions in $A_{n}(p)$.
. For fixed parameters $A, B(-1 \leq B<A \leq 1)$, we say that a function $f \in A_{n}(p)$ is in the class $S_{p, n}^{\lambda}(A, B)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}} \prec \frac{1+A z}{1+B z}(z \in U ; p \in \mathbb{N}) . \tag{9}
\end{equation*}
$$

In view of the definition of subordination, (10) is equivalent to the following condition:

$$
\left|\frac{\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}-p}{B \frac{\left(\Omega_{z}^{\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}-p A}\right|<1(z \in U) .
$$

For convenience, we write $S_{p, n}^{\lambda}\left(1-\frac{2 \eta}{p},-1\right)=S_{p, n}^{\lambda}(\eta)(0 \leq \eta<p)$, where $S_{p, n}^{\lambda}(\eta)$ denotes the class of functions in $A_{n}(p)$ satisfying the inequality :

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{z^{p-1}}\right\}>\eta(0 \leq \eta<p ; p \in N ; z \in U) . \tag{10}
\end{equation*}
$$

Let us consider the first-order differential subordination

$$
H\left(\varphi(z), z \varphi^{\prime}(z)\right) \prec h(z) .
$$

Then, a univalent function q is called its dominant, if $\varphi(z) \prec q(z)$ for all analytic functions φ that satisfy this differential subordination. A dominant \widetilde{q} is called the best dominant, if $\widetilde{q}(z) \prec q(z)$ for all dominants q. For the general theory of the first-order differential subordination and its applications, we refer the reader to [1] and [5].
The object of the present paper is to obtain several inclusion relationships and other interesting properties of functions belonging to the subclass $S_{p, n}^{\lambda}(A, B)$ and $S_{p, n}^{\lambda}(\eta)$ by using the method of differential subordination.
with the initial conditions ([5]), where $a_{1}, a_{2}, b_{1}, b, c$ are positive constants.

2. Preliminaries

To prove our main results, we shall need the following lemmas. [2]. Let $h(z)$ be analytic and convex (univalent) function in U with $h(0)=1$. Also let the function ϕ given by

$$
\begin{equation*}
\phi(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\ldots \tag{11}
\end{equation*}
$$

be analytic in U. If

$$
\begin{equation*}
\phi(z)+\frac{z \phi^{\prime}(z)}{\delta} \prec h(z) \quad(\operatorname{Re}(\delta) \geqslant 0 ; \delta \neq 0) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
\phi(z) \prec \psi(z)=\frac{\delta}{n} z^{-\frac{\delta}{n}} \int_{0}^{z} t^{\frac{\delta}{n}-1} h(t) d t \prec h(z), \tag{13}
\end{equation*}
$$

and ψ is the best dominant of (13).
With a view to stating a well-known result (Lemma 2 below), we denote by $P(\delta)$ the class of functions Φ given by

$$
\begin{equation*}
\Phi(z)=1+c_{1} z+c_{1} z^{2}+\ldots \tag{14}
\end{equation*}
$$

which are analytic in U and satisfy the following inequality :

$$
\operatorname{Re}\{\Phi(z)\}>\delta \quad(0 \leq \delta<1)
$$

[11]. Let the function Φ, given by (15), be in the class $P(\delta)$. Then

$$
\operatorname{Re}\{\Phi(\delta)\} \geqslant 2 \delta-1+\frac{2(1-\delta)}{1+|z|} \quad(0 \leq \delta<1)
$$

[18]. For $0 \leq \delta_{1}, \delta_{2}<1$,

$$
P\left(\delta_{1}\right) * P\left(\delta_{2}\right) \subset P\left(\delta_{3}\right) \quad\left(\delta_{3}=1-2\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)\right)
$$

The result is the best possible.
[7]. Let ϕ be analytic in U with $\phi(0)=1$ and $\phi(z) \neq 0$ for $0<|z|<1$, and let $A, B \in \mathbb{C}$ with $A \neq B,|B| \leq 1$.
(i) Let $B \neq 0$ and $\gamma \in \mathbb{C}^{*}$ satisfy either $\left|\frac{\gamma(A-B)}{B}-1\right| \leq 1$ or
$\left|\frac{\gamma(A-B)}{B}+1\right| \leq 1$.
If ϕ satisfies

$$
1+\frac{z \phi^{\prime}(z)}{\gamma \phi(z)} \prec \frac{1+A z}{1+B z}
$$

then

$$
\phi(z) \prec(1+B z)^{\gamma\left(\frac{A-B}{B}\right)}
$$

and this is the best dominant.
(ii) Let $B=0$ and $\gamma \in \mathbb{C}^{*}$ be such that $|\gamma A|<\pi$, and if ϕ satisfies

