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SOME SUBORDINATION RESULTS FOR P-VALENT
FUNCTIONS ASSOCIATED WITH DIFFERINTEGRAL
OPERATOR

A. O. MOSTAFA, M.K.AOUF

ABSTRACT. Making use of the prenciple of differential subordination, we in-
vestigate some inclusion relationships of certain subclasses of p-valent analytic
functions which are defined by certain differintegral operator.

1. INTRODUCTION

Let A, (p) denote the class of analytic and p-valent functions in the open unit
disc U = {z € C: |z| < 1} of the form:

F(2) =27+ appa™ P (pneN={1,2,..}), (1)

k=n

For convenience, we write 4;(p) = A(p). For analytic functions f,g in U, we say
that f is subordinate to g, written f(z) < g(z) if there exists a Schwarz function
w, which is analytic in U with w(0) = 0 and |w(z)] < 1 for all z € U, such
that f(z) = g(w(2)), z € U. Furthermore, if g is univalent in U, then we have the
following equivalence, (cf., e.g.,[4], [5] see also [1]):

f(2) < 9(2) & f(0) = g(0) and f(U) C g(U).
For functions f; € A,(p) (¢ = 1,2) given by

fi(z) = 2" + Z agypi2 P (i = 1,2;p,n € N), (2)
k=n
the Hadamard product (or convolution) of f; and fs is defined by

oo

(f1% f2)(2) = 2 + > aripianip22™™ = (f2+ fi)(2). (3)

k=n
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In this present investigation, we shall also make use of the Gaussian hypergeometric
function o F; defined by

ﬂﬂmm@:ZmE?;(b €Cicd Zo=1{0,-1,-2,..1), (4)
k=0

where (d)x denotes the Pochhammer symbol given in terms of the Gamma function
[, by

(@k:ru+k){1 (k = 0;d € C* = C\{0})

@ | dd+1)..(d+k—1) (keNdeC).

We note that the series defined by (4) converges absolutely for z € U and hence
oFy represents an analytic function in U [19 ,Ch.14]. With a view to introducing
an extended fractional differintegral operator, we begin by recalling the following
definitions of fractional calculus considered by Owa [9] ( see also [10] and [17] ).
The fractional integral of order \ (A > 0) is defined, for a function f, analytic in
a simply-connected region of the complex plane containing the origin by

1 z
DA = 55 || st )

where the multiplicity of (z — t) ™! is removed by requiring log(z — t) to be real
when (z —1t) > 0.

. Under the hypothesis of Definition 1, the fractional derivative of f of order A
(A > 0) is defined by

D f(z) = Fﬁ}l 5= Jo (zf(?)kdt < A<1) o
z dz”D)‘ nf() (n§A<n+1;neN0:NU{O}),

where the multiplicity of (z —t)™ is removed as in Definition 1.
In [13] Patel and Mishra defined the extended fractional differintegral operator

QM) A(p) = A(p) for a function f of the form (1.1) (with n = 1) and for a real
number A (—oo < A < p+1) by:
(ktp+D)D(p+1—N) .

Q\p) — P
27 E) +er+1 Tk +p+1— ) *te?

= ZPoFi(Lp+1Lip+1-Xz)xf(z) (-0 <A<p+LzelU). (7)
It is easily seen from (7) that (see [13])

2QNP f(2)) = (p— NP f(2) + AMUDP) f(2) (mo0o < A <p;z€U).  (8)
We also note that

00D f(2) = 1(2), 9 5(z) = LB,
and ( in general )
QM) f(z) = W”D?ﬂz) (oo <A<p+lzel), )

where D) f(z) is, respectively, the fractional integral of f of order —\ when —oo <
A < 0 and the fractional derivative of f of order A when 0 < A < p+ 1.
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For integral values of A, (9) becomes:
(p— ) f9(2)

QUP) f(2) = = (JeN;j<p+1),
and
OlmP f(z) = p:Tm / QU f(4)dt (m e N)

0

= FipoFy,o0...0F,,(f)(2)

2P zP 2P
= Fi, (12> * Fy (1 z) *..ox Fpy (1 z) x f(2),
(

where F), ,, is the familiar integral operator defined by (3.12)
denotes the usual composition of functions.

see Section 3) and o

The fractional differential operator Q(ZA’p ) with 0 < A < 1 was investigated
by Srivastava and Aouf [15]. More recently, Srivastava and Mishra [16] obtained
several interesting properties and charactaristics for certain subclasses of p-valent
analytic functions involving the differintegral operator QQ’p ) when —oo < A < 1.
The operator QMY = Q) was introduced by Owa and Srivastava [10].

