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SUFFICIENT CONDITIONS FOR THE EXISTENCE AND

UNIQUENESS OF SOLUTIONS TO IMPULSIVE FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS WITH DEVIATING

ARGUMENTS

RAJIB HALOI, PRADEEP KUMAR AND DWIJENDRA N. PANDEY

Abstract. In this article we prove the sufficient conditions for the existence
and uniqueness of piecewise continuous (PC) mild solutions to impulsive frac-

tional integro-differential equations with deviating arguments in a Banach
space. The results are obtained by using the theory of analytic semigroup
and the Banach fixed point theorem.

1. Introduction

The objective of this article is to study the existence and uniqueness of the
solutions to the following problem in a complex Banach space (X, ∥ · ∥):

CDη
t u(t) = Au(t) + f(t, u(t), u(ψ(t, u(t))))

+

∫ t

0

a(t, τ)g(τ, u(τ))dτ, t ∈ J = [0, b];

∆u|t=tk ≡ Ik(u(t
−
k )) = u(t+k )− u(t−k ),

u(0) = u0,

 (1)

where u : R+ → X and u0 ∈ X. The functions f : R+×X×X → X, g : R+×X →
X and ψ : R+×X → R+ are three non-linear functions and satisfy some appropriate
conditions, the function a : [0, T ]× [0, T ] → C is a continuous function on [0, T ] for
a fixed T ∈ J . Through the article we denote u(t+k )− u(t−k ) = xk.

Many processes in various fields of engineering and science such as physics, elec-
trochemistry, electro-magnetics, control theory, visco-elasticity, porous media, etc.
can be modeled as differential equation with fractional order. The fractional integro-
differential equations has played an important role in exploring various character-
istics of different branch of science and engineering. The fractional differential
equations also describe the memory and hereditary properties of various materials
and processes. The plentiful occurrence and applications of fractional differential
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equations motivate the rapid developments and gained much attention in the recent
years. The details on the theory and its applications can be found in Agrawal et al.
[1], Hilfer [14], Kilbas et al.[15, 23], Lakshmikantham et al. [17], Miller and Ross
[18], Oldham and Spanier [20], Podlubny [22].

Impulsive effects are common in the process where the short-term perturbations
are to be considered. The differential equations with memory effects and impulse
effects are medelled as impulsive integro-differential equations. In recent years,
there has been a growing interest in the study of fractional differential equations
as these equations approach the simulation processes in the control theory, physics,
chemistry, population dynamics, biotechnology, economics and so on. The inves-
tigation of existence and uniqueness of mild solutions for differential and integro-
differential equations with impulse effects have been discussed by many authors
[6, 12, 3, 8, 19, 24, 25, 28].

The theory of differential equations with deviating arguments is one of the im-
portant and significant branch of nonlinear analysis with numerous applications to
physics, mechanics, control theory, biology, ecology, economics, theory of nuclear
reactors, engineering, natural sciences, and many other areas of science and technol-
ogy [7]. Recently, the study of differential equations with impulsive and deviating
arguments has studied by some authors [2, 3, 5, 8, 9, 11, 10, 13, 16, 19, 24, 25, 26, 28].
In [26], Wang et al. have discussed the existence and uniqueness of the following
fractional differential equation with impulse in a Banach space X,

CDη
t u(t) = Au(t) + f(t, u(t)), t ∈ J = [0, b], t ̸= tk, 0 < η ≤ 1,

∆u|t=tk ≡ Ik(u(t
−
k )) = u(t+k )− u(t−k ), k = 1, 2, 3, ...n,

u(0) = u0,

 (2)

where CDη
t denotes the Caputo fractional derivative of order η and A : D(A) ⊂

X → X generates a C0− semigroup on X. The results are established by the fixed
point theorem with appropriate f.

Using the theory of analytic semigroup and the Banach fixed point, Borai and
Debbouche [5] have studied the existence and uniqueness of solution to the following
equation

CDη
t u(t) = Au(t) + f(t, u(t))

+

∫ t

0

a(t− τ)g(τ, u(τ))dτ, t ∈ J = [0, T ],

u(0) = u0,

 (3)

where u : R+ → X and u0 ∈ X. The functions f : R+ ×X → X, g : R+ ×X → X
and ψ : R+×X → R+ satisfy some appropriate conditions, the function a : [0, T ] →
C is a complex valued continuous function.

