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AN APPROXIMATE SOLUTION TO SOME CLASSES OF

FRACTIONAL NONLINEAR PARTIAL DIFFERENTIAL -

DIFFERENCE EQUATION USING ADOMIAN DECOMPOSITION

METHOD

T. BAKKYARAJ, R. SAHADEVAN

Abstract. It is shown how the Adomian decomposition method (ADM) ap-

plicable for nonlinear differential equations to derive their both exact and
approximate solutions can be extended to fractional nonlinear partial differ-
ential - difference equations with two independent variables. The effectiveness
of the ADM is illustrated through time fractional discrete Korteweg-de Vries,

time fractional discrete modified Korteweg - de Vries and time fractional Toda
lattice equations.

1. Introduction

The study of fractional differential equations has drawn much attention both
from the mathematical and physical point of view by researchers in nonlinear phe-
nomena in recent years. The primary reason for interest is that the exact description
of most of the phenomena in fluid mechanics, viscoelasticity, biology, physics, en-
gineering and other areas of science have been governed by nonlinear equations
involving fractional order derivatives [1–5]. Also in reality a physical phenomenon
may depend not only the time instant but also the previous time history, which can
be successfully modeled by using the theory of derivatives and integrals of fractional
order [1–4]. It is well known that nonlinear differential equations are not exactly
solvable in general and thus deriving their explicit solutions are of fundamental
importance. In the context of nonlinear evolution equations exhibiting solitons the
derivation of traveling wave or multisolitons solutions are useful. Several analytical
methods have been devised to derive exact solution of nonlinear partial differential
equations in general and soliton possessing equations in particular [6, 23–25]. How-
ever the study of fractional differential equations has been handicapped due to the
absence of well defined analytic techniques to deal with them. Recently we have
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shown that how Lie transformation group theory provides an useful tool to analyze
time fractional nonlinear partial differential equations [7].

Recently Adomian [8–10] has introduced the ADM to derive both exact and
approximate solutions for deterministic and stochastic, linear and nonlinear prob-
lems. The notable advantage of ADM is that it is algorithmic and does not need
linearization, weak nonlinearity assumptions, discretization or perturbation tech-
nique [8–12]. In the case of approximate solution it provides very fast convergence
to the actual solution. The application of ADM has been demonstrated to a va-
riety of problems arising from science and engineering for all types of boundary
and initial conditions governed by nonlinear equations involving both integer and
fractional derivatives [12–16]. We would like to mention that several authors have
made comparisons with other numerical methods and found that the approximate
solution obtained through ADM is in very good agreement with their exact solution
[17–20].

However the application of ADM to nonlinear discrete systems governed partial
differential - difference equations (PD∆Es) to derive their exact solutions have not
been illustrated widely [21, 22]. To the best of our knowledge, no attempt has
been made to extend the ADM to nonlinear discrete systems governed by time
fractional nonlinear PD∆Es. The main objective of this article is to illustrate the
effectiveness of ADM for nonlinear PD∆Es and explain how it can be extended to
time fractional nonlinear PD∆Es with two independent variables and derive their
approximate solutions.

The plan of the article is as follows. In section 2, to be self contained we con-
sider discrete Korteweg-de Vries (∆KdV) and discrete modified Korteweg-de Vries
(∆mKdV) equations and show how ADM provides an effective tool to derive both
rational and one-soliton solutions. The accuracy of the derived approximate solu-
tion through ADM has also been examined. In section 3, first we introduce certain
basic definitions and properties of the fractional operators which are required for
establishing our results and then explain how ADM can be extended to time frac-
tional PD∆Es with initial conditions. In section 4, we illustrate the effectiveness
of the ADM to time fractional ∆KdV equation, time fractional ∆mKdV equation
and time fractional Toda lattice equation and derive their approximate solutions.
In Section 5, we give a brief summary of our results and concluding remarks.

2. ADM : ∆KdV and ∆mKdV

In this section we illustrate the effectiveness of the ADM to derive exact (in-
cluding rational) one-soliton solutions through ∆KdV and ∆mKdV equations. For
clarity we consider them separately.