$$
1+\frac{z \phi^{\prime}(z)}{\gamma \phi(z)} \prec 1+A z
$$

then

$$
\phi(z) \prec e^{\gamma A z}
$$

and this is the best dominant.
[14]. Let the function g be analytic in U, with

$$
g(0)=1 \text { and } \operatorname{Re}\{g(z)\}>\frac{1}{2}(z \in U)
$$

Then, for any function F analytic in $U,(g * F)(U)$ is contained in the convex hull of $F(U)$.
[20]. Let μ be a positive measure on the unit interval $[0,1]$. Let $g(z, t)$ be a complex valued function defined on $U \times[0,1]$ such that $g(., t)$ is analytic in U for each $t \in[0,1]$, and such that $g(z,$.$) is \mu$ integrable on $[0,1]$, for all $z \in U$.In addition, suppose that $\operatorname{Re}\{g(z, t)\}>0, g(-r, t)$ is real and

$$
\operatorname{Re}\left\{\frac{1}{g(z, t)}\right\} \geqslant \frac{1}{g(-r, t)} \quad(|z| \leq r<1 ; t \in[0,1])
$$

If the function $G(z)$ is defined by

$$
G(z)=\int_{0}^{1} g(z, t) d \mu(t)
$$

then

$$
\operatorname{Re}\left\{\frac{1}{G(z)}\right\} \geqslant \frac{1}{G(-r)} \quad(|z| \leq r<1)
$$

Each of the identities (asserted by Lemma 7 below) is fairly well known [19, Ch. 14] for the Gauss hypergeometric function ${ }_{2} F_{1}$ defined by (1.4).
[19]. For real or complex numbers a, b and $c(c \neq 0,-1,-2, \ldots)$,

$$
\begin{equation*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \quad(\operatorname{Re}(c)>\operatorname{Re}(b)>0) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)_{2}^{-a} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) . \tag{17}
\end{equation*}
$$

3. Main Results

Unless otherwise mentioned, we assume throughout this paper that: $\lambda<p ;-1 \leq$ $B<A \leq 1,0<\alpha \leq 1, z \in U$ and the powers are considered principal ones. . Let the function $f(z)$ given by (1) satisfy the following subordination condition:

$$
\begin{equation*}
(1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}} \prec \frac{1+A z}{1+B z} \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}} \prec Q(z) \prec \frac{1+A z}{1+B z} \tag{19}
\end{equation*}
$$

where the function Q given by

$$
Q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{n \alpha}+1 ; \frac{B z}{1+B z}\right) & (B \neq 0) \tag{20}\\ 1+\frac{p-\lambda}{n \alpha+p-\lambda} A z & (B=0),\end{cases}
$$

is the best dominant of (20). Furtheremore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\eta \tag{it22}
\end{equation*}
$$

where

$$
\eta=\left\{\begin{array}{lr}
\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{n \alpha}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \tag{21}\\
1-\frac{p-\lambda}{n \alpha+p-\lambda} A & (B=0)
\end{array}\right.
$$

The estimate in (22) is the best possible.
Proof. Let

$$
\begin{equation*}
\phi(z)=\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}} \tag{24}
\end{equation*}
$$

Then ϕ is of the form (12) and analytic in U. Applying the identity (8) in (24) and differentiating the resulting equation with respect to z, we get

$$
\begin{aligned}
& (1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}} \\
= & \phi(z)+\frac{\alpha z}{p-\lambda} \phi^{\prime}(z) \prec \frac{1+A z}{1+B z} \quad(z \in U) .
\end{aligned}
$$

Now, by using Lemma 1 for $\delta=\frac{p-\lambda}{\alpha}$ we deduce that

$$
\begin{aligned}
& \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}} \prec Q(z)=\frac{p-\lambda}{n \alpha} z^{-\frac{p-\lambda}{n \alpha}} \int_{0}^{z} t^{\frac{p-\lambda}{n \alpha}-1}\left(\frac{1+A t}{1+B t}\right) d t \\
= & \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{n \alpha}+1 ; \frac{B z}{1+B z}\right) & (B \neq 0) \\
1+\frac{p-\lambda}{n \alpha+p-\lambda} A z & (B=0),\end{cases}
\end{aligned}
$$

where we have made a change of variables followed by the use of the identities (16), (17) and (18) (with $a=1, b=\frac{p-\lambda}{n \alpha}$ and $c=b+1$). This proves the assertion (20) of Theorem 1.