However, the study of solutions to impulsive fractional differential equations
with deviating arguments need to pay much of attention. The article is devoted
to establish the existence and uniqueness of (1) which are new and complement
to the existing ones that generalizes some results in [9, 26, 5, 28]. The paper is
organized as follows. In Section 2, we recall the definition of the Caputo fractional
derivative, Riemann-Liouville integral, the theory of semigroup of bounded linear
operators and some lemmas that are used in the remaining part of the article. In
Section 3, we study the existence and the uniqueness of PC mild solutions equation
(1). Finally, an example is provided to illustrate the main results in Section 4.
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2. Preliminaries and assumptions

In this section, we will introduce some basic definitions, notations and lemmas
which are used throughout this paper.

This section is aimed to collect assumptions, preliminaries and lemma required to
prove our main results. We briefly outline the facts concerning analytic semigroups,
fractional powers of operators, and fractional derivatives. For more details, we refer
to [21, 4, 14, 15, 16, 17, 18, 20, 22, 23].

Let (X, ∥ · ∥) be a complex Banach space. Let {A|A : D(A) ⊂ X → X} be a
family of closed linear operators on the Banach space X such that

(B1) The domain D(A) of A is dense in X.
(B2) The resolvent R(λ;A) exists for all Re λ ≤ 0 and there is a constant C > 0

such that

∥R(λ;A)∥ ≤ C

|λ|+ 1
, Re λ ≤ 0,

Assumptions (B1) and (B2) implies that −A generates an analytic semigroup

of bounded operators, denoted by S(t), t ≥ 0. Then there exist constants M̃ ≥ 1
and ω ≥ 0 such that

∥S(t)∥ ≤ M̃eωt, t ≥ 0.

We may assume without loss of generality that ∥S(t)∥ is uniformly bounded by
M , i.e., ∥S(t)∥ ≤M for t ≥ 0. We also note that [21, Lemma 4.2,pp. 52]∥∥∥∥ didtiS(t)

∥∥∥∥ ≤Mi, t > t0

for some positive constant Mi. It follows from the assumption (B2) that the
negative fractional powers of the operator A is well defined. For α > 0, define the
negative fractional powers A−α by

A−α =
1

Γ(α)

∫ ∞

0

τα−1S(τ)dτ.

It can be seen that A−α is one-to-one and bounded linear operator on X. Define
the positive fractional powers of A by Aα ≡ [A−α]−1. Then Aα is closed linear
operator with dense domain D(Aα) in X, and D(Aα) ⊂ D(Aγ) if α > γ > 0. For
0 < α ≤ 1, let Xα = D(Aα) and equip this space with the graph norm

∥x∥α = ∥Aαx∥.

Then Xα is a Banach space endowed with this norm. If 0 < α ≤ 1, the embedding
X1 ↪→ Xα ↪→ X are dense and continuous. For each α > 0, define X−α = (Xα)

∗,
the dual space of Xα, and endow with the natural norm

∥x∥−α = ∥A−αx∥.

Then X−α is a Banach space endowed with this norm. The following lemma hold.
Lemma 1 [21] Suppose that −A is the infinitesimal generator of an analytic semi-
group S(t), t ≥ 0 with ∥S(t)∥ ≤ M for t ≥ 0 and 0 ∈ ρ(−A). Then we have the
following:

(i) Xα is a Hilbert space for 0 ≤ α ≤ 1;
(ii) For any 0 < δ ≤ α implies D(Aα) ⊂ D(Aδ), the embedding Xα ↪→ Xδ is

continuous;
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(iii) The operator AαS(t) is bounded for every t > 0 and

∥AαS(t)∥ ≤ Cαt
−α.

The following assumptions are necessary for proving the main results. Let f, g
and ψ be three continuous functions. For 0 < α ≤ 1, let Vα and Vα−1 be open sets
in Xα and Xα−1 respectively. For each v1 ∈ Vα and v2 ∈ Vα−1, there are balls such
that B1(v1, r1) ⊂ Vα, and Bα−1(v2, r2) ⊂ Vα−1 for r1, r2 > 0. We will assume the
following conditions.

