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AN APPROXIMATE ANALYTICAL SOLUTION OF COUPLED

NONLINEAR FRACTIONAL DIFFUSION EQUATIONS

K. M. SAAD

Abstract. In recent years, fractional reaction-diffusion models have been

studied due to their usefulness and importance in many areas of mathemat-
ics, statistics, physics, and chemistry. In a fractional diffusion equation, the
second derivative in the spatial variable is replaced by a fractional derivative.
The resulting solutions spread faster than classical solutions and may exhibit

asymmetry, depending on the fractional derivative used. In this paper, a frac-
tional exponential operator is considered as a general approach for solving
partial fractional differential equations. We develop an approach for solving

coupled nonlinear fractional diffusion equations with nonlinear source terms.
These solutions will be evaluated numerically based on approximation analyt-
ical solutions. Comparisons between the approximate analytical solution and
numerical solutions are shown.

1. Introduction

In recent years, considerable interest in fractional differential equations has been
stimulated due to their numerous applications in many areas of physics and engi-
neering [33]. Many important phenomena in electromagnetics, acoustics, viscoelas-
ticity, electrochemistry and material science are well described by differential equa-
tions of fractional order [5, 15, 22, 30]. Exact solutions of most fractional differential
equations cannot be easily found. Thus analytical and numerical methods must be
used. Some of the numerical methods for solving fractional differential equations
were presented in [8, 11, 12, 13]. Recently, several mathematical methods includ-
ing the Adomian decomposition method [14, 17], the variational iteration method
[24, 35], the homotopy analysis method [10, 9, 13] and the fractional method [15]
have been developed to obtain exact and approximate analytic solutions.

Numerical methods for solving variable order fractional differential equations
with various kinds of the variable order fractional derivative have been proposed [4,
6, 26, 28, 27, 29]

The book by Oldham and Spanier [25] has played a key role in the development
of the subject. Some fundamental results related to solving fractional differential
equations may be found in [22, 15, 16]. Recently, several authors, for example [20,
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19, 31, 7, 18], have investigated the fractional diffusion/wave equation and its special
properties. The fractional diffusion and wave equations have important applications
to mathematical physics. Fractional diffusion equation describes diffusion in special
types of porous media [23]. It is also used to model anomalous diffusion in plasma
transport.

Merkin and Needham [21] considered the reaction-diffusion travelling waves that
can develop in a coupled system involving simple isothermal autocatalysis kinetics.
They assumed that reactions took place in two separate and parallel regions, with,
in I, the reaction being given by quadratic autocatalysis

A+B → 2B(rate k1ab), (1)

together with a linear decay step

B → C(rate k2b), (2)

where a and b are the concentrations of reactant A and autocatalyst B, the ki(i =
1, 2) are the rate constants and C is some inert product of reaction. The reaction
in region II was the quadratic autocatalytic step (1) only. The two regions were
assumed to be coupled via a linear diffusive interchange of the autocatalytic species
B. We shall consider a similar system as I, but with cubic autocatalysis

A+ 2B → 3B(rate k3ab
2) (3)

together with a linear decay step

B → C(rate k4b). (4)

This leads to the system of equations (5)–(8).
Outline: Section 2 of this paper is devoted to the formulation of the approximate

analytical solution for solving coupled nonlinear fractional diffusion equations with
nonlinear source terms. We state several results that allow us to calculate the
approximate analytical solution. In section 3, we will use the approximate analytic
solution. In this section the governing equations are presented and Picard iteration
is used to obtain the approximate analytical solution. Also, comparisons between
the approximate analytical solution and numerical solutions of the governing partial
differential equations (PDEs) are shown. Finally, we will evaluate the solution of the
nonlinear fractional diffusion equations. Conclusions will be presented in Section 4.

2. Analytical framework

The following boundary value problem on 0 < x < ∞ and t > 0 for the dimen-
sionless concentrations (α1, β1) in region I and (α2, β2) in region II of species A
and B is considered

∂α1

∂t
=

∂2α1

∂x2
− α1β

2
1 , (5)

∂β1

∂t
=

∂2β1

∂x2
+ α1β

2
1 − kβ1 + γ(β2 − β1), (6)

∂α2

∂t
=

∂2α2

∂x2
− α2β

2
2 , (7)

∂β2

∂t
=

∂2β2

∂x2
+ α2β

2
2 + γ(β1 − β2), (8)

with the boundary conditions

αi(0, t) = αi(L, t) = 1, βi(0, t) = βi(L, t) = 0. (9)
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The dimensionless constants k and γ represent the strength of the autocatalyst
decay and the coupling between the two regions respectively. For convenience, we
make the transformation αi = 1− ui, i = 1, 2 in (5)–(8), to obtain

