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EXPLICIT REPRESENTATION OF GREEN’S FUNCTION FOR

LINEAR FRACTIONAL DIFFERENTIAL OPERATOR WITH

VARIABLE COEFFICIENTS

MYONG-HA KIM, HYONG-CHOL O

Abstract. We provide explicit representations of Green’s functions for gen-
eral linear fractional differential operators with variable coefficients and Riemann-

Liouvilles derivatives. We assume that all their coefficients are continuous
in [0,∞). Using the explicit representations for Greens function, we obtain
explicit representations for solution of inhomogeneous fractional differential
equation with variable coefficients of general type. Therefore the method of

Greens function, which was developed in previous research for solution of frac-
tional differential equation with constant coefficients, is extended to the case
of fractional differential equations with variable coefficients.

1. Introduction

It seems that the concept of fractional Greens functions for fractional differen-
tial operators have been introduced by S.I.Meshkov [6] for the first time in 1974
to represent the solutions of inhomogeneous fractional differential equation with
constant coefficients and single term. This concept is one that is extended from the
concept of Green’s function for ordinary differential operator with natural number
order given by M.A.Naimark [10] in1969 to fractional (real number) order.

After fractional Green’s function have been studied by S.I. Meshkov in 1974,
many authors have derived explicit representation for Green’s functions of linear
fractional differential operators with constant coefficients [2, 3, 8, 9, 11, 12]. With
the help of Green’s function and some special functions such as Mittag-Leffler func-
tion, in 1993 Miller and Ross in [7] obtained the explicit representations of solu-
tions of some classes of homogeneous linear fractional differential equations FDEs.
In 1994, I. Podlubny derived an explicit representation for Green’s function of an
arbitrary linear fractional differential operator with constant coefficients by using
Laplace transform in [11]. Hu Y. et al. [3] in 2008 provided a representation for-
mula of Green’s function for the above mentioned fractional differential operators
with constant coefficients by Adomian decomposition method to apply to represen-
tations of the non-homogeneous fractional differential equations. Morita and Sato
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in [8] gave a representation formula of Green’s functions for initial value problem of
fractional differential operators with constant coefficients by the Neumann series.
Bonilla and Junshong [1] provide an explicit representation for solution of system
fractional differential equations with constant matrix coefficients and single term.
X. Huang et al. [13] provided an explicit representation of Green’s function for
fractional differential operator with constant coefficients.

A. A. Kilbas et al. [4] presented a method of solving fractional differential
equations with variable coefficients in the neighborhood of ordinary point by power
series method.

From the summarizing above we can say that several authors provided explicit
representation formula of Green’s function for fractional differential operators with
constant coefficients but we couldnt find out the results on arbitrary linear fractional
differential operators with variable coefficients.

In this paper we derived an explicit representation formula of Green’s function
for arbitrary linear fractional differential operators with continuous coefficients and
Riemann-Liouville fractional derivatives and applied it to get solution represen-
tation of inhomogeneous fractional differential equation. Therefore the method of
Green’s function which was developed for solution of fractional differential equation
with constant coefficients in previous research is extended to the case of fractional
differential equations with variable coefficients.

2. Definitions and Preliminaries

Definition 2.1 [5] For a real number γ(0 ≤ γ ≤ 1) and n ∈ N , we define as
follows:

Cn
γ [a,∞) := {f : [a,∞) → R : (t− a)γf (n)(t) ∈ C[a,∞)},

Cγ [a,∞) := C0
γ [a, ∞).

Definition 2.2 [5] Let α > 0, f ∈ Cγ [a,∞). The Riemann-Liouville left-side
fractional integral Iαa+f of order α with original at the point a is defined by

Iαa+f =
1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−α
dτ , t > a, (1)

provided the integral exists. Here Γ(α) is the Gamma function, and Iαa+ is called
an integral operator of order α.

Definition 2.3 [5] Let n − 1 ≤ α ≤ n, n ∈ N and In−α
a+ f ∈ Cn

γ [a,∞). The
Rimann-Liouville fractional derivative Dα

a+f of order α with original at the point
a is defined by

Dα
a+f(t) = DnIn−α

a+ f(t) =

(
d

dt

)n
1

Γ(n− α)

∫ t

a

f(τ)

(t− τ)α−n+1
dτ , t > a (2)

and Dα
a+ is called the fractional differential operator of order α.