(B3) There exist constants Cf = Cf (t, v1, v2, r1, r2) > 0 such that the nonlinear
map f : [0, T ]× Vα × Vα−1 → X satisfies

∥f(t1, u1, w1)− f(t2, u2, w2)∥ ≤ Cf (∥u1 − u2∥α + ∥w1 − w2∥α−1) (4)

for all u1, u2 ∈ Bα, w1, w2 ∈ Bα−1 and t1, t2 ∈ [0, T ].
(B4) There exist constants Cψ = Cψ(v1, t, r1) > 0 such that ψ(0, ·) = 0, ψ :

[0, T ]× Vα → [0, T ] satisfies

|ψ(t1, u1)− ψ(t2, u2)| ≤ Cψ(∥u1 − u2∥α) (5)

for all u1, u2 ∈ Bα and t1, t2 ∈ [0, T ].
(B5) There exists a positive constant Cg = Cg(v1, t, r1) such that the continuous

map g : [0, T ]× Vα → X satisfies

∥g(t, x)− g(t, x′)∥ ≤ Cg∥x− x′∥α (6)

for all x, x′ ∈ Bα and t ∈ [0, T ].
(B6) The functions Ik : Xα → Xα are continuous and there exist constants Ck

such that

∥Ik(u)∥α ≤ Ck

for k = 1, 2, 3, ..., n.
(B7) There exist positive constants Dk such that

∥Ik(u)− Ik(v)∥α ≤ Dk∥u− v∥α (7)

for k = 1, 2, 3, ..., n.

We recall the definition of fractional integral and derivative of a function.
Definition 1 The fractional integral of order η of a real valued absolutely continous
function h on [0,∞) with the lower limit zero is defined as

Iηh(t) =
1

Γ(η)

∫ t

0

h(s)

(t− s)1−η
ds, t > 0, η > 0

provided that the right hand side is defined pointwise on [0,∞) , where Γ(·) is the
Gamma function.
Definition 2 The Riemann-Liouville derivative of order η of a real valued abso-
lutely continuous function h on [0,∞) with the lower limit zero is

LDη
t h(t) =

1

Γ(m− η)

dm

dtm

∫ t

0

h(s)

(t− s)η+1−m ds, t > 0, m− 1 ≤ η ≤ m.

Definition 3 The Caputo derivative of order η of a real valued absolutely continous
function h on [0,∞) is defined as

CDη
t h(t) =

L Dη
t

(
h(t)−

m−1∑
k=0

tk

k!
h(k)(0)

)
, t > 0, m− 1 ≤ η ≤ m.
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We consider the following fractional Cauchy problem:

CDη
t u(t) = Au(t) + f(t) t ∈ J,
u(0) = u0.

}
(8)

Definition 4 [27] A continuous function u : J → X is said to be a mild solution of
problem (8) if u satisfies the following integral equation

u(t) = T (t)u0 +

∫ t

0

(t− s)η−1S(t− s)f(s)ds,

where

T (t) =

∫ ∞

0

ζη(θ)S(t
ηθ)dθ and S(t) = η

∫ ∞

0

θζη(θ)S(t
ηθ)dθ,

ζη(θ) =
1

η
θ−1− 1

η × ρη(θ
− 1

η ),

ρη(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nη−1Γ(nη + 1)

n!
sin(nπη), θ ∈ (0,∞),

ζη is a probability density function defined on (0,∞), that is

ζη(θ) ≥ 0,

∫ ∞

0

ζη(θ)dθ = 1.

The following Lemma is useful which is due to Zhou and Jiao [27].
Lemma 2

(i) For any t ≥ 0, the operators T and S are bounded and statisfy

∥T (t)v∥ ≤M∥v∥ and ∥S(t)v∥ ≤ ηM

Γ(1 + η)
∥v∥

for any v ∈ X, respectively.
(ii) The families {T (t) : t ≥ 0} and {S(t) : t ≥ 0} are strongly continuous.
(iii) For every t > 0, T (t) and S(t) are compact operators if S(t) is compact.

Using Lemma 2 and Lemma 2, the following lemma can be proved.
Definition 5 If u0 ∈ Xα and f is a piecewise continuous function on J to X, then
Pu ∈ Xα, where the map P is defiend as

Pu(t) = T (t)u0 +

∫ t

0

(t− s)η−1S(t− s)f(s)ds.

3. Existence of Solutions

In this section we prove the main result for the existence of the solution to the
equation (1). We define the following space

Y = PC(Xα) = {u : J → Xα : u ∈ C((tk, tk+1], Xα), k = 0, 1, · · · , n,
u(t−k ), u(t

+
k ) exist},

where J = [0, T0] for some 0 < T0 ≤ T. We put b = T0. Then Y is a Banach space
endowed with the supremum norm

∥u∥PC,α := max{sup
t∈J

∥u(t+ 0)∥α, sup
t∈J

∥u(t− 0)∥α}.

