Journal of Fractional Calculus and Applications, Vol. 5(1) Jan. 2014, pp. 122-128. ISSN: 2090-5858. http://fcag-egypt.com/Journals/JFCA/

COEFFICIENT BOUND FOR A NEW CLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

DEEPAK BANSAL, JANUSZ SOKÓŁ

ABSTRACT. In the present investigation we consider a new class of bi-univalent functions in the unit disk Δ using subordination and obtain estimates for the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

which are analytic in the open unit disk $\Delta = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and S denote the subclass of class A consisting functions in A which are also univalent in Δ . A domain $D \subset \mathbb{C}$ is convex if the line segment joining any two points in D lies entirely in D, while a domain is starlike with respect to a point $w_0 \in D$ if the line segment joining any point of D to w_0 lies inside D. A function $f \in A$ is starlike if $f(\Delta)$ is a starlike domain with respect to origin, and convex if $f(\Delta)$ is convex. Analytically, $f \in A$ is starlike if and only if $\Re e\left(\frac{zf'(z)}{f(z)}\right) > 0$ in Δ , whereas $f \in A$ is convex if and only if $\Re e\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0$. The classes consisting of starlike and convex functions are denoted by S^* and \mathcal{K} respectively. The classes $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order α , $0 \le \alpha < 1$, are respectively characterized by $\Re e\left(\frac{zf'(z)}{f(z)}\right) > \alpha$ and $\Re e\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha$ in Δ , $f \in \mathcal{A}$. Also let \mathcal{P} denote the family of analytic functions p(z) in Δ such that p(0) = 1 and $\Re e(p(z)) > 0$ in Δ .

An analytic function f is subordinate to an analytic function g, written as $f(z) \prec g(z)$ ($z \in \mathbb{U}$), if there is an analytic function w defined on Δ with w(0) = 0 and |w(z)| < 1, $z \in \Delta$ such that f(z) = g(w(z)). In particular, if g is univalent in Δ then we have the following equivalence:

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta).$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

 $Key\ words\ and\ phrases.$ Analytic functions, Subordination, univalent functions, Bi-univalent functions.

Submitted 2013 .

JFCA-2014/5(1)

It is well known by the Koebe one quarter theorem [5] that the image of Δ under every function $f \in S$ contains a disk of radius 1/4. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z)) = z$, $(z \in \Delta)$ and

$$f(f^{-1}(w)) = w (|w| < r_0(f), r_0(f) \ge 1/4).$$

The inverse of f(z) has a series expansion in some disk about the origin of the form

$$f^{-1}(w) = w + \gamma_2 w^2 + \gamma_3 w^3 + \dots$$
 (2)

It was shown early [11, 14] that the inverse of the Koebe function provides the best bound for all $|\gamma_k|$. New proofs of the latter along with unexpected and unusual behavior of the coefficients γ_k for various subclasses of S have generated further interest in this problem [7, 8, 9, 16].

A function f(z) univalent in a neighborhood of the origin and its inverse satisfy the condition $f(f^{-1}(w)) = w$. Using (1), we have

$$w = f^{-1}(w) + a_2 (f^{-1}(w))^2 + a_3 (f^{-1}(w))^3 + \dots$$
(3)

Now using (2) we get the following result

$$q(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 + \cdots$$
(4)

A function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if both f and f^{-1} are univalent in Δ . Let Σ denote the class of all bi-univalent functions defined in the unit disk Δ given by the Taylor-Maclaurin series expansion (1). Note the familiar Koebe function is not a member of Σ because it maps unit disk univalently onto entire complex plane minus slit along -1/4 to $-\infty$. Hence the image domain does not contain unit disk.