Next, in order to prove the assertion (22) of Theorem 1, it sufficies to show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(Q(z))\}=Q(-1) \tag{25}
\end{equation*}
$$

Indeed, we have for, $|z| \leq r<1$,

$$
\operatorname{Re}\left\{\frac{1+A z}{1+B z}\right\} \geqslant \frac{1-A r}{1-B r}
$$

Setting $G(z, s)=\frac{1+A s z}{1+B s z}$ and $d \nu(s)=\frac{p-\lambda}{n \alpha} s^{\frac{p-\lambda}{n \alpha}-1} d s \quad(0 \leq s \leq 1)$, which is a positive measure on the closed interval $[0,1]$, we get

$$
Q(z)=\int_{0}^{1} G(z, s) d \nu(s)
$$

so that

$$
\operatorname{Re}\{Q(z)\} \geqslant \int_{0}^{1} \frac{1-A s r}{1-B s r} d \nu(s)=Q(-r) \quad(|z| \leq r<1)
$$

Letting $r \rightarrow 1^{-}$in the above inequality, we obtain the assertion (22). Finally, the estimate (22) is the best possible as the function $Q(z)$ is the best dominant of (20).

Taking $\alpha=1, A=1-\frac{2 \eta}{p}(0 \leq \eta<p)$ and $B=-1$ in Theorem 1 , we obtain the following corollary.

The following inclusion property holds true for the function class $S_{p, n}^{\lambda}(\eta)$:

$$
S_{p, n}^{\lambda+1}(\eta) \subset S_{p, n}^{\lambda}(\beta(p, n, \lambda, \eta)) \subset S_{p, n}^{\lambda}(\eta)
$$

where

$$
\beta(p, n, \lambda, \eta)=\eta+(p-\eta)\left\{{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{n}+1 ; \frac{1}{2}\right)\right\}
$$

The result is the best possible.
Taking $\alpha=1, \lambda=0, A=1-\frac{2 \eta}{p}(0 \leq \eta<p)$ and $B=-1$ in Theorem 1, we obtain
.Let the function $f(z)$ given by (1) satisfy the following inequality:

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{p^{2} z^{p-1}}\right\}>\eta(z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{p z^{p-1}}\right\}>\eta+(1-\eta)\left[{ }_{2} F_{1}\left(1,1 ; \frac{p}{n}+1 ; \frac{1}{2}\right)-1\right] .
$$

The result is the best possible.
Taking $\alpha=1$ in Theorem 1, we obtain
. The following inclusion property holds true for the function class $S_{p, n}^{\lambda}(A, B)$:

$$
S_{p, n}^{\lambda+1}(A, B) \subset S_{p, n}^{\lambda}\left(1-\frac{2 \rho}{p},-1\right) \subset S_{p, n}^{\lambda}(A, B)(0 \leq \rho<p)
$$

where

$$
\rho=\left\{\begin{array}{lr}
\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{n}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \\
1-\frac{p-\lambda}{n+p-\lambda} A & (B=0) .
\end{array}\right.
$$

The result is the best possible.
. If $f \in S_{p, n}^{\lambda}(\eta) \quad(0 \leq \eta<p)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\eta(|z|<R), \tag{it26}
\end{equation*}
$$

where

$$
R=\left\{\frac{\sqrt{(p-\lambda)^{2}+n^{2} \alpha^{2}}-\lambda \alpha}{p-\lambda}\right\}^{\frac{1}{n}}
$$

The result is the best possible.
Proof. Since $f \in S_{p, n}^{\lambda}(\eta)$, we write

$$
\begin{equation*}
\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}=\eta+(1-\eta) u(z) \quad(z \in U) \tag{27}
\end{equation*}
$$

Then, u is of the form (12), analytic in U and has a positive real part in U. Making use of (8) in (27) and differentiating the resulting equation with respect to z, we have

$$
\begin{equation*}
\frac{1}{1-\eta}\left\{(1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}}-\eta\right\}=u(z)+\frac{\alpha}{p-\lambda} z u^{\prime}(z) \tag{28}
\end{equation*}
$$

Applying the following well-known estimate [3] :

$$
\frac{\left|z u^{\prime}(z)\right|}{\operatorname{Re}\{u(z)\}} \leq \frac{2 n r^{n}}{1-r^{2 n}} \quad(|z|=r<1)
$$

in (28), we get

$$
\begin{gather*}
\frac{1}{1-\eta} \operatorname{Re}\left\{(1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}}-\eta\right\} \\
\geqslant \operatorname{Re}(u(z))\left(1-\frac{2 \alpha n r^{n}}{(p-\lambda)\left[1-r^{2 n}\right]}\right) \tag{29}
\end{gather*}
$$

It is easily seen that the right-hand side of (29) is positive, if $r<R$, where R is given by (26).