Definition 2.4 [5] For n ∈ N, we denote by ACn[a, b] the space of complex-
valued function f(x) which have continuous derivatives up to order n − 1 on [a, b]
and f (n−1)(x) is absolutely continuous, i.e. the function f(x) for which there exists
(almost everywhere) a function g(x) ∈ L1[a, b] such that

f (n−1)(x) = f (n−1)(0) +

∫ x

a

g(t)dt.
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In this case we call g(x) the (generalized) n-th derivative of f(x) on [a, b] and simply
write g = f (n). In particular we denote AC1[a, b] = AC[a, b]. Then we can write
as follows:

ACn[a, b] = {f : [a, b] → C : Dn−1f(t) ∈ AC[a, b], D =
d

dt
} (3)

Here C is the set of complex numbers.
Lemma 2.1 [5] The space ACn[a, b] consists of those and only those function

f(t) which be represented in the form

f(t) = (Ina+φ)(t) +
n−1∑
k=0

Ck(t− a)k , (4)

where φ ∈ L(a, b), Ck(k = 0, 1, · · · , n− 1) are arbitrary constants and

(Ina+φ)(t) =
1

(n− 1)!

∫ t

a

(t− τ)n−1φ(τ)dτ.

Lemma 2.2 [5] Let n ∈ N0 = 0, 1, · · · and γ ∈ R(0 ≤ γ ≤ 1). The space Cn
γ [a, b]

consists of those and only those functions f which are represented in the form

f(t) =
1

(n− 1)!

∫ t

a

(t− τ)n−1φ(τ)dτ +

n−1∑
k=1

Ck(t− a)k , (5)

where φ ∈ Cγ(a, b) and Ck(k = 0, 1, · · · , n− 1) are arbitrary constants.
Definition 2.5 [14][14] Let α > 0 , 1 ≤ p ≤ ∞. The space of functions Iαa+(Lp)

are defined by

Iαa+(Lp) := {f : f = Iαa+φ, φ ∈ Lp(a, b)}, Iαa+(L) := Iαa+(L1). (6)

Lemma 2.3 [5] Let α > 0, n = [α] + 1 and fn−α(t) := (In−α
a+ f)(t) be the

fractional integral of order n− α of f .
(a) If 1 ≤ p ≤ ∞ and f ∈ Iαa+(Lp), then the following equality holds:

(Iαa+D
α
a+f) = f(t). (7)

(b) If f ∈ L1(a, b) and fn−α ∈ ACn[a, b] then the the following equality holds
almost everywhere on [a, b].

Iαa+D
α
a+f(t) = f(t)−

n∑
j=1

f
(n−j)
n−α (a)

Γ(α− j + 1)
(t− a)α−j . (8)

For more detail statements of concepts and properties of fractional calculus, see
[5, 7, 11, 14].

3. Analytic Representation of Green’s Function

Let us consider the initial value problem (IVP) for fractional differential equa-
tions(FDE) given by

L(D0+)y(t) = h(t) , t > 0, (9)

Dα0−jy(0) = 0, j = 1, 2, · · · , n0. (10)

Here L(D0+) := Dα0
0+ +

∑m
h=1 ah(t)D

αk
0+; α0 > α1 > · · · > αm ≥ 0 ; ah ∈ C[0,∞)

and Dαh
0+, h = 0, 1, · · · ,m is the Riemann-Liouville left-sided fractional differential

operator with the original at t = 0; n0 − 1 < α0 ≤ n0, n0 ∈ N.
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Definition 3.1 The function G(t, τ) that satisfies the following conditions (i)
and (ii) is called Green’s function for fractional differential operator L(D0+) or IVP
(9) and (10):

(i) L(Dτ+)G(t, τ) = 0, t > τ, τ > 0, (11)