By using the extended fractional differintegral operator QQ*” ) (—o0 < A < p),
we introduce the following subclass of functions in A, (p).

. For fixed parameters A, B(—1 < B < A < 1), we say that a function f € A,(p)
is in the class S;‘m(A, B) if it satisfies the following subordination condition:

QPP F(2)) 1+ Az
pzP~1 1+ Bz

In view of the definition of subordination, (10) is equivalent to the following con-
dition:

(z € U;peN). 9)

Q\p) /
@D

<1l(zel).
(X,p) 2))
B(szzpfg V' pA
For convenience, we write S;,‘yn(l - %’7, —-1) = S),.(n) (0 < n < p), where S, (n)
denotes the class of functions in A, (p) satisfying the inequality :
Q?’p) ’
Re{(zp_fl(z)) >n(0<n<ppeN;zeU). (10)

Let us consider the first-order differential subordination

H(p(2), 2¢'(2)) = h(2).
Then, a univalent function ¢ is called its dominant, if ¢(z) < ¢(z) for all analytic
functions ¢ that satisfy this differential subordination. A dominant ¢ is called the
best dominant, if §(z) < ¢(z) for all dominants ¢q. For the general theory of the
first-order differential subordination and its applications, we refer the reader to [1]
and [5].
The object of the present paper is to obtain several inclusion relationships and
other interesting properties of functions belonging to the subclass SI’)\W(A, B) and
S;‘,n(n) by using the method of differential subordination.
with the initial conditions ([5]), where a1, ag, by, b,c are positive constants.
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2. PRELIMINARIES

To prove our main results, we shall need the following lemmas. [2]. Let h(z) be
analytic and convex (univalent) function in U with h(0) = 1. Also let the function

¢ given by

#(z) =1+ cp2" +cpp12" ™+ . (11)
be analytic in U. If
62+ 220 ne) (Bed) > 0:6 20), (12
then :
6z) < U(z) = Dk /O £ (8)dE < h(2), (13)

and v is the best dominant of (13).
With a view to stating a well-known result ( Lemma 2 below), we denote by
P(9) the class of functions ¢ given by

P(2)=1+crz+c2°+ ... (14)
which are analytic in U and satisfy the following inequality :
Re{®(z)} >6 (0<d<1).
[11].Let the function ®, given by (15), be in the class P(d). Then
2(1 — )
1+ |z

Re{®(5)} > 20— 1+ 0<6<1).

[18]. For 0 <61,00, < 1,

P(61) x P(d2) C P(d3) (03 =1—2(1—81)(1 — d2)).
The result is the best possible.
(7] .Let ¢ be analytic in U with ¢(0) =1 and ¢(z) # 0 for 0 < |z| < 1,and let
A,BeC with A+ B,|B| <1.

(i) Let B # 0 and v € C* satisfy either ’@ — 1’ <1or

WD) )< 1.
If ¢ satisfies
z2¢'(z) 1+ Az

1+ =< ;
vo(2) 1+ Bz

then
A—B
d(z) < (1+ Bz)“’( 5 )

and this is the best dominant.
(i4) Let B =0 and v € C* be such that |yA| < m, and if ¢ satisfies

z¢/(2)
Yé(2)

1+ <14 Az ,

then
¢(z) < 742

and this is the best dominant.
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[14] . Let the function g be analytic in U, with
1
g9(0) =1 and Re{g(z)} > 3 (z € U).

Then, for any function F analytic in U, (g* F)(U) is contained in the convex hull
of F(U).