In order to show that the the bound R is the best possible, we consider the function $f \in A_{n}(p)$ defined by

$$
\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}=\eta+(1-\eta) \frac{1+z^{n}}{1-z^{n}} \quad(0 \leq \eta<1 ; z \in U)
$$

Noting that

$$
\begin{gathered}
\frac{1}{1-\eta}\left\{(1-\alpha) \frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}+\alpha \frac{\left(\Omega_{z}^{(\lambda+1, p)} f(z)\right)^{\prime}}{p z^{p-1}}-\eta\right\} \\
=\frac{(p-\lambda)\left(1-z^{2 n}\right)-2 \alpha n z^{n}}{(p-\lambda)\left(1-z^{n}\right)^{2}}=0
\end{gathered}
$$

for $z=R . \exp \left\{\frac{i \pi}{n}\right\}$. This completes the proof of Theorem 2 .
Putting $\alpha=1$ in Theorem 2, we obtain the following result.
. If $f \in S_{p, n}^{\lambda}(\eta)(0 \leq \eta<p)$, then $f \in S_{p, n}^{\lambda+1}(\eta)$ for $|z|<\widetilde{R}$, where

$$
\widetilde{R}=\left\{\frac{\sqrt{(p-\lambda)^{2}+n^{2}}-\lambda}{p-\lambda}\right\}^{\frac{1}{n}}
$$

The result is the best possible.
For a function $f \in A_{n}(p)$ the generalized Bernardi-Libera-Livingston integeral operator $F_{p, \delta}$ is defined by

$$
F_{p, \delta}(f)(z)=\frac{\delta+p}{z^{p}} \int_{0}^{z} t^{\delta-1} f(t) d t
$$

$$
\begin{gather*}
=\left(z^{p}+\sum_{k=1}^{\infty} \frac{\delta+p}{\delta+p+k} z^{p+k}\right) * f(z) \quad(\delta>-p) \\
=z^{p}{ }_{2} F_{1}(1, \delta+p ; \delta+p+1 ; z) * f(z) . \tag{30}
\end{gather*}
$$

. Let $f \in S_{p, n}^{\lambda}(A, B)$ and let the function $F_{p, \delta}$ defined by (30). Then

$$
\begin{equation*}
\frac{\left(\Omega_{z}^{(\lambda, p)} F_{p, \delta} f(z)\right)^{\prime}}{p z^{p-1}} \prec K(z) \prec \frac{1+A z}{1+B z} \tag{it31}
\end{equation*}
$$

where the function K given by

$$
K(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\delta+p}{n}+1 ; \frac{B z}{1+B z}\right) & (B \neq 0) \tag{it32}\\ 1+\frac{\delta+p}{\delta+p+n} A z & (B=0)\end{cases}
$$

is the best dominant of (31). Furtheremore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(\Omega_{z}^{(\lambda, p)} F_{p, \delta} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\chi \tag{it33}
\end{equation*}
$$

where

$$
\chi=\left\{\begin{array}{lr}
\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\delta+p}{n}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \\
1-\frac{\delta+p}{\delta+p+n} A & (B=0) .
\end{array}\right.
$$

The result is the best possible.
Proof. From the identity (8) and (30) we have

$$
\begin{equation*}
z\left(\Omega_{z}^{(\lambda, p)} F_{p, \delta} f(z)\right)^{\prime}=(p+\delta) \Omega_{z}^{(\lambda, p)} f(z)-\delta \Omega_{z}^{(\lambda, p)} F_{p, \delta} f(z) \tag{34}
\end{equation*}
$$

Let

$$
\begin{equation*}
\phi(z)=\frac{\left(\Omega_{z}^{(\lambda, p)} F_{\delta, p}(f)(z)\right)^{\prime}}{p z^{p-1}} \tag{35}
\end{equation*}
$$

then ϕ is of the form (12) and is analytic in U. Using the identity (34) in (35), and differentiating the resulting equation with respect to z, we have

$$
\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}=\phi(z)+\frac{z \phi^{\prime}(z)}{p+\delta} \prec \frac{1+A z}{1+B z}
$$

Imploying the same technique that used in proving Theorem 1, the reminder part of the theorem can be proved.