2.1. ADM : Discrete Korteweg-de Vries Equation. It is known that the gov-
erning equation of ∆KdV is

∂un

∂t
= un(un+1 − un−1), un = u(n, t), n ∈ Z, (1)

which can be rewritten as

Ltun = F (un, un+1)−G(un, un−1), (2)
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where Lt = ∂
∂t , F (un, un+1) = unun+1, G(un, un−1) = unun−1. It is assumed

that the inverse operator L−1
t is an integral operator given by

L−1
t (.) =

t∫
0

(.) ds. (3)

In the ADM, one looks for solution u(n, t) of the given PD∆E expressed as an
infinite series of the form

u(n, t) =

∞∑
k=0

Uk(n, t), (4)

with U0(n, t) = u(n, 0) and note that the component Uk does not stand for the kth

lattice and it means kth element in the decomposition series. Applying the inverse
operator L−1

t on both sides of (2), we obtain

u(n, t) = u(n, 0) + L−1
t [F (un, un+1)−G(un, un−1)]. (5)

In order to apply the ADM to (1), it is necessary to write the nonlinear terms
F (un, un+1), G(un, un−1) as an infinite series of Adomian polynomials, that is

F (un, un+1) =
∞∑
k=0

Ak, (6)

G(un, un−1) =
∞∑
k=0

Bk. (7)

The explicit expressions for Ak and Bk can be determined from the following for-
mulae [9, 10]

Ak =
1

k!

[
dk

dλk
F

( ∞∑
m=0

Um(n, t)λm,
∞∑

m=0

Um(n+ 1, t)λm

)]
λ=0

, (8)

Bk =
1

k!

[
dk

dλk
G

( ∞∑
m=0

Um(n, t)λm,
∞∑

m=0

Um(n− 1, t)λm

)]
λ=0

. (9)

Substituting (4) along with (6) and (7) into the functional equation (5) yields

∞∑
k=0

Uk(n, t) = u(n, 0) + L−1
t

[ ∞∑
k=0

(Ak −Bk)

]
. (10)

(10) yields the components of the decomposition series (4) as follows

U0(n, t) = u(n, 0), (11)

Uk+1(n, t) = L−1
t [Ak −Bk], k ≥ 0. (12)

and solving them give explicit form of Uk’s. Now when k = 0 in (12), U1(n, t) reads

U1(n, t) = L−1
t [A0 −B0],

which can be written as

U1(n, t) =

t∫
0

Un,0(Un+1,0 − Un−1,0) ds,

U1(n, t) = Un,0 (Un+1,0 − Un−1,0) t, (13)
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here Un,0 = U0(n, t), Un+1,1 = U1(n + 1, t), Un−1,1 = U1(n − 1, t), etc. Now the
second element in the decomposition series is

U2(n, t) = L−1
t [A1 −B1].

Making use of equation (13) in the expressions A1 and B1, we write

A1 = Un,0Un+1,0[Un+1,0 − Un−1,0 + Un+2,0 − Un,0]t, (14)

B1 = Un,0Un−1,0[Un+1,0 − Un−1,0 + Un,0 − Un−2,0]t. (15)

and so

A1 −B1 = Un,0

[
(Un+1,0 − Un−1,0)

2 − Un,0(Un−1,0 + Un+1,0) + Un+1,0Un+2,0 + Un−2,0Un−1,0

]
t.

Hence

U2(n, t) = Un,0

{
t∫
0

(Un+1,0 − Un−1,0)
2s ds−

t∫
0

Un,0(Un+1,0 + Un−1,0)s ds

+
t∫
0

(Un+1,0Un+2,0 + Un−2,0Un−1,0)s ds

}
,

U2(n, t) = Un,0

[
(Un+1,0 − Un−1,0)

2 − Un,0(Un+1,0 + Un−1,0)
+(Un+1,0Un+2,0 + Un−1,0Un−2,0)] t

2/2.