[20] . Let u be a positive measure on the unit interval [0,1]. Let g(z,t) be a com-
plez valued function defined on U x [0,1] such that g(.,t) is analytic in U for each
t € [0,1], and such that g(z,.) is p integrable on [0,1], for all z € U .In addition,
suppose that Re{g(z,t)} >0, g(—r,t) is real and

1 1
Re > z| <r<1;tel0,1]).
If the function G(z) is defined by

G(z) = / o )dp(t),

then

Re{Gzz)} > G(l—r) (lz| <r <1).

Each of the identities ( asserted by Lemma 7 below ) is fairly well known [19, Ch.
14 ] for the Gauss hypergeometric function o F; defined by (1.4).
[19]. For real or complex numbers a,b and ¢ (¢ #0,—1,—-2,...),

1
/ 71— )71 = t2)dt = O 5 Fy(a,b¢2) (Re(c) > Re(b) > 0);
0

(15)
oFi(a,b;c;2) = (1 —z);aFl(a,c—b;c;Ziil); (16)

and
oFy(a,b;¢; 2) =2 Fi(b, a;¢; 2). (17)

3. MAIN RESULTS

Unless otherwise mentioned, we assume throughout this paper that: A < p; —1 <
B<A<1,0<a<1,z€U and the powers are considered principal ones. . Let
the function f(z) given by (1) satisfy the following subordination condition:

/ li
(2975))  (95E) 1y s
(1-a) —— +a — =< : (18)
pzP=t pzpt 1+ Bz
then )
(207 1(2))
# 1+ Az
? < Q(z) < 11 B2 (19)
where the function @ given by
Oy =1 BHO-BA+BTLRMLLER + L) BAO) o
L+ nap—i-_pA—AAZ (B = 0)7
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is the best dominant of (20). Furtheremore,

/
Re M > (it22)
pzP~! ’
where
- { A4 —;)(1 —B) o R(1L, 1 ER 41, 285) (B#0) a1)
1= nap+p AA (B=0).
The estimate in (22) is the best possible.
Proof. Let
RG]
z) = T (24)

Then ¢ is of the form (12) and analytic in U. Applying the identity (8) in (24) and
differentiating the resulting equation with respect to z, we get

A r) (A1)
) o)

az 14+ Az
:¢(z)+p7>\¢(z)< T B> (z€U).

Now, by using Lemma 1 for § = % we deduce that

(1-0a)

(\.p) !
M Q) = P22 /Ztﬂ—l(l A
pzp_l N no 0 1—|—Bt

1+ 225 Az (B=0),

:{ G-+ B) T AL LER + L) (B£0)

where we have made a change of variables followed by the use of the identities
(16), (17) and (18) (witha=1,b= % and ¢ = b+ 1). This proves the assertion
(20) of Theorem 1.

Next, in order to prove the assertion (22) of Theorem 1, it sufficies to show that

int {Re(Q(2)} = Q-1 (25)
Indeed, we have for, |z| <r < 1,

Re{1+AZ}> 1— Ar

1+ Bz 1—- Br

1+ A4
Setting G(z,s) = 1:::7332
sz

positive measure on the closed interval [0, 1], we get

= /01 G(z,s)dv(s),

Re{QW) > [ {opmdn(s) =@(—r) (2] <r <.

0

and dv(s) = us no 1ds (0 < s < 1), which is a

so that
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Letting » — 1~ in the above inequality, we obtain the assertion (22). Finally, the
estimate (22) is the best possible as the function Q(z) is the best dominant of (20).
Takinga=1,A=1— 2?" (0 <n < p)and B = —1 in Theorem 1, we obtain the
following corollary.
. The following inclusion property holds true for the function class Szg\’n(n) :

Syt () € S, (B(p,n. A m)) € Sy, (1),

where
p—A 1

The result is the best possible.

Taking o = 1,A =0,A =1— 2?”(O <n < p) and B = —1 in Theorem 1, we
obtain

.Let the function f(z) given by (1) satisfy the following inequality:

Re { (]ng;g)Z)l)/} = (zel),
then e 1
z P |
fre {pzp—l } >0+ (L=l =+ 15) 1]

The result is the best possible.
Taking o = 1 in Theorem 1, we obtain
. The following inclusion property holds true for the function class S;,‘yn(A, B):

2p

A+1 A A

Son(A,B)C Sy, (1— ) ,—1)C S5, (A,B) (0<p<p),
where

-\
— A (B =0).