We observe that

$$
\begin{equation*}
\frac{\left(\Omega_{z}^{(\lambda, p)} F_{\delta, p}(f)(z)\right)^{\prime}}{p z^{p-1}}=\frac{p+\delta}{p z^{p+\delta}} \int_{0}^{z} t^{\delta}\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime} d t\left(f \in A_{p}(n)\right) \tag{it36}
\end{equation*}
$$

In view of (36), Theorem 3 for $A=1-\frac{2 \eta}{p}(0 \leq \eta<p ; p \in N)$ and $B=-1$ yields . If $\delta>0$ and if $f \in A_{n}(p)$ satisfies the following inequality:

$$
\operatorname{Re}\left\{\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}}\right\}>\eta(0 \leq \eta<1 ; p \in N ; z \in U)
$$

then
$\operatorname{Re}\left\{\frac{p+\delta}{p z^{p+\delta}} \int_{0}^{z} t^{\delta}\left(\Omega_{z}^{(\lambda, p)} f(t)\right)^{\prime} d t\right\}>\eta+(1-\eta)\left[{ }_{2} F_{1}\left(1,1 ; \frac{\delta+p}{n}+1 ; \frac{1}{2}\right)-1\right](z \in U)$. The result is the best possible.
. Let the function f defined by (1) be in the class $A_{n}(p)$. Let also that $g \in A_{n}(p)$ satisfies the following inequality:

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(\lambda, p)} g(z)}{z^{p}}\right\}>0(z \in U)
$$

If

$$
\left|\frac{\Omega_{z}^{(\lambda, p)} f(z)}{\Omega_{z}^{(\lambda, p)} g(z)}-1\right|<1 \quad(z \in U)
$$

then

$$
\operatorname{Re}\left\{\frac{z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} f(z)}\right\}>0 \quad\left(|z|<R_{0}\right)
$$

where

$$
\begin{equation*}
R_{0}=\frac{\sqrt{9 n^{2}+4 p(p+n)}-3 n}{2(p+n)} \tag{37}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\varphi(z)=\frac{\Omega_{z}^{(\lambda, p)} f(z)}{\Omega_{z}^{(\lambda, p)} g(z)}-1=e_{n} z^{n}+e_{n+1} z^{n+1}+\ldots, \tag{38}
\end{equation*}
$$

we note that φ is analytic in U, with

$$
\varphi(0)=0 \quad \text { and }|\varphi(z)| \leq|z|^{n}
$$

Then, by applying the familiar Schwarz lemma [6], we have

$$
\varphi(z)=z^{n} \Psi(z)
$$

where, the function Ψ is analytic in U and $|\Psi(z)| \leq 1 \quad(z \in U)$. Therefore, (3.20) leads to

$$
\begin{equation*}
\Omega_{z}^{(\lambda, p)} f(z)=\Omega_{z}^{(\lambda, p)} g(z)\left(1+z^{n} \Psi(z)\right) \tag{39}
\end{equation*}
$$

Differentiating (39) logarithmically with respect to z, we obtain

$$
\begin{equation*}
\frac{z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} f(z)}=\frac{z\left(\Omega_{z}^{(\lambda, p)} g(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} g(z)}+\frac{z^{n}\left\{n \Psi(z)+z \Psi^{\prime}(z)\right\}}{1+z^{n} \Psi(z)} \tag{40}
\end{equation*}
$$

Letting $\chi(z)=\frac{\Omega_{z}^{(\lambda, p)} g(z)}{z^{p}}$, we see that the function χ is of the form (12), analytic in $U, \operatorname{Re} \chi(z)>0$ and

$$
\frac{z\left(\Omega_{z}^{(\lambda, p)} g(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} g(z)}=\frac{z \chi^{\prime}(z)}{\chi(z)}+p
$$

So that, we find from (40) that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} f(z)}\right\} \geqslant p-\left|\frac{z \chi^{\prime}(z)}{\chi(z)}\right|-\left|\frac{z^{n}\left\{n \Psi(z)+z \Psi^{\prime}(z)\right\}}{1+z^{n} \Psi(z)}\right| . \tag{41}
\end{equation*}
$$

Now, by using the following known estimates [12] (see also [3]) :

$$
\left|\frac{\chi^{\prime}(z)}{\chi(z)}\right| \leq \frac{2 n r^{n-1}}{1-r^{2 n}} \quad \text { and }\left|\frac{n \Psi(z)+z \Psi^{\prime}(z)}{1+z^{n} \Psi(z)}\right| \leq \frac{n}{1-r^{n}} \quad(|z|=r<1)
$$

in (41), we have

$$
\operatorname{Re}\left\{\frac{z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{\Omega_{z}^{(\lambda, p)} f(z)}\right\} \geqslant \frac{p-3 n r^{n}-(p+n) r^{2 n}}{1-r^{2 n}}(|z|=r<1)
$$