In a similar manner we compute U3(n, t), U4(n, t), . . . and so the infinite series (4)
becomes

u(n, t) = Un,0 + Un,0[Un+1,0 − Un−1,0]t+ Un,0

[
(Un+1,0 − Un−1,0)

2 − Un,0(Un+1,0 + Un−1,0)
+(Un+1,0Un+2,0 + Un−2,0Un−1,0)] t

2/2 + · · · ,
= Un,0

{
1 + [Un+1,0 − Un−1,0]t+ [(Un+1,0 − Un−1,0)

2 − Un,0(Un+1,0 + Un−1,0)
+(Un+1,0Un+2,0 + Un−2,0Un−1,0)] t

2/2 + · · ·
}

We below explain how to construct rational and one-soliton solutions separately.

2.1.1. Rational solution. We look for rational solution u(n, t) of equation (1) satis-
fying the initial condition

u(n, 0) = Un,0 =
a1n

2 + a2n+ a3
b1n2 + b2n+ b3

, (16)

where a1, a2, a3, b1, b2 and b3 are constants. Following the procedure outlined
above, we computed the components Uk, k ≥ 1 of the infinite series (4) and it leads
to a closed form solution as

u(n, t) =
(n+ 2t+ 1)(n+ 2t− 2)

(n+ 2t)(n+ 2t− 1)
, (17)

provided that the parameters satisfy
a1 = 1, a2 = −1, a3 = −2, b1 = 1, b2 = −1, b3 = 0. We would like to mention
that more rational solutions with appropriate initial conditions can be constructed
through ADM. For example a rational solution of (1)

u(n, t) =
n+ a

1− 2t
, (18)

where a is arbitrary constant can be constructed with u(n, 0) = n+ a.
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2.1.2. One Soliton solution. Next we look for a specific one soliton solution u(n, t) of
equation (1) satisfying the initial condition

u(n, 0) = Un,0 =
a1 + a2e

κn + a3e
2κn

b1 + b2eκn + b3e2κn
, (19)

where κ, a1, a2, a3, b1, b2 and b3 are constants. We then computed the elements
of decomposition series (4) by solving (12) consistently. In this case, the infinite
series (4) leads to a closed form solution as

u(n, t) =
a1(1 + eκ(n+t+1))(1 + eκ(n+t−2))

(1 + eκ(n+t))(1 + eκ(n+t−1))
, (20)

provided that the parameters satisfy

a1 =
κ

eκ − e−κ
, a2 = a1(e

κ + e−2κ), a3 = a1e
−κ,

b1 = 1, b2 = 1 + e−κ, b3 = e−κ.

We would like to mention that two and N-soliton solutions can also be constructed
through ADM by appropriately choosing the initial conditions. It is appropriate to
mention that the decomposition series (4) not always leads to closed form solution.
Therefore it is worthwhile to consider the approximate solution, that is truncated
series (4) up to finite term. In order to verify numerically whether or not the
approximate solution obtained through ADM leads to high accuracy we consider
the solution (4) up to fifth term

uappr(n, t) =
4∑

k=0

Uk(n, t) (21)

with initial condition (20) at t = 0 and observed that it is good agreement with the
exact solution (20) of ∆KdV (See tables 1 & 2 or figures 1a & 1b).

Comparison of approximate soliton solution (21) and one soliton solution (20)

Figure 1a: Approximate soliton solu-
tion u(n, t) of the ∆KdV with k = 0.1

Figure 1b: Exact one soliton solution
u(n, t) of the ∆KdV with k = 0.1
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n Approximate solution Exact solution
-25 0.4998688443 0.4998688444
-15 0.5006591678 0.5006591681
-5 0.5015172737 0.5015172740
0 0.5016671173 0.5016671174
5 0.5015172736 0.5015172740
15 0.5006591678 0.5006591677
25 0.4998688448 0.4998688444

Table 1. k = 0.1 and t = 0.5

n Approximate solution Exact solution
-25 0.4999303607 0.4999303608
-15 0.5007545186 0.5007545186
-5 0.5015698010 0.5015698032
0 0.5016608828 0.5016608829
5 0.5014551275 0.5014551251
15 0.5005653699 0.5005653701
25 0.4998113855 0.4998113855

Table 2. k = 0.1 and time t = 1.5

2.2. ADM : Discrete Modified Korteweg-de Vries Equation. Here we below
provide a brief computational details of deriving rational and one soliton solution
of ∆mKdV governed by