For 0 ≤ α < 1, we define

Y1 = {u ∈ Y : ∥u(t)− u(s)∥α−1 ≤ L|t− s|, ∀ t, s ∈ (tk, tk+1], k = 0, 1, · · · , n},
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where L is a suitable positive constant to be specified later.
Definition 6 By a PC-mild solution to problem (1), we mean that a function
u ∈ Y ∩ Y1 which satisfies the following integral equation

u(t) =



T (t)u0
+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ [0, t1],

T (t)u0 + T (t− t1)x1
+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ (t1, t2],

...

T (t)u0 +
∑k
i=1 T (t− ti)xi

+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ (tk, b].

(9)

For a fixed R > 0, we define

W = {u ∈ Y ∩ Y1 : u(0) = u0, ∥u− u0∥PC,α ≤ R}.

Then W is a closed and bounded subset of Y1 and is a Banach space. We choose
T0, 0 < T0 ≤ T sufficiently small such that

∥(S(tηθ)− I)Aαu0∥ ≤ R

2
for t ∈ [0, T0], (10)

Cα(N + ÑaT0)
T
η(1−α)
0

1− α
+M

n∑
k=1

Ck ≤ R

2
, (11)

[Cf (2 + LCψ) + aT0Cg]Cα
T
η(1−α)
0

1− α
+M

n∑
k=1

Dk < 1, (12)

where aT0 = sups∈[0,T0]

∫ T0

0
|a(s, τ)|dτ.

Assumptions (B3)-(B4) and u ∈ W imply that f(t, u(t), u(ψ(t, u(t)))) is con-
tinuous on [0, T0]. Hence, there exist positive constants

N = CfR(1 + LCψ) +N0 and N0 = ∥f(0, u0, u0)∥

such that

∥f(t, u(t), u(ψ(t, u(t))))∥ ≤ N, for t ∈ [0, T0]. (13)

Also assumption (B5) implies that there exists a constant Ñ such that

∥g(t, u(t))∥ ≤ Ñ ,

where Ñ = CgR+ ∥g(0, u0)∥.
Theorem Let the assumptions (B1)-(B7) hold. Then Problem (1) has a unique
mild solution on [0, T0].
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Proof. For fixed u0 ∈ Xα, we define a map P on W as

(Pu)(t) =



T (t)u0
+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ [0, t1],

T (t)u0 + T (t− t1)x1
+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ (t1, t2],

...

T (t)u0 +
∑k
i=1 T (t− ti)xi

+
∫ t
0
(t− s)η−1S(t− s)

[
f(s, u(s), u(ψ(s, u(s))))

+
∫ s
0
a(s, τ)g(τ, u(τ))dτ

]
ds, t ∈ (tk, T0]

(14)

for u ∈ W.We will show that P : W → W. From Lemma 2, it is clear that Pu ∈ Y.
That is P maps Y into Y itself. We begin with by showing that P : Y1 → Y1. If
u ∈ Y1 and ς1, ς2 ∈ [0, t1] with ς2 > ς1 > 0, then for 0 ≤ α < 1, we have

∥(Pu)(ς2)− (Pu)(ς1)∥α−1

≤ ∥T (ς2)u0 − T (ς1)u0∥α−1

+ ∥
∫ ς2

0

(ς2 − s)η−1S(ς2 − s)
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds

−
∫ ς1

0

(ς1 − s)η−1S(ς1 − s)
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1

≤ ∥T (ς2)u0 − T (ς1)u0∥α−1 + I1 + I2,

where

I1 = ∥
∫ ς1

0

[
(ς2 − s)η−1S(ς2 − s)− (ς1 − s)η−1S(ς1 − s)

][
f(s, u(s), u(ψ(s, u(s))))

+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1,

I2 = ∥
∫ ς2

ς1

(ς2−s)η−1S(ς2−s)
[
f(s, u(s), u(ψ(s, u(s))))+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1

Using the definition of T , we get

∥T (ς2)u0 − T (ς1)u0∥α−1 = ∥
∫ ∞

0

ζη(θ)S(ς
η
2 θ)u0dθ −

∫ ∞

0

ζη(θ)S(ς
η
2 θ)u0dθ∥α−1

= ∥
∫ ∞

0

ζη(θ)