(ii) Dα0−j
τ+ G(t, τ)|t=τ = 0 =

{
1 j = 1
0 j ̸= 1

, j = 1, 2, · · · , n0, (12)

where Dα
τ+ is the Riemann-Liouville left-sided fractional differential operator with

original at t = τ and τ is the parameter.
To study Green’s function, now we consider IVP of FDE

L(D0+)y(t) = 0, t > 0, (13)

Dα0−j
0+ y(0) =

{
1 j = 1
0 j ̸= 1

, j = 1, 2, · · · , n0, (14)

and its corresponding integral equation

y(t) =
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+[ah(t)D

αh
0+y(t)], t > 0, (15)

where

Iα0
0+[ah(t)D

αh
0+y(t)] =

1

Γ(α0)

∫ t

0

ah(τ)D
αh
0+y(t)

(t− τ)1−α0
dτ, t > 0. (16)

Definition 3.2 For α > 0 we denote by Lα
loc(0,∞) the set of functions f(t)

which fractional derivative Dα
0+f is locally integrable in the interval (0,∞), that is,

Lα
loc(0,∞) := {f ∈ L(0, T ) : Dα

0+f ∈ L(0, T ), ∀T > 0}. (17)

We need following lemma.

Lemma 3.1 Let y(t) ∈ Lα0

loc(0,∞). y(t) satisfies the relations (13) and (14) a.
e. on (0,∞) if and only if satisfies the integral equation (15) a. e. on (0,∞).

Proof. First we prove the necessity. Let y(t) ∈ Lα0

loc(0,∞) satisfies the relations
(13) and (14) a. e. on (0,∞) . We rewrite (13) in the form

(Dα0
0+y)(t) = −

m∑
h=1

ah(t)(D
αh
0+y)(t), a.e.t ∈ (0,∞). (18)

Since y(t) ∈ Lα0

loc(0,∞), therefore Dα0
0+y(t) ∈ Lloc(0,∞), the relation (18) means

that −
∑m

h=1 ah(t)(D
αh
0+y)(t) ∈ Lloc(0,∞) a. e. on (0,∞). The relations (8) and

(14) give the following

Iα0
0+D

α0
0+y(t) = y(t)− tα0−1

Γ(α0)
. (19)

Applying the operator Iα0
0+ to both side of (18) and (14), we obtain the equation

(15), and hence the necessity is proved.
Now we will prove the sufficiency. Let y(t) ∈ Lα0

loc(0,∞) satisfies (15) a. e. on

(0,∞). For j = 1, 2, · · · , n0, applying the operator Dα0−1
0+ to both sides of (15), we

have

Dα0−j
0+ y(t) =

tj−1

Γ(j)
−

m∑
h=1

Ij0+[ah(t)D
αh
0+y(t)]. (20)
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Obviously we have

tj−1

Γ(j)

∣∣∣∣
t=0

=

{
1 j = 1
0 j ̸= 1

, j = 1, · · · , n0. (21)

Since ah(t)D
αh
0+y(t) ∈ Lloc(0,∞), we have

Ij0+[ah(t)D
αh
0+y(t)]|t=0 = 0. (22)

Using (21), (22) and (20), we obtain (14). It is clear that

Dα0
0+

tα0−1

Γ(α0)
= 0. (23)

Applying the operator Dα0
0+ to both sides of (15) and using (7) and (23), we obtain

the equation (13) and hence the sufficiency is proved.(QED)

Therefore we established the equivalence of IVP of FDE (13), (14) and integral
equation (15).

Now we find formal representation of solution of the integral equation (15) us-
ing the method of successive approximations. The successive approximations for
solution to the integral equation (15) is as follows:

y0(t) =
tα0−1

Γ(α0)
, yl+1(t) =

tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+[ah(t)D

αh
0+yl(t)], l = 0, 1, · · · (24)

y(t) = lim
l→∞

yl(y).

Since Dα0
0+y0(t) = Dα0

0+
tα0−1

Γ(α0)
= 0, it is clear that y0(t) ∈ Lα0

loc(0,∞). First approxi-

mate solution y1(t) is obtained by the following:

y1(t) =
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+[ah(t)D

αh
0+y0(t)] =

tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+

[
ah(t)

tα0−αh−1

Γ(α0 − αh)

]
.

