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LINEAR SPACE-TIME FRACTIONAL REACTION-DIFFUSION

EQUATION WITH COMPOSITE FRACTIONAL DERIVATIVE IN

TIME

MRIDULA GARG, AJAY SHARMA, PRATIBHA MANOHAR

Abstract. In this paper, we consider linear space-time fractional reaction-
diffusion equation with composite fractional derivative as time derivative and

Riesz-Feller fractional derivative with skewness zero as space derivative. We
apply Laplace and Fourier transforms to obtain its solution.

1. Introduction

Reaction-Diffusion equations have found numerous applications in pattern for-
mation in biology, chemistry and physics. In recent works authors have demon-
strated the depth of mathematics and related physical issues of reaction-diffusion
equations such as nonlinear phenomena, stationary and spatio-temporal dissipative
pattern formation, oscillations, waves etc. [4, 5]. Interest in fractional reaction-
diffusion equations has increased because the equation exhibits self organization
phenomena and introduces a new parameter, the fractional index, into the equa-
tion.

The classical reaction-diffusion equations are useful to model the spread of in-
vasive species [12]. In this model the population density u (x, t) at location x and
time t is solution of the reaction-diffusion equation in its simplest form as given by

∂u (x, t)

∂t
= d

∂2u (x, t)

∂x2
+R (u) (1)

where d is the diffusion coefficient and R (u) is a function representing reaction
kinetics which may be linear or nonlinear. If we set R (u) = 0, in (1) it reduces to
diffusion equation, for R (u) = u (x, t) − u3 (x, t) , it reduces to Ginzburg-Landau
equation, for R (u) = u (x, t) − u2 (x, t) , it reduces to Fisher equation and for
R (u) = σu (x, t)

[
1− u2 (x, t)

]
, it reduces to Fisher-Kolmogorov equation.

The main shortcoming of this model in real applications is its unrealistically
slow spreading, since typical invasive species have population densities that spread
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faster then t, with power law leading edges [13]. The ordinary reaction-diffusion
equation is inadequate to model many real situations. Also, solution to fractional
reaction-diffusion equation spread faster then the counterpart of ordinary reaction-
diffusion equations. Fractional generalizations of reaction-diffusion equation, have
been studied and solved by many researchers, namely Atabong & Oyesanya [2],
Henry and Wearne [8], Seki et al.[21], Akil et al.[1], Saxena et al.[17,18, 19].

Linear space-time fractional reaction-diffusion equation on a finite domain 0 <
x < L, t > 0 with 0 < α ≤ 1 and 1 < β ≤ 2 is given by [24, 25]

∗D
α
t u (x, t) = b (x) ∗D

β
xu (x, t)− c (x)u (x, t) + f (x, t) (2)

where the coefficient of diffusion b (x) > 0, reaction term c (x) > 0 the function
f (x, t) represents source or sink and ∗D

α
t and ∗D

β
x are fractional derivatives con-

sidered in Caputo sense. Yu et al. [25] and Yildirim and Sezer [24] have used Ado-
mian decomposition method and homotopy perturbation method respectively to
obtain numerical solutions of these equations and Garg and Manohar [6] obtained
analytical solutions of linear space-time fractional reaction-diffusion equations of
the form (2) using generalized differential transform method.

2. Preliminaries

The Riemann-Liouville fractional integral of order α is defined as [12]

Iαt f (t) =
1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ) dτ, 0 < α ≤ 1 (3)

with I0t f (t) = f (t) .
The Riemann-Liouville fractional derivative of order α,m − 1 < α ≤

m,m ∈ N is defined as the left inverse of the corresponding Riemann-Liouville
fractional integral, [12] i.e.

Dα
t f (t) = DmIm−α

t f (t)

=

{
1

Γ(m−α)D
m
∫ t

0
(t− τ)

m−α−1
f (τ) dτ, For m− 1 < α < m

Dmf (t) , For α = m, Dm ≡ dm

dtm .