∂un

∂t
= (1 + u2

n)(un+1 − un−1), n ∈ Z, (22)

which can be rewritten as

Ltun = un+1 − un−1 + F (un, un+1)−G(un, un−1), (23)

where Lt = ∂
∂t , F (un, un+1) = u2

nun+1, G(un, un−1) = u2
nun−1. Applying the

inverse operator L−1
t on both sides of (23) , we get

u(n, t) = u(n, 0) + L−1
t (un+1 − un−1) + L−1

t (F (un, un+1)−G(un, un−1)). (24)

The nonlinear terms F (un, un+1), G(un, un−1) can be expressed in terms of Ado-
mian polynomials Ak’s and Bk’s as given in (6) and (7). Using decomposition series
(4) along with (6) and (7) in (24), we obtain the following recursive relation

U0(n, t) = u(n, 0),

Uk+1(n, t) = L−1
t (Uk(n+ 1, t)− Uk(n− 1, t)) + L−1

t [Ak −Bk], k ≥ 0.

Following the procedure outlined in the previous subsection with initial conditions
u(n, 0) = i

n and u(n, 0) = sech(n) we find that the associated infinite series (4)
results a rational and one soliton solution of (22) respectively as

u(n, t) =
i

(n+ 2t)
, (25)

u(n, t) = sech(n+ 2t). (26)

Thus it is clear that ADM provides an effective tool to derive both exact and
approximate solutions to nonlinear PD∆Es.
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3. ADM : Time Fractional Nonlinear PD∆Es

Before embarking into the details of ADM to time fractional nonlinear PD∆E, we
would like to recall certain basic definitions and properties of fractional operators
which are required for the remaining part of the article.

Definition 3.1. The Riemann-Liouville fractional integral operator of order α > 0
of the function, h ∈ L1([a, b],R+) denoted by Iαa+ , is defined by [1–3]

Iαa+h(t) =
1

Γ(α)

t∫
a

(t− s)α−1h(s) ds, t > a, (27)

I0a+h(t) = h(t),

where Γ is the gamma function.

Definition 3.2. The Caputo fractional differential operator of order α > 0 of the
function h ∈ L1([a, b],R+) , denoted by Dα

a+ , is defined by [1–3]

Dα
a+h(t) =

1

Γ(n− α)

t∫
a

(t− s)n−α−1 dnh(s)

dsn
ds, t > a, (28)

D0
a+h(t) = h(t),

where n = [α]+1, the function h(t) has absolutely continuous derivatives upto order
(n− 1).

For simplicity we denote the operators Dα
0+h(t) and Iα0+h(t) respectively as

Dαh(t) and Iαh(t). Note that the above mentioned operators satisfy the following
properties for the suitable functions f(t) and g(t)

Iα(f(t) + g(t)) = Iαf(t) + Iαg(t), (29)

Iα(Dαf(t)) = f(t)−
n−1∑
r=0

f (r)(0)

r!
tr, n− 1 < α ≤ n, (30)

Dα(Iαf(t)) = f(t). (31)

Obviously, the inverse operator for the Caputo fractional differential operator Dα

is the Riemann-Liouville fractional integral operator Iα which is defined in (27).
Let us consider a time fractional nonlinear PD∆E with two independent variables

and with prescribed initial conditions given by

Lα
t un +R(un−1, un, un+1, ...) +N(un−1, un, un+1, ...) = sn, (32)

where un = u(n, t), un−1 = u(n − 1, t), un+1 = u(n + 1, t), n ∈ Z, Lα
t =

Dα = ∂α

∂tα is the Caputo fractional differential operator of order α > 0. Here
R(un−1, un, un+1, ...) refers the remaining part of the linear operator which may
contain differential operator of order less than α while N(un−1, un, un+1, ...) is the
nonlinear term and sn is the source term. Applying the operator Iα to both sides
of (32) and using the property (30) along with the given initial conditions we get

u(n, t) =
n−1∑
r=0

u
(r)
n (0)

r!
tr−Iα[R(un−1, un, un+1, ...)+N(un−1, un, un+1, ...)]+Iα(sn).