(25)
From (25), it is clear that y1(t) ∈ Lα0

loc(0,∞). Second approximate solution y2(t) is
obtained by the following :

y2(t) =
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+[ah(t)D

αh
0+y1(t)]

=
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+

{
ah(t)D

αh
0+

[
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+

(
ah(t)

tα0−αh−1

Γ(α0 − αh)

)]}

=
tα0−1

Γ(α0)
−

m∑
h=1

Iα0
0+ah(t)

tα0−αh−1

Γ(α0 − αh)
+

m∑
h=1

Iα0
0+ah(t)D

αh
0+

m∑
h=1

Iα0
0+

[
ah(t)

tα0−αh−1

Γ(α0 − αh)

]

=
tα0−1

Γ(α0)
+

1∑
k=0

(−1)k+1Iα0
0+

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (26)

Here
[∑m

h=1 ah(t)I
α0−αh
0+

]k
denotes k times composition of operator

∑m
h=1 ah(t)I

α0−αh
0+

and when k = 0, it is unit operator.
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Considering ah(t) ∈ C[0,∞), tα0−αh−1

Γ(α0−αh)
∈ Lloc(0,∞) and (26) we have

Dα0
0+y2(t) =

1∑
k=0

(−1)k+1

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
∈ Lloc(0,∞),

y2(t) ∈ Lα0

loc(0,∞). (27)

Calculating by the induction, we obtain

yl+1(t) =
tα0−1

Γ(α0)
+

l∑
k=0

(−1)k+1Iα0
0+

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
,

yl+1(t) ∈ Lα0

loc(0,∞), l = 0, 1, · · · . (28)

Formally taking limit as l → +∞ in the both side of (28), the following series is
obtained:

y(t) =
tα0−1

Γ(α0)
+

∞∑
k=0

(−1)k+1Iα0
0+

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (29)

Theorem 3.1 If ah(t) ∈ C[0,∞), h = 1, · · · ,m, then IVP of FDE (13) and (14)
has a unique solution y(t) in the space Lα0

loc(0,∞) and this solution is represented
in the form of (29).

Proof. Appling operator Dα0
0+ to every term of right side of the series (29), we

obtain the following series:

∞∑
k=0

(−1)k+1

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (30)

Now let us prove that this series converge in space L(0, T ) for arbitrary fixed
T > 0. Let Ah = max0≤t≤T |ah(t)|, h = 1, · · · ,m . Using multinomial-expanding
and semi-group properties of fractional integral for (30), we can derive the following
estimate:

∞∑
k=0

∫ T

0

∣∣∣∣∣∣
[

m∑
h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)

∣∣∣∣∣∣ dt ≤
≤

∞∑
k=0

∫ T

0

[
m∑

h=1

|ah(t)|Iα0−αh
0+

]k m∑
h=1

|ah(t)|
tα0−αh−1

Γ(α0 − αh)
dt

≤
∞∑
k=0

∫ T

0

[
m∑

h=1

AhI
α0−αh
0+

]k m∑
h=1

Ah
tα0−αh−1

Γ(α0 − αh)
dt =

=
∞∑
k=1

∫ T

0

∑
|β|=k

k !

β1! · · ·βm!
Aβ1

1 · · ·Aβm
m

t(α0−α1)β1+···+(α0−αm)βm−1

Γ((α0 − α1)β1 + · · ·+ (α0 − αm)βm)
dt

≤
∞∑
k=1

∑
|β|=k

k !

β1! · · ·βm!
Aβ1

1 · · ·Aβm
m

T (α0−α1)β1+···+(α0−αm)βm

Γ((α0 − α1)β1 + · · ·+ (α0 − αm)βm + 1)
+ 1
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=
∞∑
k=0

∑
|β|=k

k !