(4)

The Caputo fractional derivative of orderα, m− 1 < α ≤ m,m ∈ N, is defined
as [3]

∗D
α
t f (t) = Im−α

t Dmf (t) =
1

Γ (m− α)

∫ t

0

(t− τ)
m−α−1

Dmf (τ) dτ. (5)

The Hilfer fractional derivative of order 0 < α ≤ 1 and type 0 ≤ β ≤ 1 is
defined by Hilfer [9] as follows(

Dα,β
t f

)
(t) =

(
I
β(1−α)
t D

(
I
(1−β)(1−α)
t f

))
(t) , (6)

The above definition, in the case β = 0, reduces to the classical Riemann-
Liouville fractional derivative as given below [22](

Dα,0
t f

)
(t) = Dn

(
I
(1−α)
t f

)
(t) = (Dα

t f) (t) (7)

and in the case β = 1, it reduces to the Caputo fractional derivative as(
Dα,1

t f
)
(t) =

(
I
(1−α)
t Dnf

)
(t) = (∗D

α
t f) (t) . (8)

For 0 < β < 1, it interpolates continuously between these two derivatives.
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Recently this definition is extended for n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1,
and is termed as composite fractional derivative or generalized Riemann-
Liouville fractional derivative by Hilfer et al. [10].It is given by(

Dα,β
t f

)
(t) =

(
I
β(n−α)
t Dn

(
I
(1−β)(n−α)
t f

))
(t) . (9)

The Laplace transform L [g (t) ; s] =
∫∞
0
g (t) e−stdt of the composite fractional

derivative (9) is given by [22]

L
[
Dα,β

t f (t)
]
= sαL [f (t)]−

n−1∑
k=0

sn−k−1−β(n−α)Dk
(
I
(1−α)(1−β)
t f

)
(0) . (10)

The Riesz-Feller fractional derivative of order γ, 0 < γ ≤ 2 and skewness θ
is defined as [11]

F {xDγ
θ f (x) ; k} = −ψθ

γ (k) f̄ (k) , (11)

where ψθ
γ (k) = |k|γ ei(signk)θπ/2, |θ| ≤ min {γ, 2− γ} ,f̄ (k)is the Fourier transform

of the function g (x), defined as

f̄ (k) = F {f (x) ; k} =

∫ ∞

−∞
f (x) eikxdx. (12)

with Fourier inverse given by

f (x) = F−1
{
f̄ (k) ;x

}
=

1

2π

∫ ∞

−∞
f̄ (k) e−ikxdk. (13)

The Reisz-Feller fractional derivative with skewness θ = 0 and γ ̸= 1may also be
termed as Riesz fractional derivative, since it is left inverse of a fractional integral,
introduced by Marcel Riesz in late 1940’s, known as Riesz potential. In this case
we write xD

γ
0 ≡ dγ

d|x|γ , and thus Riesz-Feller fractional derivative of order γ, 0 <

γ ≤ 2, γ ̸= 1 and skewness zero is defined by

dγ

d |x|γ
f (x) = F−1

{
− |k|γ f̄ (k) ;x

}
, (14)

The Mittag-Leffler function which is a generalization of exponential function
is defined as [13]

Eα (z) =

∞∑
n=0

zn

Γ (αn+ 1)
, Re (α) > 0. (15)

A generalization of (15) is given in the form [23]

Eα,β (z) =
∞∑

n=0

zn

Γ (αn+ β)
, α, β ∈ C, Re (α) > 0, Re (β) > 0. (16)

3. Solution of linear space-time fractional reaction-diffusion
equation

Theorem 1. We consider the linear space-time fractional reaction-diffusion equa-
tion for the field variable u (x, t) as

Dα,β
t u (x, t) = η

∂γ

∂ |x|γ
u (x, t) + cu (x, t) + ϕ (x, t) , t > 0, −∞ < x <∞, (17)

with boundary conditions

u (±∞, t) = 0, t > 0 (18)
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and initial condition{
I
(1−β)(1−α)
t u (x, t)