∂u1

∂t
=

∂2u1

∂x2
+ (1− u1)β

2
1 , (10)

∂β1

∂t
=

∂2β1

∂x2
+ (1− u1)β

2
1 − kβ1 + γ(β2 − β1), (11)

∂u2

∂t
=

∂2u2

∂x2
+ (1− u2)β

2
2 , (12)

∂β2

∂t
=

∂2β2

∂x2
+ (1− u2)β

2
2 + γ(β1 − β2). (13)

The boundary conditions become

ui(0, t) = ui(L, t) = 0, βi(0, t) = βi(L, t) = 0. (14)

In this work, we will develop the approach of [2, 1, 3] to find an analytical approx-
imate solution of the following set of equations

∂u1

∂t
=

∂σu1

∂xσ
+ (1− u1)β

2
1 , (15)

∂β1

∂t
=

∂σβ1

∂xσ
+ (1− u1)β

2
1 − kβ1 + γ(β2 − β1), (16)

∂u2

∂t
=

∂σu2

∂xσ
+ (1− u2)β

2
2 , (17)

∂β2

∂t
=

∂σβ2

∂xσ
+ (1− u2)β

2
2 + γ(β1 − β2). (18)

We assume the Dirichlet boundary conditions are

ui(0, t) = ui(L, t) = 0, βi(0, t) = βi(L, t) = 0, 1 ≤ σ ≤ 2. (19)

These equations are obtained from the original system (10)–(13) by replacing
the second order space derivative by a fractional derivative. We propose a method
to find the formal solution of (15)–(18) that satisfies the boundary conditions (19).
This Picard iteration scheme generates a sequence of approximate solutions. This
sequence of iterations is then truncated at the first approximation. We write the
system of equations (15)–(18) as

Ut = M̂ U+ S(U), (20)

M̂ =


∂σ
x 0 0 0
0 ∂σ

x − k − γ 0 γ
0 0 ∂σ

x 0
0 γ 0 ∂σ

x − γ

 , (21)

S(U) =
(
(1− u1)β

2
1 (1− u1)β

2
1 (1− u2)β

2
2 (1− u2)β

2
2

)T
. (22)

In (20) we consider the vector S as a source term. The method of integrating factors
enables the first order differential equation (20) to be written as

d

dt
{e−tM̂U} = e−tM̂S(U). (23)

Integrating from 0 to t then gives
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U(x, t) = UL(x, t) +

∫ t

0

e(t−τ)M̂ S(U(x, τ))dτ,UL(x, t) = etM̂U(x, 0). (24)

We require that UL satisfies the boundary conditions ui(x = 0, t) = ui(x = L, t) =
0 and βi(x = 0, t) = βi(x = L, t) = 0. We now construct the Picard iteration
sequence

U(n)(x, t) = U(0)(x, t) +

∫ t

0

e(t−τ)M̂ Sn−1(U
(n−1)(x, τ))dτ, n = 1, 2, 3, . . . (25)

The solution of the linear problem, the initial iterate, is given by

U(0)(x, t) = etM̂U(x, 0). (26)

We take U(0)(x, 0) to satisfy the boundary conditions, namely

U(x, 0) =
∞∑

n=1

(
an bn cn dn

)T
(sin(n̄x) + sin(n̄(L− x))), n̄ =

nπ

L
. (27)

Thus the solution of equation (26) is

U(0)(x, t) =
∞∑

n=1

etM
(
an bn cn dn

)T
(sin(n̄x) + sin(n̄(L− x))), (28)

M =


−n̄σ 0 0 0
0 −n̄σ − k − γ 0 γ
0 0 −n̄σ 0
0 γ 0 −n̄σ − γ

 . (29)

Calculating the matrix exponential etM using Mathematica gives

U(0)(x, t) =
∞∑
0

Ψn(t)(sin(n̄x) + sin(n̄(L− x)))e−t(n̄)σ , (30)

Ψn(t) =


an

1
2µ (bn(kλ− + µλ+)− 2γdnλ−)

cn
1
2µ (dn(−kλ− + µλ+)− 2γbnλ−)

 , (31)

λ±(t) = (1± eµt), µ =
√
k2 + 4γ2. (32)

The arbitrary constants an, bn, cn, and dn are determined by the initial conditions
namely on [0, L]. This is the same solution as that obtained in the Appendix using
an eigenfunction expansion and in reference [34].