which is certainly positive, provided that $r<R_{0}, R_{0}$ given by (3.19).
. Let $-1 \leq B_{i}<A_{i} \leq 1 \quad(i=1,2)$. If each of the functions $f_{i}(z) \in A_{n}(p)$ satisfies the following subordination condition:

$$
\begin{equation*}
(1-\alpha) \frac{\Omega_{z}^{(\lambda, p)} f_{i}(z)}{z^{p}}+\alpha \frac{\Omega_{z}^{(\lambda+1, p)} f_{i}(z)}{z^{p}} \prec \frac{1+A_{i} z}{1+B_{i} z} \quad(i=1,2), \tag{it42}
\end{equation*}
$$

then

$$
\begin{equation*}
(1-\alpha) \frac{\Omega_{z}^{(\lambda, p)} F(z)}{z^{p}}+\alpha \frac{\Omega_{z}^{(\lambda+1, p)} F(z)}{z^{p}} \prec \frac{1+(1-2 \eta) z}{1-z} \tag{it43}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=\Omega_{z}^{(\lambda, p)}\left(f_{1} * f_{2}\right)(z) \tag{it44}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{\alpha}+1 ; \frac{1}{2}\right)\right] \tag{it45}
\end{equation*}
$$

The result is the best possible when $B_{1}=B_{2}=-1$.
Proof. Suppose that the functions $f_{i}(z) \in A_{n}(p) \quad(i=1,2)$ satisfy the condition (42). Then by setting

$$
\begin{equation*}
p_{i}(z)=(1-\alpha) \frac{\Omega_{z}^{(\lambda, p)} f_{i}(z)}{z^{p}}+\alpha \frac{\Omega_{z}^{(\lambda+1, p)} f_{i}(z)}{z^{p}}(i=1,2), \tag{46}
\end{equation*}
$$

then, we have

$$
p_{i}(z) \in P\left(\delta_{i}\right) \quad\left(\delta_{i}=\frac{1-A_{i}}{1-B_{i}}, \quad i=1,2\right)
$$

Thus, by making use of the identity (8) in (46), we get

$$
\begin{equation*}
\Omega_{z}^{(\lambda, p)} f_{i}(z)=\frac{p-\lambda}{\alpha} z^{p-\frac{p-\lambda}{\alpha}} \int_{0}^{z} t^{\frac{p-\lambda}{\alpha}-1} p_{i}(t) d t \quad(i=1,2) \tag{47}
\end{equation*}
$$

which, in view of the definition of F given by (44) and (46), yields

$$
\begin{equation*}
\Omega_{z}^{(\lambda, p)} F(z)=\frac{p-\lambda}{\alpha} z^{p-\frac{p-\lambda}{\alpha}} \int_{0}^{z} t^{\frac{p-\lambda}{\alpha}-1} P(t) d t \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
P(z)= & (1-\alpha) \frac{\Omega_{z}^{(\lambda, p)} F(z)}{z^{p}}+\alpha \frac{\Omega_{z}^{(\lambda+1, p)} F(z)}{z^{p}} \\
& =\frac{p-\lambda}{\alpha} z^{-\frac{p-\lambda}{\alpha}} \int_{0}^{z} t^{\frac{p-\lambda}{\alpha}-1}\left(p_{1} * p_{2}\right)(t) d t . \tag{49}
\end{align*}
$$

Since $\quad p_{i}(z) \in P\left(\delta_{i}\right) \quad(i=1,2)$, it follows from Lemma 3 that

$$
\begin{equation*}
\left(p_{1} * p_{2}\right)(z) \in P\left(\delta_{3}\right) \quad\left(\delta_{3}=1-2\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)\right) \tag{50}
\end{equation*}
$$

Now, by using (50) in (49) and then appealing to Lemma 2 and Lemma 3, we have

$$
\begin{aligned}
& \operatorname{Re}\{P(z)\}=\frac{p-\lambda}{\alpha} \int_{0}^{1} u^{\frac{p-\lambda}{\alpha}-1} \operatorname{Re}\left\{\left(p_{1} * p_{2}\right)(u z)\right\} d u \\
& \geqslant \frac{p-\lambda}{\alpha} \int_{0}^{1} u^{\frac{p-\lambda}{\alpha}-1}\left(2 \delta_{3}-1+\frac{2\left(1-\delta_{3}\right)}{1+u|z|}\right) d u \\
& >\frac{p-\lambda}{\alpha} \int_{0}^{1} u^{\frac{p-\lambda}{\alpha}-1}\left(2 \delta_{3}-1+\frac{2\left(1-\delta_{3}\right)}{1+u}\right) d u \\
& =1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{p-\lambda}{\alpha} \int_{0}^{1} u^{\frac{p-\lambda}{\alpha}-1}(1+u)^{-1} d u\right] \\
& =1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{\alpha}+1 ; \frac{1}{2}\right)\right] \\
& \quad=\eta .
\end{aligned}
$$