}
t→0+

= g (x) , −∞ < x <∞, (19)

where Dα,β
t is the composite fractional derivative operator, defined by (6) with

0 < α ≤ 1, 0 ≤ β ≤ 1, ∂γ

∂|x|γ , is the Riesz-Feller fractional derivative of order

γ, 0 < γ ≤ 2, γ ̸= 1and skewness zero , η > 0 is diffusion coefficient, c > 0 is a
constant with reaction term andϕ (x, t)represents source or sink.
The solution of the problem (18)-(19) is given by

u (x, t) = t−(1−α)(1−β)
∫∞
−∞ ḡ (k)Eα,α+β(1−α) {− (η |k|γ + c) tα} e−ikxdk

+
∫∞
−∞ e−ikx

∫ t

0
τα−1Eα,α {(η |k|γ + 1) τα} ϕ̄ (k, t− τ) dkdτ,

(20)

where ḡ (k)and ϕ̄ (k, t)are Fourier transforms of the functionsg (x)andϕ (x, t) respec-
tively.
Proof. Taking Laplace transform of equation (17) with respect to ‘t’, using condi-
tion (19) and result (10), we get

sαU (x, s)− sβ(α−1)g (x) = η
dγ

d |x|γ
U (x, s) + cU (x, s) + Φ (x, s) , (21)

where U (x, s) and Φ (x, s)are Laplace transforms of functions u (x, t) and ϕ (x, t)
respectively.

Taking Fourier transform of the equation(21) with respect to ‘x’ and using(14),
we get

sαŪ (k, s)− s−β(1−α)ḡ (k) = η
{
− |k|γ Ū (k, s)

}
+ cŪ (k, s) + Φ̄ (k, s) , (22)

where Ū (x, s) and Φ̄ (x, s) are Fourier transforms of functions u (x, t) and ϕ (x, t)
respectively.

On simplification,(22) gives

Ū (k, s) =
s−β(1−α)ḡ (k) + Φ̄ (k, s)

sα + η |k|γ − c
. (23)

Taking inverse Laplace transform of the above equation, using convolution the-
orem for Laplace transform and the following known result [16]

L
[
t−(1−α)(1−β)Eα,1−(1−α)(1−β) (−λtα)

]
=
s−β(1−α)

sα + λ
, s, λ ∈ R+, (24)

we obtain

ū (k, t) = t−(1−α)(1−β)ḡ (k)Eα,α+β(1−α) {− (η |k|γ + c) tα}
+
∫ t

0
τα−1Eα,α {(η |k|γ + 1) τα} ϕ̄ (k, t− τ) dτ,

(25)

where ū (k, t) is Fourier transform of u (x, t).
Taking inverse Fourier transform of (25), we obtain the desired result (20).

Special Cases

(1) On taking β = 1 in Theorem 1, we get the following result
Corollary 1. Consider the linear space-time fractional reaction-diffusion
equation with Caputo fractional derivative in time for the field variable
u (x, t)

∗D
α
t u (x, t) = η

∂γ

∂ |x|γ
u (x, t) + cu (x, t) + ϕ (x, t) , t > 0, −∞ < x <∞, (26)
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with boundary conditions

u (±∞, t) = 0, t > 0 (27)

and initial condition

{u (x, t)}t→0+ = g (x) , −∞ < x <∞, (28)

where ∗D
α
t is the Caputo fractional derivative operator, defined by (5) with

0 < α ≤ 1and all other symbols are as explained in Theorem 1.
The solution of problem (26)-(28) is given by

u (x, t) =
∫∞
−∞ ḡ (k)Eα {− (η |k|γ + c) tα} e−ikxdk

+
∫∞
−∞ e−ikx

∫ t

0
τα−1Eα,α {(η |k|γ + 1) τα} ϕ̄ (k, t− τ) dkdτ,

(29)

where ḡ (k)and ϕ̄ (k, t) are Fourier transforms of the functions g (x) and
ϕ (x, t) respectively.
Further setting γ = 2, we obtain solution of linear time fractional reaction-
diffusion equation with Caputo fractional derivative in time.