A= HA-B) TR0 LER 1) (B£0)
1
The result is the best possible.

f feSy,(m) (0<n<p), then

(Qg)"p)f(z))/ .. (QgA+1,p)f(Z))/

pzP~t pzP~t

Re< (1 —a) > (|z] < R), (it26)

where

1
R (p—A)?2+n2a? - A n
= = _

The result is the best possible.

Proof. Since f € Sy, (n), we write

(2 f())

pzP~t

n+ (1 —=nu(z) (z€U). (27)
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Then, u is of the form (12) , analytic in U and has a positive real part in U. Making
use of (8) in (27) and differentiating the resulting equation with respect to z, we
have

!/ !/
B e I S
e (1-a) T a p —np =u(z)+ P (2)
(28)
Applying the following well-known estimate [3] :
|zu/(2)] 2nr™
= 1
Re{u(z)} = 1—1r2n (o] =7 < 1),
in (28), we get
!/ li
| (205) (M p(2))
mRe (1-a) P + a T -7
> Re(u(2)) (1 - W) (29)
g (p—N[L=r>n])"

It is easily seen that the right-hand side of (29) is positive, if r < R, where R is
given by (26).

In order to show that the the bound R is the best possible, we consider the
function f € A, (p) defined by

(097 1(2)) _
T:n"‘(l_n)m (0<n<1l;zel).
Noting that
1 (QgA’p)f(Z))/ (QEAJrl,P) (Z))/
fﬁ (1-« par 1 +« T —n

(p—A)(1—2z*") — 2amz"
(p—A(A—2")? ’
for z = R. exp{%}. This completes the proof of Theorem 2.
Putting @ = 1 in Theorem 2, we obtain the following result.

JIf fe S;)n(n) (0<n<p), then f € S;})‘,';l(n) for |z| < E, where

1
E:{¢G—AP+M—A}n
p—A '

The result is the best possible.
For a function f € A, (p) the generalized Bernardi-Libera-Livingston integeral
operator F), 5 is defined by

1%Mﬂ@%:§tg/ﬁ“fmm

P
0
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N S+p
p Ptk —
(2 +Z§+p+k )xf(z) (> -p)
=2 o F1(L,0+p;d+p+1;2) x f(2). (30)
. Let fe S;‘,n(AB) and let the function F, s defined by (30). Then
(R NIE )) 1
+ Az
K it31
= < K(z) < 5 B2 (it31)
where the function K gz’ven by
A -1 L 0+p
K — B n 1+Bz t32
) { 1+ 5£;£nAZ (B=0), (i¢32)
is the best dominant of (31). Furtheremore,
(0, 5£()) |
Re T > X, (it33)
where
e & (-5 £V =B)" o F(L L+ 1 5P) (B #0)
1-s5mA (B =0).
The result is the best possible.
Proof. From the identity (8) and (30) we have
2 (PP F,51(2)) = (0 + ) f(2) — QPP 5£(2). (34)
Let )
_ (P Fs . (f)(2)
o) = =L (35)

then ¢ is of the form (12) and is analytic in U. Using the identity (34) in (35), and
differentiating the resulting equation with respect to z, we have

(Np) / /
(Q2 p{EZ)) ~o(2) 4+ z¢'(2) - 1+ Az ’
pz p+6 1+ Bz
Imploying the same technique that used in proving Theorem 1, the reminder part
of the theorem can be proved.
. We observe that

QM Fs5,()(2)  p+d
pzpfl B ple’(S

[ e@en ey e . o)
0

In view of (36), Theorem 3 for A =1— 2?" (0<n<p;pe N)and B = —1 yields
Af 5 >0 and if f € An(p) satisfies the following inequality:

e {(Q“’p)f( 2)

TS }>77(0§77<1;p€N;z€U),
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then