∫ ς2

ς1

d

dς
S(ςηθ)u0dςdθ∥α−1

≤M1∥u0∥α−1(ς2 − ς1).
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Again using the definition of S, we obtain

I1 = ∥
∫ ς1

0

[
(ς2 − s)η−1S(ς2 − s)− (ς1 − s)η−1S(ς1 − s)

]
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1

= ∥
∫ ς1

0

[
(ς2 − s)η−1η

∫ ∞

0

θζη(θ)S((ς2 − s)ηθ)dθ

− (ς1 − s)η−1η

∫ ∞

0

θζη(θ)S((ς1 − s)ηθ)dθ

]
×

[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1

= ∥
∫ ς1

0

∫ ∞

0

ζη(θ)

[
d

dς
S((ς − s)ηθ)

]
ς=ς2

−
[
d

dς
S((ς − s)ηθ)

]
ς=ς1

dθ

[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−2

= ∥
∫ ς1

0

∫ ∞

0

ζη(θ)

∫ ς2

ς1

d2

dς2
S((ς − s)ηθ)dςdθ

[
f(s, u(s), u(ψ(s, u(s))))

+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−2

≤ T0(N + ÑaT0)M2∥Aα−2∥(ς2 − ς1).

Finally,

I2 = ∥
∫ ς2

ς1

(ς2 − s)η−1S(ς2 − s)
[
f(s, u(s), u(ψ(s, u(s))))

+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1

= ∥
∫ ς2

ς1

∫ ∞

0

ζη(θ)
d

dς
S((ς − s)ηθ)

∣∣∣∣
ς=ς2

×
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
dθds∥α−2

≤ (N + ÑaT0)M1∥Aα−2∥(ς2 − ς1).

If u ∈ Y1 and ς1, ς2 ∈ (t1, t2] with ς2 > ς1 > 0, then for 0 ≤ α < 1, we have

∥(Pu)(ς2)− (Pu)(ς1)∥α−1

≤ ∥T (ς2)u0 − T (ς1)u0∥α−1 + ∥T (ς2 − t1)x1 − T (ς1 − t1)x1∥α−1

+ ∥
∫ ς2

0

(ς2 − s)η−1S(ς2 − s)
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ,
]
ds

−
∫ ς1

0

(ς1 − s)η−1S(ς1 − s)
[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ,
]
ds∥α−1

≤ ∥T (ς2)u0 − T (ς1)u0∥α−1 + ∥T (ς2 − t1)x1 − T (ς1 − t1)x1∥α−1 + I1 + I2,
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where

I1 = ∥
∫ ς1

0

[
(ς2 − s)η−1S(ς2 − s)− (ς1 − s)η−1S(ς1 − s)

][
f(s, u(s), u(ψ(s, u(s))))

+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1,

I2 = ∥
∫ ς2

ς1

(ς2−s)η−1S(ς2−s)
[
f(s, u(s), u(ψ(s, u(s))))+

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥α−1.

We have the following estimate

∥T (ς2 − t1)x1 − T (ς1 − t1)x1)∥α−1 = ∥
∫ ∞

0

ζη(θ)
d

dς
S((ς − t1)

ηθ)x1dςdθ∥α−1

≤M1∥x1∥α−1(ς2 − ς1).

We note that the estimates for I1 and I2 are same as in the previous case. In a
similar way, we have the similar estimates for t ∈ (t2, t3], t ∈ (t3, t4],..., t ∈ (tk, T0].

Thus we have Pu ∈ Y1 for a suitable positive constant

L = max{M1∥u0∥α−1,M1∥x1∥α−1, T0(N+ÑaT0)M2∥Aα−1∥, (N+ÑaT0)M1∥Aα−2∥}.
Next we will show that P : W → W. For t ∈ (0, t1] and u ∈ W, we have

∥Pu(t)− u0∥α

≤
∫ ∞

0

ζη(θ)∥(S(tηθ)− I)Aαu0∥dθ + η

∫ t

0

∫ ∞

0

θζη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥

[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥∥dθds

≤ R

2
+ Cα(N + ÑaT0)η

∫ t

0

∫ ∞

0

θ1−αζη(θ)(t− s)−ηα+η−1dθds

≤ R

2
+ Cα(N + ÑaT0)

T
η(1−α)
0

1− α
≤ R.