β1! · · ·βm!
Aβ1

1 · · ·Aβm
m

T (α0−α1)β1+···+(α0−αm)βm

Γ((α0 − α1)β1 + · · ·+ (α0 − αm)βm + 1)

= E(α0−α1,··· ,α0−αm),1(A1T
α0−α1 , · · · , AmTα0−αm). (31)

Here β = (β1, · · · , βm) ∈ Zm
+ , |β| = β1+· · ·+βm and E(α0−α1,··· ,α0−αm),1(A1T

α0−α1 ,

· · · , AmTα0−αm) is the value at z1 = A1T
α0−α1 , · · · , zm = AmTα0−αm of the so

- called multivariate Mittag-Leffler function E(α0−α1,··· ,α0−αm),1(z1, · · · , zm) (see
(1.9.27) in [5]). By the method of upper-series test, series (30) converges in the
space L(0, T ).

Let denote sum of this series by F (t), that is,

F (t) :=

∞∑
k=0

(−1)k+1

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (32)

Then y(t) of (29) can be rewritten as follows

y(t) =
tα0−1

Γ(α0)
+ Iα0

0+F (t). (33)

Since Dα0
0+y(t) = F (t) ∈ L(0, T ) for any T > 0, we have y(t) ∈ Lα0

loc(0,∞).

Applying the operator Dα0−j
0+ to both sides of (33) for j = 1, 2, · · · , n0, we have

Dα0−j
0+ y(t) =

tj−1

Γ(j)
+ Ij0+F (t). (34)

Since F (t) ∈ Lloc(0,∞) , we have

Ij0+F (t)|t=0 = 0, j = 1, · · · , n0. (35)

By (21), (35) and (34), the relation (14) is obtained.
Next we will prove that y(t) of (33) (or (29)) is satisfied equation (13). From

(32), we have

Dα0
0+y(t) = F (t) =

∞∑
k=0

(−1)k+1

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (36)

From (33), for x = 1, · · · ,m, we have

Dαx
0+y(t) =

tα0−αx−1

Γ(α0 − αx)
+ Iα0−αx

0+ F (t) =

=
tα0−αx−1

Γ(α0 − αx)
+

∞∑
k=0

(−1)k+1Iα0−αx
0+

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)

and hence we have∑
m
x=1ax(t)D

αx
0+y(t) =

=
m∑

x=1

ax(t)
tα0−αx−1

Γ(α0 − αx)
+

∞∑
k=0

(−1)k+1

[
m∑

h=1

ah(t)I
α0−αh
0+

]k+1 m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)

=
m∑

x=1

ax(t)
tα0−αx−1

Γ(α0 − αx)
+

∞∑
k=1

(−1)k

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
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=
∞∑
k=0

(−1)k

[
m∑

h=1

ah(t)I
α0−αh
0+

]k m∑
h=1

ah(t)
tα0−αh−1

Γ(α0 − αh)
. (37)

From (36) and (37), we obtain = Dα0
0+y(t) +

∑m
x=1 ax(t)D

αx
0+y(t) = 0. Thus y(t) of

of (33) (or (29)) satisfies the equation (13).
By corollary 3.6 of [5], we obtain the uniqueness result for the IVP (13) and (14).

This completes the proof of Theorem 3.1. (QED)

Corollary 3.1 Let ah(t) = Ah = const, h = 1, · · · ,m. Then the unique solution
y(t) ∈ Lα0

loc(0,∞) of the IVP (13) and (14) is represented by

y(t) =
∞∑
k=0

(−1)k
∑
|β|=k

k ! Aβ1

1 · · ·Aβm
m · t(α0−α1)β1+···+(α0−αm)βm+α0−1

β1! · · ·βm! Γ[(α0 − α1)β1 + · · ·+ (α0 − αm)βm + α0]
. (38)

Proof. Let ah(t) = Ah = const, h = 1, · · · ,m in the solution representation (29)
of IVP (13) and (14) and use the semi-group properties of fractional integral and
multi-term’s expanding. Then the discussion similar with the derivation of (31)
gives (38).(QED)

Remark 3.1 The representation y(t) of (38) is coincided with multivariate
Mittag-Leffler function E(α0−α1,··· ,α0−αm),α0

(−A1t
α0−α1 ,· · · ,−Amtα0−αm) (See (1.9.27)

of [5]). Note that multivariate Mittag-Leffler function was introduced originally by
Y. Luchko.