(33)



44 T. BAKKYARAJ, R. SAHADEVAN JFCA-2014/5(1)

Let us assume that the nonlinear term N(un−1, un, un+1, ...) be analytic and so it
can be written as an infinite series of polynomials

N(un−1, un, un+1, ...) =

∞∑
k=0

Ck, (34)

where Ck are Adomian polynomials defined by the formula [9, 10]

Ck =
1

k!

[
dk

dλk
N

( ∞∑
m=0

Um(n, t)λm,

∞∑
m=0

Um(n+ 1, t)λm,

∞∑
m=0

Um(n− 1, t)λm, ...

)]
λ=0

.

Substituting (4) along with (34) in (33), we get the required components of the
decomposition series (4) as follows

U0(n, t) =

n−1∑
r=0

u
(r)
n (0)

r!
tr + Iα(sn),

Uk+1(n, t) = −Iα[R(Uk(n− 1, t), Uk(n, t), Uk(n+ 1, t), ...) + Ck], k ≥ 0,

and solving them consistently give Uk’s. Thus the series solution determined en-
tirely. It is important to mention here that the obtained series may not lead to
closed form solution always. However, for concrete problems, the m-term approxi-

mant ϕm solution defined by ϕm =
m−1∑
k=0

Uk(n, t), m ≥ 1 can be used for numerical

computation.

4. Applications of ADM

4.1. ADM: Time fractional ∆KdV. Let us consider a time fractional ∆KdV
given by

∂αun

∂tα
= un(un+1 − un−1), 0 < α ≤ 1, n ∈ Z, (35)

which can be written as

Lα
t un = F (un, un+1)−G(un, un−1), (36)

where Lα
t = ∂α

∂tα , F (un, un+1) = unun+1, G(un, un−1) = unun−1. The nonlinear
terms F (un, un+1) and G(un, un−1) can be expressed in terms of Adomian polyno-
mials Ak’s and Bk’s as given in (6) and (7), (8) and (9). Applying the operator Iα

on both sides of (36) along with the property(30) for 0 < α ≤ 1 , we obtain

u(n, t) = u(n, 0) + Iα(F (un, un+1)−G(un, un−1)).

Substituting the decomposition series (4) along with equations (6), (7) in the above
equation yields

∞∑
k=0

Uk(n, t) = u(n, 0) + Iα

[ ∞∑
k=0

(Ak −Bk)

]
,

which in turn gives

U0(n, t) = u(n, 0), (37)

Uk+1(n, t) = Iα[Ak −Bk], k ≥ 0, (38)

and solving them consistently yields the components Uk of the decomposition series
(4) when α ∈ (0, 1]. When k = 0, equation (38) reads

U1(n, t) = Iα[A0 −B0].
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Using (27) along with the expressions A0 and B0, we write the above equation as

U1(n, t) = U(n, 0)[U(n+ 1, 0)− U(n− 1, 0)]
1

Γ(α)

t∫
0

(t− s)α−1 ds,

U1(n, t) = U(n, 0)[U(n+ 1, 0)− U(n− 1, 0)]
tα

Γ(α+ 1)
. (39)

Now the second element in the decomposition series (4) reads

U2(n, t) = Iα[A1 −B1]. (40)

Making use of the equation (39) in the expressions A1 and B1, we write

A1 = Un,0Un+1,0[Un+1,0 − Un−1,0 + Un+2,0 − Un,0]
tα

Γ(α+ 1)
,

B1 = Un,0Un−1,0[Un+1,0 − Un−1,0 + Un,0 − Un−2,0]
tα

Γ(α+ 1)
,

and so

A1 −B1 = Un,0

[
(Un+1,0 − Un−1,0)

2 − Un,0(Un−1,0 + Un+1,0)

+Un+1,0Un+2,0 + Un−2,0Un−1,0]
tα

Γ(α+ 1)
.

For simplicity we write it as

A1 −B1 =
f(n)tα

Γ(α+ 1)
,

where

f(n) = Un,0

[
(Un+1,0 − Un−1,0)

2 − Un,0(Un−1,0 + Un+1,0) + Un+1,0Un+2,0 + Un−2,0Un−1,0

]
,

and so equation (40) yields

U2(n, t) = Iα( f(n) tα

Γ(α+1) ),

U2(n, t) = 1
Γ(α)

t∫
0

(t− s)α−1 f(n) sα

Γ(α+1) ds,

U2(n, t) = f(n) t2α

Γ(2α+1) .