P+ %500 pip)) O+p 1

The result is the best possible.
. Let the function f defined by (1) be in the class A, (p). Let also that g € A, (p)
satisfies the following inequality:

(Ap)
Re{QZQ(Z)} >0 (z€U).

zp
If
QENP)
ﬁf(z) —1l<1 (2€0U),
O 9(2)
then ,
z (Qg’\’p)f(z))
Re T A0 e >0 (|Z| < Ry),
QP f(2)
where
Von2 +4p(p+n) — 3
VAT p(p +n) —3n (37)
2(p+n)
Proof. Let
Q£ (2) !
SO(Z) - N . 1 = enzn + €n lzn+ + LRI ) (38)
QM g(2) :

we note that ¢ is analytic in U, with

©(0)=0 and |p(z)| < |2|" .
Then, by applying the familiar Schwarz lemma [6], we have
p(z) = 2"¥(z),

where, the function ¥ is analytic in U and |¥(z)| <1 (z € U). Therefore, (3.20)
leads to

QP 1(z) = O0Pg(2) (1 + "W (2)). (39)
Differentiating (39) logarithmically with respect to z, we obtain
207 f@) 28 g(2)) 2 {n¥(z) + 2V (2))

= . 40
QgA’p)f(z) ngyp)g(z) + 14 270(2) (40)

2™ g(2)
zP

Letting x(z) = , we see that the function x is of the form (12), analytic in
U, Rex(z) >0 and

20Mg(2)) =X (2)
Qg)"p)g(z) -~ x(2) o

So that , we find from (40) that

(\p) /
2O
{ RETTR

2x'(2)

2" {n¥(z) + 20'(2)}
x(2) '

1+ 2n0(2)

(41)
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Now, by using the following known estimates [12] ( see also [3]) :

X' (2) 2nrn1 n¥(z) + 20/(2) n
d = 1
‘X(z) =1 M 14+270(z) |~ 1—rn (o] =r<1),
n (41), we have
QQ&P) / — 3nr" — 2
Red A - FR) | p=3nr” — (ptn)r (2| =r < 1),
QP £ (2) Loren

which is certainly positive, provided that r < Ry, Ry given by (3.19).
. Let =1 < B; < A; <1 (i = 1,2). If each of the functions f;(z) € A,(p)
satisfies the following subordination condition:

QM) g Q) g, 14+ A;
1), 9SG 1A

e 2P 1+ Bz (i=1,2), (it42)
then . .
P +1,p _
(1—-a) 2 ZPF(Z) Lotk - Fz) 1+ (11_ an)Z’ (t43)
where
F(2) = QMNP (fy 5 f2)(2) (it44)
and
_ 4(A1 — B1)(A2 — Bo) 1 p-x 1 .
et (1= B1)(1 - By) 5 2L +135)| - (it45)

The result is the best possible when By = By = —

Proof. Suppose that the functions f;(z) € A,(p) (i = 1,2) satisfy the condition
(42). Then by setting

(\p) ¢, (A 1,p) £
pi(z) = (1 — o) SE) | QTTTE) ) (46)

2P 2P

then, we have
1—A;
pi(z) € P3) (0= 15

Thus, by making use of the identity (8) in (46), we get

i=1,2).

ng\’p)fi(z) _ p— A p;)\ th;/\

“ipit)dt (i=1,2), (47)
0

which, in view of the definition of F' given by (44) and (46), yields

QAP P(2) = PZA o (t)dt, (48)
«a 0
where
(X.p) (A+1,p)
P(z):(l—a)Q A NP L
zP
-5= / t o p1 *pg)(t)dt (49)

Since pi(z) € P(6;) (i= 1, 2), it follows from Lemma 3 that
(p1#p2)(2) € P(d5) (65 =1—2(1—61)(1—d2)). (50)
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Now, by using (50) in (49) and then appealing to Lemma 2 and Lemma 3, we have