3. Approximate Analytical Solutions

Now, in the original variables, we have for the concentration α
(0)
i , β

(0)
i

α
(0)
1 (x, t) = 1−

∞∑
n=1

an sin(
n̄

2
L) cos n̄(

L

2
− x)e−t(n̄)σ , (33)

β
(0)
1 (x, t) =

∞∑
n=1

1

2µ
(bn(kλ− + µλ+)− 2γdnλ−) sin(

n̄

2
L) cos n̄(

L

2
− x)e−t(n̄)σ , (34)
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α
(0)
2 (x, t) = 1−

∞∑
n=1

cn sin(
n̄

2
L) cos n̄(

L

2
− x)e−t(n̄)σ , (35)

β
(0)
2 (x, t) =

∞∑
n=1

1

2µ
(dn(−kλ−+µλ+)−2γbnλ−) sin(

n̄

2
L) cos n̄(

L

2
−x)e−t(n̄)σ . (36)

By using the Picard sequence of solutions given by (25), the first approximation is
given by

U(1)(x, t) = U(0)(x, t) +

∫ t

0

e(t−τ)M̂ S0(U
(0)(x, τ))dτ, (37)

where

S0(U
(0)(x, τ)) =

(
(1− u

(0)
1 )β

(0)2
1 (1− u

(0))
1 )β

(0)2
1 (1− u

(0)
2 )β

(0)2
2 (1− u

(0)
2 )β

(0)2
2

)
.

(38)

As u
(0)
1 , u

(0)
2 , β

(0)
1 , and β

(0)
2 have Fourier series, so do (1 − u

(0)
1 )β

(0)2
1 and (1 −

u
(0)
2 )β

(0)2
2 . By using Fourier sine series to satisfy the boundary conditions, the

first approximation is

U(1)(x, t) = U(0)(x, t) +

∫ t

0

∞∑
r=1

Φr sin(r̄)e
−(t−τ)(r̄)σ S0(U

(0)(x, τ))dτ (39)

and

Φr =
2

L

∫ L

0

Ψn(t− τ)S0(U
(0)(x, τ)) sin(r̄x)dx, r̄ =

rπ

L
. (40)

4. Numerical result and discussion

In this section, we implement the proposed method to solve the coupled nonlinear
fractional diffusion equations. The numerical and approximate analytical solutions
of (5)–(9) for the special case σ = 2 are plotted against x through Figures 1–3 for
various values of t and γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001,
and L = 100.

It is seen that the solutions are symmetric about the mid-plane x = L/2, as
expected and evolve towards a parabola, as shown by [32]. We note from Figures
1–3 that as t increases, α1 and α2 tend to 1 and β1 and β2 tend to 0, which are the
steady states for these quantities. These steady state solutions have been studied
in reference [21].

It can be seen from Figures 1–3 that the absolute error obtained by the present
method decreases as t increases. This is illustrated in Table 1. Therefore, the
proposed method is an efficient and accurate method that can be used to provide
approximate analytical solutions of coupled nonlinear diffusion equations. The ap-
proximate analytical solution of (15)–(18) then approaches the approximate analyt-
ical solution of the original equations (5)–(8) as σ → 2. The analytical approximate
results for t = 30, 50, 100 when σ = 1.2, 1.5, 1.7, 2 for the same parameter values
as for Figures 1–3 are shown in Figures 4–6. The comparisons show that as σ → 2,
the analytical approximate solutions of equations (15)–(19) tend to the analytic
approximate solutions of equations (5)–(9). In constrast to the solutions shown in
Figures 1–3, the solutions in Figures 4–6 show that α1 and α2 tend to 1 and β1 and
β2 tend to 0 as t increases. Furthermore, this evolution towards the steady states
becomes faster as σ decreases.