When $B_{1}=B_{2}=-1$, we consider the functions $f_{i}(z) \in A_{n}(p)(i=1,2)$ which satisfy the condition (42) of Theorem 5 and are defined by

$$
\Omega_{z}^{(\lambda, p)} f_{i}(z)=\frac{p-\lambda}{\alpha} z^{-\frac{p-\lambda}{\alpha}} \int_{0}^{z} t^{\frac{p-\lambda}{\alpha}-1}\left(\frac{1+A_{i} t}{1-t}\right) d t(i=1,2)
$$

Thus it follows from (39) and Lemma 2 that

$$
\begin{aligned}
& P(z)=\frac{p-\lambda}{\alpha} \int_{0}^{1} u^{\frac{p-\lambda}{\alpha}}-1\left[1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{\left(1+A_{1}\right)\left(1+A_{2}\right)}{(1-u z)}\right] d u \\
= & 1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\left(1+A_{1}\right)\left(1+A_{2}\right)(1-z)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{\alpha}+1 ; \frac{z}{z-1}\right) \\
\rightarrow & 1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{1}{2}\left(1+A_{1}\right)\left(1+A_{2}\right){ }_{2} F_{1}\left(1,1 ; \frac{p-\lambda}{\alpha}+1 ; \frac{1}{2}\right) \text { as } z \rightarrow-1,
\end{aligned}
$$

which evidently completes the proof of Theorem 5.
Taking $A_{i}=1-2 \eta_{i}, B_{i}=-1(i=1,2)$ and $\lambda=0$ in Theorem 5 , we obtain . If the functions $f_{i} \in A_{n}(p)(i=1,2)$ satisfy the following inequality:

$$
\operatorname{Re}\left\{(1-\alpha) \frac{f_{i}(z)}{z^{p}}+\alpha \frac{f_{i}^{\prime}(z)}{p z^{p-1}}\right\}>\eta_{i}\left(0 \leq \eta_{i}<1 ; i=1,2\right),
$$

then

$$
\operatorname{Re}\left\{(1-\alpha) \frac{\left(f_{1} * f_{2}\right)(z)}{z^{p}}+\alpha \frac{\left(f_{1} * f_{2}\right)^{\prime}(z)}{p z^{p-1}}\right\}>\eta_{0}
$$

where

$$
\eta_{0}=1-4\left(1-\eta_{1}\right)\left(1-\eta_{2}\right)\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{p}{\alpha}+1 ; \frac{1}{2}\right)\right]
$$

The result is the best possible.
. Let the function $f \in A_{n}(p)$ and let $g \in A_{n}(p)$ satisfies the following inequality:

$$
R e\left(\frac{g(z)}{z^{p}}\right)>\frac{1}{2}
$$

Then

$$
(f * g)(z) \in S_{p}^{\lambda}(A, B)
$$

Proof. We have

$$
\frac{\left(\Omega_{z}^{(\lambda, p)}(f * g)(z)\right)^{\prime}}{p z^{p-1}}=\frac{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}}{p z^{p-1}} * z^{p} g(z) \quad(z \in U)
$$

Since

$$
\operatorname{Re}\left(\frac{g(z)}{z^{p}}\right)>\frac{1}{2} \quad(z \in U)
$$

and the function

$$
\frac{1+A z}{1+B z}
$$

is convex (univalent) in U, it follows from (10) and Lemma 5 that $(f * g)(z) \in$ $S_{p}^{\lambda}(A, B)$, which completes the proof of Theorem 6 .
. Let $p>\lambda, \nu \in C^{*}$ and let $A, B \in C$ with $A \neq B$ and $|B| \leq 1$. Suppose that

$$
\begin{gathered}
\left|\frac{\nu(p-\lambda)(A-B)}{B}-1\right| \leq 1 \text { or }\left|\frac{\nu(p-\lambda)(A-B)}{B}+1\right| \leq 1 \text { if } B \neq 0 \\
|\nu| \leq \frac{\pi}{(p-\lambda)}, \text { if } B=0
\end{gathered}
$$