(2) On taking β = 0 in Theorem 1, we get the following result
Corollary 2.Consider the linear space-time fractional reaction-diffusion
equation with Riemann-Liouville fractional derivative in time for the field
variable u (x, t)

Dα
t u (x, t) = η

∂γ

∂ |x|γ
u (x, t) + cu (x, t) + ϕ (x, t) , t > 0, −∞ < x <∞, (30)

with boundary conditions

u (±∞, t) = 0, t > 0 (31)

and initial condition{
I
(1−α)
t u (x, t)

}
t→0+

= g (x) , −∞ < x <∞, (32)

where Dα
t is the Riemann-Liouville fractional derivative operator, defined

by (4) with 0 < α ≤ 1and all other symbols are as explained in Theorem 1.
The solution of problem (30)-(32) is given by

u (x, t) = t−(1−α)
∫∞
−∞ ḡ (k)Eα,α {− (η |k|γ + c) tα} e−ikxdk

+
∫∞
−∞ e−ikx

∫ t

0
τα−1Eα,α {(η |k|γ + 1) τα} ϕ̄ (k, t− τ) dkdτ,

(33)

where ḡ (k)and ϕ̄ (k, t) are Fourier transforms of the functions g (x) and
ϕ (x, t) respectively.
Further setting γ = 2, we obtain solution of the linear time fractional
reaction-diffusion equation with Riemann-Liouville fractional derivative in
time.

(3) If we take α = 1 in Theorem 1, we get the following result
Corollary 3. Consider the linear space fractional reaction-diffusion equa-
tion for the field variable u (x, t)

Dtu (x, t) = η
∂γ

∂ |x|γ
u (x, t) + cu (x, t) + ϕ (x, t) , t > 0,−∞ < x <∞, (34)

with boundary conditions

u (±∞, t) = 0, t > 0 (35)
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and initial condition

{u (x, t)}t→0+ = g (x) ,−∞ < x <∞, (36)

where the symbols are as explained in Theorem 1.
The solution of problem (34)-(36) is given by

u (x, t) =
∫∞
−∞ ḡ (k) e{−(η|k|γ+c)t}−ikxdk

+
∫∞
−∞ e−ikx

∫ t

0
e{(η|k|

γ+1)τ}ϕ̄ (k, t− τ) dkdτ,
(37)

where ḡ (k)and ϕ̄ (k, t) are Fourier transforms of the functions g (x) and
ϕ (x, t) respectively.
Further setting γ = 2, we obtain solution of the linear reaction-diffusion
equation.

(4) Making c→ 0 in Theorem 1, we obtain solution of inhomogeneous fractional
diffusion equation with composite fractional time derivative and Reisz Feller
fractional space derivative. The problem is same as considered recently by
Saxena et al.[20]. (They have termed it as fractional reaction-diffusion
equation)

(5) Making c→ 0 and ϕ (x, t) = 0 in Theorem 1, we obtain solution of the gen-
eralized space-time fractional diffusion equation with composite fractional
time derivative as studied by Tomovski [22].

(6) Making c→ 0 and γ = 2 in Theorem 1, we obtain solution of time fractional
inhomogeneous diffusion equation with composite fractional time derivative
as studied by Sandev et al. [16].

(7) Making c → 0 and β = 1 in Theorem 1, we obtain solution of space-
time fractional diffusion equation with Caputo fractional time derivative as
studied by Houbold et al. [7].

Conclusion
In this research work, we consider a linear space-time fractional reaction-diffusion

equation with composite fractional derivative for time and Riesz-Feller fractional
derivative with skewness zero for space. Since fractional reaction-diffusion equation
models many real world problems more realistically and composite fractional deriv-
ative leads to a very flexible framework for the description of complex processes, the
problem considered here addresses to more realistic and complex class of problems.
We apply Laplace and Fourier transforms to obtain its solution and also provide
solutions of some new or known reaction-diffusion equations with other well known
fractional derivatives.
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