In a similar manner we compute U3(n, t), U4(n, t), . . . and so the infinite series (4)
becomes

u(n, t) = Un,0 + Un,0[Un+1,0 − Un−1,0]
tα

Γ(α+ 1)
+

f(n) t2α

Γ(2α+ 1)
+ · · ·

which may not lead to closed form in general.

4.1.1. Rational solution (0 < α < 1). Here we explain how to derive rational solu-
tion of (35) satisfying the same initial condition (17)

Un,0 = u(n, 0) =
(n+ 1)(n− 2)

n(n− 1)
.

Following the procedure outlined in the previous section with α = 0.5, the approx-
imate rational solution for (35) is given by

u(n, t) =
(n+ 1)(n− 2)

n(n− 1)
+

4(2n− 1) t
1
2

n2(n− 1)2 Γ( 3
2
)
− 16(3n2 − 3n+ 1)t

n3(n− 1)3
+ · · · (41)
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We would like to mention that the above series does not lead to closed form at the
moment.

4.1.2. One Soliton solution (0 < α < 1). To derive approximate solution for time
fractional ∆KdV expressed in terms of exponential functions, we consider the same
initial condition (20)

Un,0 = u(n, 0) =
k(1 + ek(n−2) + ek(n+1) + ek(2n−1))

(ek − e−k)(1 + ek(n) + ek(n−1) + ek(2n−1))
. (42)

The first component in the decomposition series is

Un,1 =
k2
(
ek(n−2) + 2ek(n−1) + ek(3n−4) + ek(n+2) + 2ek(3n−1) + e3kn

)
tα

(ek − e−k)2(1 + ekn)2(1 + ek(n−1))2Γ(α+ 1)

−
k2
(
ek(n+1) + ek(n−3) + 2ekn + 2ek(3n−2) + ek(3n+1) + e3k(n−1)

)
tα

(ek − e−k)2(1 + ekn)2(1 + ek(n−1))2Γ(α+ 1)
.

We would like to mention that the presence of the exponential terms in Un,0 makes
it complicated to evaluate the components Uk(n, t), k ≥ 2 for a given α ∈ (0, 1)
analytically. Thus we have computed Uk(n, t) with fixed values of α and k using
Maple or Mathematica and plotted the obtained the approximate solution associ-
ated with one-soliton solution when α = 0.50 and α = 0.80 in Figure 2a and Figure
2b respectively.

Figure 2a: Approximate soliton so-
lution u(n, t) of the time fractional
∆KdV with k = 0.1 and α = 0.5

Figure 2b: Approximate soliton so-
lution u(n, t) of the time fractional
∆KdV with k = 0.1 and α = 0.8

4.2. ADM: Time fractional ∆mKdV equation. We consider the time frac-
tional ∆mKdV equation as

∂αun

∂tα
= (1 + u2

n)(un+1 − un−1), 0 < α ≤ 1, n ∈ Z, (43)

which can be rewritten as

Lα
t un = un+1 − un−1 + F (un, un+1)−G(un, un−1). (44)

Applying the operator Iα on both sides of (44) and using the initial condition, we
get

u(n, t) = u(n, 0) + Iα(un+1 − un−1) + Iα(F (un, un+1)−G(un, un−1)). (45)
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The nonlinear terms F (un, un+1), G(un, un−1) can be expressed in terms of Ado-
mian polynomials Ak’s and Bk’s as given in (6) and (7), (8) and (9). The required
components of the decomposition series are obtained recursively as follows

U0(n, t) = u(n, 0), (46)

Uk+1(n, t) = Iα(Uk(n+ 1)− Uk(n− 1)) + Iα[Ak −Bk], k ≥ 0. (47)

Using the above relation (47) along with initial condition Un,0 = u(n, 0) = sinh (c) sech(cn)
we compute the components Uk, k > 0 of (4). For example when k = 0 equation
(47) becomes

U1(n, t) = Iα(Un+1,0 − Un−1,0) + Iα[A0 −B0].