For t ∈ (t1, t2] and u ∈ W, we use then we have

∥Pu(t)− u0∥α

≤
∫ ∞

0

ζη(θ)∥(S(tηθ)− I)Aαu0∥dθ + ∥T (t− t1)x1∥α

+ η

∫ t

0

∫ ∞

0

θζη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥

[
f(s, u(s), u(ψ(s, u(s)))) +

∫ s

0

a(s, τ)g(τ, u(τ))dτ
]
ds∥∥dθds

≤ R

2
+MC1 + Cα(N + ÑaT0)η

∫ t

0

∫ ∞

0

θ1−αζη(θ)(t− s)−ηα+η−1dθds

≤ R

2
+MC1 + Cα(N + ÑaT0)

T
η(1−α)
0

1− α
≤ R.

Thus we can also prove that ∥Pu(t)−u0∥α ≤ R for any t ∈ [0, T0]. Hence, P : W →
W.
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Finally, we will claim that P is a contraction map. For t ∈ [0, T0], we have

∥Pu(t)−Pv(t)∥α

≤M
n∑
k=1

Dk∥u− v∥α + η

∫ t

0

∫ ∞

0

θζη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥

∥[f(s, u(s), u(ψ(u(s), s)))− f(s, v(s), v(ψ(v(s), s))))]∥

+

∫ s

0

|a(s, τ)|∥g(τ, u(τ))− g(τ, v(τ))∥dτdθds

≤M
n∑
k=1

Dk∥u− v∥α + η[Cf (2 + LCψ) + aT0Cg]Cα∥u− v∥α

×
∫ t

0

∫ ∞

0

θζη(θ)(t− s)η−1∥S((t− s)ηθ)Aα∥ds

≤
[
M

n∑
k=1

Dk + [Cf (2 + LCψ) + aT0Cg]Cα
T
η(1−α)
0

1− α

]
∥u− v∥α.

From (12), it follows that P is a contraction on W. By the Banach contraction
mapping principle, the map P has fixed point in W.

�

4. Application

In this section, we consider the following fractional differential equation with a
deviating argument to illustrate the theory. For 0 < T < ∞ and (x, t) ∈ (0, 1) ×
(0, T ), [9, 11]

∂βu

∂tβ
=

∂2u

∂x2
+ H̃(x, u(x, t)) +G(t, x, u(x, t))

+

∫ t

0

a(t, τ)g(τ, u(τ))dτ,

∆u|t= 1
2

=
2u( 1

2
−)

2+u( 1
2
−)

u(0, t) = u(1, t) = 0,
u(x, 0) = u0(x), x ∈ (0, 1),


(15)

where β ∈ (0, 1),

H̃(x, u(x, t)) =

∫ x

0

K(x, y)u(y, g0(t)|u(y, t)|)dy,

and the function G : R+ × [0, 1] × R → R is measurable in x, locally Hölder
continuous in t, locally Lipschitz continuous in u, uniformly in x. Assume that
g0 : R+ → R+ is locally Hölder continuous in t with g0(0) = 0 and K ∈ C1([0, 1]×

[0, 1];R). We take X = L2((0, 1);R), Au =
d2u

dx2
, D(A) = H2(0, 1) ∩ H1

0 (0, 1) and

X1/2 = D((−A)1/2) = H1
0 (0, 1) and X−1/2 = (H1

0 (0, 1))
∗ = H−1(0, 1) ≡ H1(0, 1).

For x ∈ (0, 1), we define F : R+ ×H1
0 (0, 1)×H1(0, 1) → L2(0, 1) by

F (t, ϕ, ψ) = H(x, ψ) +G(t, x, ϕ),

where

H(x, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy.
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Then the semigroup is given by

S(t)u =
∑
n∈N

exp(−n2π2t)⟨u, um⟩um

for u ∈ D(A), where un(x) = sin(nπx). Also the assumptions (B3) and (B4) are
satisfied [11]. If u, v ∈ D((−A)1/2), then

∥Ik(u)− Ik(v)∥ 1
2
≤

2∥u− v∥ 1
2

∥(2 + u)(2 + v)∥ 1
2

≤ 1

2
∥u− v∥ 1

2
.

That is the assumption (B7) is satisfied. Thus Problem (15) has a unique solution if
we choose some appropriate function g that satisfies (B5) and a continues function
a.
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