JFCA-2014/5(1) AN APPROXIMATE ANALYTICAL SOLUTION 63

0 20 40 60 80 100
x

0.85
0.875
0.9

0.925
0.95
0.975

1

Α
1

HaL

0 20 40 60 80 100
x

0
0.00002
0.00004
0.00006
0.00008
0.0001
0.00012
0.00014

Β
1

HbL

0 20 40 60 80 100
x

0.7
0.75
0.8

0.85
0.9
0.95

1

Α
2

HcL

0 20 40 60 80 100
x

0
0.00005
0.0001

0.00015
0.0002

0.00025
0.0003

Β
2

HdL

Figure 1. Comparison of numerical solutions with approximate
analytic solution at t = 30 for (5-8) with σ = 2, γ = 0.1, k =
0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001, and L = 100.
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Figure 2. Comparison of numerical solutions with approximate
analytic solution at t = 50 for (5-8) with σ = 2, γ = 0.1, k =
0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001, and L = 100.
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Figure 3. Comparison of numerical solutions with approximate
analytic solution at t = 100 for (5-8) with σ = 2, γ = 0.1, k =
0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001, and L = 100.
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Figure 4. The approximate analytical solution for (15-19) with
different values of σ = 1.2(− − −), 1.5(− · −), 1.7(· · ·), 2(−) when
t = 30, γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001
, L = 100.
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Figure 5. The approximate analytical solution for (15-19) with
different values of σ = 1.2(− − −), 1.5(− · −), 1.7(· · ·), 2(−) when
t = 50, γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001
, L = 100.
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Figure 6. The approximate analytical solution for (15-19) with
different values of σ = 1.2(− − −), 1.5(− · −), 1.7(· · ·), 2(−) when
t = 100, γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn =
0.001 , L = 100.
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t Eα1 Eβ1 Eα2 Eβ2

30 2.3× 10−3 3.5× 10−2 4.9× 10−3 3.4× 10−2

50 2.4× 10−4 3.4× 10−3 5.1× 10−4 3.6× 10−2

100 1.3× 10−6 4.4× 10−3 3.8× 10−6 4.47× 10−3

Table 1. The absolute error between numerical solutions with
approximate analytic solutions at x = 50 for (5-8) with σ = 2,
γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001, and
L = 100.

The absolute error of the approximate solutions as compared with the numerical
solutions is summarised in Table 1. This table shows the error at x = 50 for σ = 2,
γ = 0.1, k = 0.2, an = 0.1, bn = 0.001, cn = 0.2, dn = 0.001 and L = 100. In
the Table, Eα1 , Eβ1 , Eα2 and Eβ2 denote the absolute error for α1, β1, α2 and β2,
respectively. A noted above, the error decreases as t increases, with the error in
α1 and α2 decreasing more rapidly than that of β1 and β2. All the results were
calculated by using the symbolic computation software Mathematica.

5. Conclusion

In this paper, the exponential operator and fractional exponential operator were
applied to solve the systems of equations (5)–(9) and (15)–(19). Comparisons are
made between approximate analytical solutions and numerical solutions for the
system of equations (5)–(9) in order to illustrate the validity of the technique. The
absolute error of the present approximate method decreases as t increases. The
approximate analytical solutions for various value of σ were found. It was shown
that these solutions approach the solutions of the original system (5)–(9) as σ → 2.
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7. Appendix

We shall derive the solution of the first order differential equation (20) with
homogeneous Dirichlet boundary conditions using an eigenfunction expansion. To
this end we have the definition
Definition ∂2φ/∂x2 has a complete set of orthonormal eigenfunctions φn with
corresponding eigenvalues n̄2 on the bounded domain D. Hence

∂2φ

∂x2
= −n̄2φ (41)

on D with B(φ) = 0 on ∂D, where B(φ) is one of the standard three homogeneous
boundary conditions. Let

Fρ = {
∞∑

n=1

f = cnφn, cn = ⟨f, φn⟩,
∞∑

n=1

|cn|2|n̄|ρn < ∞, ρ = max(σ, 0)}. (42)
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Then for any f ∈ Fρ is defined by

∂σ

∂ xσ
f =

∞∑
n=1

−cn(n̄)
σφn. (43)

Let us now set the solution of (20) in the form

U(x,t) =
∞∑

n=1

V(t)(sin(n̄x)+sin(n̄(L−x))),V(t) = (v1(t) v2(t) v3(t) v4(t))
T .

(44)
This solution automatically staisfies the boundary conditions ui = 0 at x = 0, L and
βi = 0 at x = 0, L. Substituting this solution form into the differential equation (20)
results in

{dV(t)

dt
−MV(t)}(sin(n̄x) + sin(n̄(L− x))) = 0. (45)

Here M is the matrix (29). V is the solution of

dV(t)

dt
−MV(t) = 0 (46)

which gives

V(t) = etMV(0), (47)

V(0) is then obtained from the initial condition

U(x) =

∞∑
n=1

V(0)(sin(n̄x) + sin(n̄(L− x))) (48)

giving

V(0) =
2

L

∫ L

0

U(y)(sin(n̄y) + sin(n̄(L− y)))dy = (an bn cn dn)
T . (49)

The solution of the differential equation (20) is finally

U(x, t) =
∞∑

n=1

etM (an bn cn dn)
T (sin(n̄x) + sin(n̄(L− x))) (50)

The matrix exponential etM is expanded using Mathematica to give

U(x, t) =

∞∑
n=1

Ψn(t)(sin(n̄x) + sin(n̄(L− x)))e−t(n̄)σ , (51)

where Ψn(t) are given by (31).
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