Using (27) along with A0 and B0 we write the above equation as

U1(n, t) = (Un+1,0 − Un−1,0)(1 + U2
n,0)

1

Γ(α)

t∫
0

(t− s)α−1 ds,

U1(n, t) = (1 + U2
n,0) (Un+1,0 − Un−1,0)

tα

Γ(α+ 1)
. (48)

Now the second element in the decomposition series (4) reads

U2(n, t) = Iα(Un+1,1 − Un−1,1) + Iα[A1 −B1]. (49)

Making use of the equation (48) in the expressions A1 and B1, we write

A1 −B1 = Un,0

[
2(1 + U2

n,0)(Un+1,0 − Un−1,0)
2 + Un,0(1 + U2

n+1,0)(Un+2,0 − Un,0)

−Un,0(1 + U2
n−1,0)(Un,0 − Un−2,0)

]
tα

Γ(α+1) .

We write it as

A1 −B1 =
h(n) tα

Γ(α+ 1)
, (50)

where

h(n) = Un,0

[
2(1 + U2

n,0)(Un+1,0 − Un−1,0)
2 + Un,0(1 + U2

n+1,0)(Un+2,0 − Un,0)
−Un,0(1 + U2

n−1,0)(Un,0 − Un−2,0)
]
.

Similarly by using equation (48) we can write

Un+1,1 − Un−1,1 =
g(n) tα

Γ(α+ 1)
, (51)

where

g(n) =
[
(1 + U2

n+1,0)(Un+2,0 − Un,0)− (1 + U2
n−1,0)(Un,0 − Un−2,0)

]
.

Making use of the equations (50) and (51) in the above equation (49), we obtain

U2(n, t) = Iα[g(n) tα

Γ(α+1) ] + Iα[h(n) tα

Γ(α+1) ],

= [g(n) + h(n)] t2α

Γ(2α+1) .

In a similar manner we compute U3(n, t), U4(n, t), . . . and so the infinite series (4)
becomes

u(n, t) = Un,0+(1+U2
n,0) (Un+1,0 − Un−1,0)

tα

Γ(α+ 1)
+[g(n)+h(n)]

t2α

Γ(2α+ 1)
+· · ·

Here also we have computed Uk(n, t) and obtained approximate solution associated
with both rational and one-soliton for a given α ∈ (0, 1). Figures 3a and 3b represent
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one-soliton solution with the initial condition u(n, 0) = sinh (c) sech(cn) when
c = 0.10, α = 0.5 and c = 0.10, α = 0.8 respectively.

Figure 3a: Approximate soliton so-
lution u(n, t) of the time fractional
∆mKdV with c = 0.1 and α = 0.5

Figure 3b: Approximate soliton so-
lution u(n, t) of the time fractional
∆mKdV with c = 0.1 and α = 0.8

4.3. ADM: Time fractional Toda lattice equation. In this subsection an at-
tempt is made to extend ADM to two coupled time fractional PD∆E through the
well known Toda lattice equation governed by

∂αun

∂tα
= un(vn − vn−1), (52)

∂αvn
∂tα

= vn(un+1 − un), 0 < α ≤ 1, n ∈ Z, (53)

which can be rewritten as

Lα
t un = F (un, vn−1, vn), (54)

Lα
t vn = G(un, un+1, vn). (55)

In addition to the infinite series solution (4), we assume the solution v(n, t) of the
form

v(n, t) =
∞∑
k=0

Vk(n, t). (56)

As before the nonlinear terms F (un, vn−1, vn), G(un, un+1, vn) can be written as
an infinite series of Adomian polynomials, that is

F (un, vn−1, vn) =

∞∑
k=0

Ak, (57)

G(un, un+1, vn) =
∞∑
k=0

Bk. (58)

The explicit expressions for Ak and Bk can be determined from the following for-
mulae

Ak = 1
k!

[
dk

dλkF

( ∞∑
m=0

Um(n, t)λm,
∞∑

m=0
Vm(n− 1, t)λm,

∞∑
m=0

Vm(n, t)λm

)]
λ=0

,

Bk = 1
k!