Remark 3.2 Although the solutions (29) and (38) of IVP (13) and (14) are
series expression but give an algorithm for calculation of the solution directly.

Corollary 3.2 Let ah(t) = Ah = const, h = 1, · · · ,m. Then the unique solution
y(t) ∈ Lα0

loc(0,∞) of the IVP (13) and (14) is represented by Mittag-Leffler function
of two parameters as follows:

y(t) =
∞∑
l=0

(−1)l

l!

∑
β2+···+βm=l

l!
∏m

i=2 A
βi

i

β2! · · ·βm!
· t(α0−α1)l+α0+

∑m
j=2(α1−αj)βj−1·

·E(l)
α0−α1,α0+

∑m
j=2(α1−αj)βj−1(−A1t

α0−α1). (39)

Here

E
(l)
α,β(z) :=

∞∑
i=0

(i+ l)!

i!

zi

Γ(αi+ αl + β)
.

Proof. Let β2+ · · ·+βm = l for multi-index β = (β1, β2, · · · , βm) in (38). Then
k = |β| = β1 + l, and therefore we rewrite (38) as the form

∞∑
k=0

(−1)k
∑
|β|=k

k !

β1! · · ·βm!
· · · =

∞∑
l=0

∞∑
β1=0

(−1)l+β1

l!

∑
β2+···+βm=l

l! (β1 + l)!

β2! · · ·βm!β1!
· · ·

and consider

(α0−α1)β1+· · ·+(α0−αm)βm+α0 = (α0−α1)β1+(α0−α1)l+α0+

m∑
j=2

(α1−αj)βj ,
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then we can easily obtain (39).(QED)

Remark 3.3 In [8, 11, 12] y(t) represented by (38) or (39) is called Green’s
function of IVP (9) and (10) in the case with constant coefficients.

Theorem 3.2. If ah(t) ∈ C[0,∞), h = 1, · · · ,m, then there exists unique
Green’s function G(t, τ) of the fractional differential operator L(D0+) (solution of
IVP (11) and (12) in the space Lα0

loc(τ,∞) and it is represented as follows:

G(t,τ) =
(t− τ)α0−1

Γ(α0)
+

+
∞∑
k=0

(−1)k+1Iα0
τ+

[
m∑

h=1

ah(t)I
α0−αh
τ+

]k m∑
h=1

ah(t)
(t− τ)α0−αh−1

Γ(α0 − αh)
, t > τ > 0. (40)

In particular, if ah(t) = Ah = const, h = 1, · · · ,m, then we have

G(t, τ) =
∞∑
k=0

(−1)k
∑
|β|=k

k ! Aβ1

1 · · ·Aβm
m · (t− τ)(α0−α1)β1+···+(α0−αm)βm+α0−1

β1! · · ·βm! Γ[(α0 − α1)β1 + · · ·+ (α0 − αm)βm + α0]
.

Proof. The proof of theorem 3.2 is similar to that of theorem 3.1.

Using Green’s functions, we can obtain representation of solutions to inhomoge-
neous IVP. The following theorem holds.

Theorem 3.3 If ah(t) ∈ C[0,∞), h = 1, · · · ,m, then there exists unique solu-
tion y(t) ∈ Iα0

0+(L) (when a = 0, b = T, ∀T > 0; see definition 2.5) of the IVP of
FDE (9) and (10) and the solution is represented in the following form:

y(t) =

∫ t

0

G(t, τ)h(τ)dτ =

=

∫ t

0

{
(t− τ)α0−1

Γ(α0)
+

+
∞∑
k=0

(−1)k+1Iα0
τ+

[
m∑

h=1

ah(t)I
α0−αh
τ+

]k m∑
h=1

ah(t)
(t− τ)α0−αh−1

Γ(α0 − αh)

h(τ)dτ. (41)

Here G(t, τ) was given in (40).
Proof. Using the definition of fractional integral and Fubini’s theorem, we can

prove the equality (41). Then similarly with theorem 3.1, if we substitute (41) to
the IVP (9) and (10), then we can prove that y(t) is the solution of (9) and (10).
(QED)