A Yo
Re{P(z)} = —= [ = “1Re {(p1 * p2)(uz)} du
— 1 p*k 1_
5 P uwa (205 —1+ u du

>p )\/ua _1<253—1—|—(63)>du
Q 0 1+

_q_ A= B4y - By) [ ——/ w o Y14u)” 1du}

(1—=B1)(1 - By)
L AA - B)(A—By) [, 1 1
=1 (1= B1)(1 = Bo) {1 22F1(1 LR 2)]

= ’r).
When By = By = —1, we consider the functions f;(z) € A,(p) (i = 1,2) which
satisfy the condition (42) of Theorem 5 and are defined by

X [7 p—A )
oo (o) = et [ ar = 1.2
0

1-t¢
Thus it follows from (39) and Lemma 2 that

P(z) = 222 /OlupaA o {1 1+ A1+ Az) + U +(ih_)(11w+> )],
=1-(1+A)(1+A2)+ (1+ A1+ A)(1—2) A1, 1 252 _1)

1 1

which evidently completes the proof of Theorem 5.
Taking A; =1—-2n;,B; =—1(i=1,2) and A =0 in Theorem 5, we obtain
. If the functions f; € A,(p) (i = 1,2) satisfy the following inequality:

Re{(l fa)f;(;) Jro‘]i{z(i)l} >n; (0<m <1yi=1,2),
then )
ref(1- B0 | U AIG)
2P pzP
where

1 P 1
=1—-4(1—- 1-— 1—=-sF (L, =+1;-)].
=14 =)= [1- 3 2R (L1 2 4 1)

The result is the best possible.
. Let the function f € A, (p) and let g € A, (p) satisfies the following inequality:

Re (gij)) > %

(f *9)(2) € S;(A, B).

Then
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Proof. We have

AP (o)) o) r)
Gt p(i_lg)( ) (o pzpf( ) -

Re(g(z)> >% (z € U),

Since

2P

and the function
14+ Az

1+ Bz
is convex (univalent) in U, it follows from (10) and Lemma 5 that (f x g)(z) €
S} (A, B), which completes the proof of Theorem 6.
.Let p> X\ veC* andlet A,B € C with A+# B and |B| < 1.Suppose that

u(p—A)(A—B)l‘Slor vp=NA=B) | 1ip 2o
B B
™
v|< ——, if B=0.
||’(p—/\)

If feA,(p) with Qg)"p)f(z) #0 for all z € U* = U\{0}, then

Qe (2) B 1+ Az
Q,(;"p)f(z) 1+ Bz’

(QQ’”f(z))" Y
- - 17

zP

implies

where
[ (14 Bz)¥@=NMA=B)/B - if B £,
M= evle-4: : if B=0,

is the best dominant.

Proof. Let us put

zP

(A\,p) v
o(z) = <w> , (51)

where the power is the princiapal one.
Then ¢ is analytic in U, ¢(0) = 1 and ¢(z) # 0 for all z € U. Taking the logarithmic
derivatives in both sides of (51) and using the identity (8) we have

(z) QPP pz) L lr4s
vip—=Ne(z)  aPfz) 1+ Bz

Now the assertions of Theorem 7 follows by using Lemma 4 with v = v(p—A). This
completes the proof of Theorem 7.

Putting A = 1—-2p, 0 < p < 1 and B = —1, in Theorem 7, we obtain the
following result.

. Assume that p > X and v € C* satisfies either

20(p— N (1—p) — 1| <1 or [2u(p— (1 —p) +1] < 1.

1+
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If fe A,(p) with Q(z)"p)f(z) # 0 for z € U*, then

QI f(2)
SASON B
implies
oM f(z Y
Zipf() L= (1= )" -NA=p)

and qo 1s the best dominant.
Putting A =1— 2?” (0<n<p),B=-1and A =0 in Theorem 7, we have
. Assume that v € C* satisfies either [2v(n —p) — 1| <1 or [2v(n—p) +1| < 1.

If fe A,(p) with f(z) #0 for all z € U*, then

Re{zﬁz)} >n(0<n<p),

(fg?)u < g3 = (1—2)7207P),

where qs is the best dominant.
Putting p = 1 in Corollary 8, we obtain the corresponding result obtained by
Obradovic et al.[8, Theorem 1 with b=1—-1n,0<n<1].

implies
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