[
dk

dλkG

( ∞∑
m=0

Um(n, t)λm,
∞∑

m=0
Um(n+ 1, t)λm,

∞∑
m=0

Vm(n, t)λm

)]
λ=0

.



JFCA-2014/5(1) AN APPROXIMATE SOLUTION TO SOME CLASSES OF FPD∆ES 49

Applying the operator Iα on both sides of equations (54) and (55) along with the
property (30) for 0 < α ≤ 1 , we obtain

u(n, t) = u(n, 0) + Iα(F (un, vn−1, vn)), (59)

v(n, t) = v(n, 0) + Iα(G(un, un+1, vn)). (60)

Substituting the equations (4) and (56) along with (57) and (58) into the above
equations (59) and (60) yield

Un,0 = u(n, 0),

Vn,0 = v(n, 0),

Uk+1(n, t) = Iα[Ak], k ≥ 0,

Vk+1(n, t) = Iα[Bk], k ≥ 0.

Following the procedure outlined in the previous subsection, one can compute the
components Uk and Vk, k ≥ 0 along with the initial condition [25]

Un,0 = u(n, 0) = − coth(d) c+ c tanh(dn),
Vn,0 = v(n, 0) = − coth(d) c− c tanh(dn),

where c and d are constants. Proceeding further we obtain

U1(n, t) = Un,0(Vn,0 − Vn−1,0)
tα

Γ(α+ 1)
,

V1(n, t) = Vn,0(Un+1,0 − Un,0)
tα

Γ(α+ 1)
,

U2(n, t) =
f1(n) t

2α

Γ(2α+ 1)
,

V2(n, t) =
f2(n) t

2α

Γ(2α+ 1)
,

where

f1(n) = Un,0

[
(Vn,0 − Vn−1,0)

2 + Vn,0(Un+1,0 − Un,0)− Vn−1,0(Un,0 − Un−1,0)
]
,

f2(n) = Vn,0

[
(Un+1,0 − Un,0)

2 + Un+1,0(Vn+1,0 − Vn,0)− Un,0(Vn,0 − Vn−1,0)
]
.

In a similar manner we compute Uk(n, t) and Vk(n, t) for k ≥ 3 and so the infinite
series solutions (4) and (56) become

u(n, t) = Un,0 + Un,0(Vn,0 − Vn−1,0)
tα

Γ(α+1) +
f1(n) t2α

Γ(2α+1) + · · · ,

v(n, t) = Vn,0 + Vn,0(Un+1,0 − Un,0)
tα

Γ(α+1) +
f2(n) t2α

Γ(2α+1) + · · ·

It is straightforward to derive approximate solution for (52) and (53) associated
with one-soliton solution satisfying the initial conditions. Here again we computed
the approximate solutions u(n, t) and v(n, t) satisfying the initial conditions given
above and displayed in Figure 4a and Figure 4b respectively.
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Figure 4a: Approximate solution

u(n, t) of the time fractional Toda
lattice equation with d = 0.1, c =
0.1 and α = 0.5

Figure 4b: Approximate solution
v(n, t) of the time fractional Toda

lattice equation with d = 0.1, c =
0.1 and α = 0.5

Figure 5a: Effect of α on the solution
u(n, t) of the time fractional ∆KdV
with k = 0.1 and n = 10

Figure 5b: Effect of α on the solution

u(n, t) of the time fractional ∆mKdV
with c = 0.1 and n = 10

Figure 5c: Effect of α on the solu-
tion u(n, t) of the time fractional Toda
lattice equation with d = 0.1, c =

0.1 and n = 10

Figure 5d: Effect of α on the solu-
tion v(n, t) of the time fractional Toda

lattice equation with d = 0.1, c =
0.1 and n = 10

5. Summary and Discussion

In this article, an attempt is made to extend the ADM to time fractional nonlin-
ear PD∆Es in general and time fractional ∆KdV equation, time fractional ∆mKdV
equation and time fractional Toda lattice equation in particular and derived their
approximate solutions. We would like to mention that the computations were per-
formed by using Maple and Mathematica softwares. The obtained approximate
solutions and the effect of time fractional order α are shown graphically.
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