4. Examples

First let consider the Green’s function of the fractional differential operator

L(D0+) = D1.5
0+ + tD0.5

0+ . (42)
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In this case α0 = 1.5, α1 = 0.5, n0 = 2, a1(t) = t. By (40), its Green function is as
follows:

G(t, τ) =
(t− τ)0.5

Γ(1.5)
+

∞∑
k=0

(−1)k+1I1.5τ+

[
tI1τ+

]k
t , t > τ > 0 . (43)

If we substitute (42) and (43) into (11) and (12), then we can know that the G(t, τ)
is the Green function of (42). Now we calculate some terms of (43). In the term

I1.5τ+t = 1
Γ(1.5)

∫ t

τ
(t − ξ)0.5ξdξ of the series when k = 0, using change of variable

t = ξ+ s(t− τ), the interval of integral [τ, t] is changed into [0, 1] and by the simple
calculation we have

I1.5τ+t =
1

1.5Γ(1.5)
t(t− τ)1.5 − 1

2.5Γ(2.5)
t(t− τ)2.5.

In the second term, tI1τ+t = t
∫ t

τ
ξdξ = t3/2− tτ2/2 and thus we have

I1.5τ+tI1τ+t =
1

Γ(1.5)

∫ t

τ

(t− ξ)0.5(ξ3/2− ξτ2/2)dξ.

This integral is easily calculated using the similar method as the above. Thus we
have the series representation of Green’s function:

G(t, τ) =
(t− τ)0.5

Γ(1.5)
+

t(t− τ)1.5

1.5Γ(1.5)
− t(t− τ)2.5

2.5Γ(2.5)
+ · · · , t > τ > 0 .

Now using the formula (41), let solve the following IVP:

D1.5
0+y(t) + t2D0.5

0+y(t) + t3y(t) =
t−0.8

Γ(0.2)
, (44)

(D1.5−k
0+ y)(0+) = 0, k = 1, 2. (45)

By theorem 3.3, this problem has unique solution y ∈ I1.5(L). In this case α0 =
1.5, α1 = 0.5, α2 = 0, n0 = 2, m = 2, a1(t) = t2, a2(t) = t3 and h(t) =
t−0.8/Γ(0.2) ∈ Lloc(0,∞). Therefore using (41), we have

y(t) =

∫ t

0

{
(t− τ)0.5

Γ(1.5)
+

+
∞∑
k=0

(−1)k+1I1.5τ+

[
t2I1τ+ + t3I1.5τ+

]k (
t2
(t− τ)0

Γ(1)
+ t3

(t− τ)0.5

Γ(1.5)

)}
h(τ)dτ.

If we calculate it using the similar way as the above, we have the following series
representation of the IVP (44) and (45):

y(t) =
t0.7

Γ(1.7)
−

[
Γ(3.2)

Γ(1.2)

t3.7

Γ(4.7)
+

Γ(4.7)

Γ(1.7)

t5.2

Γ(6.2)

]
+

[
Γ(3.2)

Γ(1.2)

Γ(6.2)

Γ(4.2)

t6.7

Γ(7.7)

+

(
Γ(3.2)

Γ(1.2)

Γ(7.7)

Γ(4.7)
+

Γ(4.7)

Γ(1.7)

Γ(7.7)

Γ(5.7)

)
t8.2

Γ(9.2)
+

Γ(4.7)

Γ(1.7)

Γ(9.2)

Γ(6.2)

t9.7

Γ(10.7)

]
− · · · .

5. Conclusions

In this paper we presented an explicit representation formula for the Green’s
function of the general linear fractional differential operator with continuous vari-
able coefficients, in the meaning of Riemann-Liouville and showed that this result is
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consistent with previous results in the case with constant coefficients. The represen-
tation formula of the Greens function for linear fractional differential operator with
continuous variable coefficients will be used as a powerful tool to solve the Caputo
fractional differential equations as well as Riemann-Liouville fractional equations.

Acknowledgement: Authors would like to thank the editor-in-chief A. M. A.
El-Sayed and anonymous reviewers’ help and advice.
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