If $f \in A_{n}(p)$ with $\Omega_{z}^{(\lambda, p)} f(z) \neq 0$ for all $z \in U^{*}=U \backslash\{0\}$, then

$$
\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)} \prec \frac{1+A z}{1+B z}
$$

implies

$$
\left(\frac{\Omega_{z}^{(\lambda, p)} f(z)}{z^{p}}\right)^{\nu} \prec q_{1}
$$

where

$$
q_{1}= \begin{cases}(1+B z)^{\nu(p-\lambda)(A-B) / B}, & \text { if } B \neq 0 \\ e^{\nu(p-\lambda) A z}, & \text { if } B=0\end{cases}
$$

is the best dominant.
Proof. Let us put

$$
\begin{equation*}
\phi(z)=\left(\frac{\Omega_{z}^{(\lambda, p)} f(z)}{z^{p}}\right)^{\nu} \tag{51}
\end{equation*}
$$

where the power is the princiapal one.
Then ϕ is analytic in $U, \phi(0)=1$ and $\phi(z) \neq 0$ for all $z \in U$. Taking the logarithmic derivatives in both sides of (51) and using the identity (8) we have

$$
1+\frac{z \phi^{\prime}(z)}{\nu(p-\lambda) \phi(z)}=\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)} \prec \frac{1+A z}{1+B z}
$$

Now the assertions of Theorem 7 follows by using Lemma 4 with $\gamma=\nu(p-\lambda)$. This completes the proof of Theorem 7.

Putting $A=1-2 \rho, 0 \leq \rho<1$ and $B=-1$, in Theorem 7, we obtain the following result.
. Assume that $p>\lambda$ and $\nu \in C^{*}$ satisfies either
$|2 \nu(p-\lambda)(1-\rho)-1| \leq 1$ or $|2 \nu(p-\lambda)(1-\rho)+1| \leq 1$.

If $f \in A_{n}(p)$ with $\Omega_{z}^{(\lambda, p)} f(z) \neq 0$ for $z \in U^{*}$, then

$$
\operatorname{Re}\left\{\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)}\right\}>\rho
$$

implies

$$
\left(\frac{\Omega_{z}^{(\lambda, p)} f(z)}{z^{p}}\right)^{\nu} \prec q_{2}=(1-z)^{-2 \nu(p-\lambda)(1-\rho)},
$$

and q_{2} is the best dominant.
Putting $A=1-\frac{2 \eta}{p}(0 \leq \eta<p), B=-1$ and $\lambda=0$ in Theorem 7 , we have
. Assume that $\nu \in C^{*}$ satisfies either $|2 \nu(\eta-p)-1| \leq 1$ or $|2 \nu(\eta-p)+1| \leq 1$.
If $f \in A_{n}(p)$ with $f(z) \neq 0$ for all $z \in U^{*}$, then

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\eta(0 \leq \eta<p)
$$

implies

$$
\left(\frac{f(z)}{z^{p}}\right)^{\nu} \prec q_{3}=(1-z)^{-2 \nu(\eta-p)}
$$

where q_{3} is the best dominant.
. Putting $p=1$ in Corollary 8, we obtain the corresponding result obtained by Obradović et al.[8, Theorem 1 with $b=1-\eta, 0 \leq \eta<1]$.

References

[1] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[2] D. Z. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52(1975), 191-195.
[3] T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963), 514-520.
[4] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), no. 2, 157-171.
[5] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[6] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[7] M. Obradović and S. Owa, On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), 357-364.
[8] M. Obradović, M. K. Aouf and S. Owa, On some results for starlike functions of complex order, Publ. Inst. Math. (Beograd)(N. S.),46(60) (1989), 79-85.
[9] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
[10] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
[11] D. Ž. Pashkouleva, The starlikeness and spiral-convexity of certain subclasses of analytic functions, in: H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992, 266-273.
[12] J. Patel, Radii of γ-spirallikeness of certain analytic functions, J. Math. Phys. Sci., 27 (1993), 321-334.
[13] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007), 109-122.
[14] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106 (1989), 145-152.
[15] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I, J. Math. Anal. Appl. 171 (1992) 1-13; II, J. Math. Anal. Appl. 192 (1995), 673-688.
[16] H. M. Srivastava and A. K. Mishra, A fractional differintergral operator and its applications to a nested class of multivalent functions with negative coefficients, Adv. Stud. Contemp. Math. 7 (2003), 203-214.
[17] H. M. Srivastava and S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley, New York, 1989.
[18] J. Stankiewicz and Z. Stankiewicz, Some applications of Hadamard convolution in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 40 (1986), 251-265.
[19] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principlal Transcendental Functions, Gourth Edition, Cambridge University Press, Cambridge, 1927.
[20] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc., (Ser. 2) 21 (1980), 287-290.
A. O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: adelaeg254@yahoo.com
M.K.Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Differential subordination, p-valent functions, differintegral operator. Submitted march 23, 2013 Revised July 4, 2013.