Lewin [10] investigated the class Σ of bi-univalent functions and showed that $|a_2| < 1.51$. Subsequently, Brannan and Clunie [2] conjectured that $|a_2| \leq \sqrt{2}$. Netanyahu [13], on the other hand, showed that $\max_{f \in \Sigma} |a_2| = 4/3$. The coefficient estimate problem i.e. bound of $|a_n|$ $(n \in \mathbb{N} \setminus \{1, 2\})$ for each $f \in \Sigma$ given by (1) is still an open problem. Several authors have subsequently studied similar problems in this direction. In [3] (see also [4, 18, 19]), certain subclasses of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ were found. In the present investigation, estimates on the initial coefficients of a new class of bi-univalent functions are obtained. Several related classes are also considered and a connection to earlier known result are made. The classes introduced in this paper are motivated by the corresponding classes investigated in [6, 12, 15]

Let φ be an analytic function with positive real part on Δ , satisfying $\varphi(0) = 1$, $\varphi'(0) > 0$, and $\varphi(\Delta)$ is symmetric with respect to the real axis. Such a function has a series expansion of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \dots (B_1 > 0).$$
(5)

We now introduce the following class of functions:

Definition 1.1. Let $0 \leq \gamma \leq 1$, $\tau \in \mathbb{C} \setminus \{0\}$. A function $f \in \Sigma$ is in the class $\Sigma S_{\gamma}^{\tau}(\varphi)$, if the following subordinations hold:

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{f(z)}{z} + \gamma f'(z) - 1 \right] \prec \varphi(z) \ (z \in \Delta)$$

$$\tag{6}$$

and

124

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{g(w)}{w} + \gamma g'(w) - 1 \right] \prec \varphi(w) \ (w \in \Delta), \tag{7}$$

where $g(w) = f^{-1}(w)$.

We list few particular cases of this class discussed in the literature

[1] If we set $\gamma = 1$ and $\tau = 1$ in $\Sigma S_{\gamma}^{\tau}(\varphi)$ we obtain the class introduced in [1].

[2] If we set $\gamma = 1$ and $\tau = 1$ and $\varphi(z) = \frac{1+(1-2\beta)z}{1-z}$ $(0 \le \beta < 1)$ we obtain the class introduced in [17, p. 1191].

[3] If we set $\gamma = 1$ and $\tau = 1$ and $\varphi(z) = \left(\frac{1+z}{1-z}\right)^{\alpha}$ $(0 < \alpha \le 1)$ we obtain the class introduced in [17, p. 1190].

For more details about these classes see the corresponding references.

Further if we set $\tau = 1$, $\gamma = 0$ and $\varphi(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1; z \in \Delta)$ in Definition 1.1, we obtain a new class $\Sigma S(A, B)$ defined in the following way. A function $f \in \Sigma$ is in the class $\Sigma S(A, B)$, if the following subordinations hold:

$$\frac{f(z)}{z} \prec \frac{1+Az}{1+Bz} \quad and \quad \frac{g(w)}{w} \prec \frac{1+Aw}{1+Bw} \ (z, w \in \Delta), \tag{8}$$

where $g(w) = f^{-1}(w)$.

To prove our main result we need following Lemma:

Lemma 1.1 (see [5]). Let the function $p \in \mathcal{P}$ be given by the series

$$p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots \quad (z \in \Delta),$$
(9)

then, the sharp estimate

$$|c_n| \le 2 \ (n \in \mathbb{N}),\tag{10}$$

holds.

2. Main Results

For functions in the class $\Sigma S^{\tau}_{\gamma}(\varphi)$, the following result is obtained.

Theorem 2.1. Let $f(z) \in \Sigma S^{\tau}_{\gamma}(\varphi)$ is of the form (1), then

$$|a_2| \le \frac{|\tau| B_1^{3/2}}{\sqrt{\left|\tau B_1^2 (1+2\gamma) + (1+\gamma)^2 (B_1 - B_2)\right|}}$$
(11)

and

$$|a_3| \le B_1 |\tau| \left(\frac{1}{1+2\gamma} + \frac{B_1 |\tau|}{(1+\gamma)^2} \right).$$
(12)

Proof. Let $f \in \Sigma S_{\gamma}^{\tau}(\varphi)$ and $g = f^{-1}$. Then there are analytic functions $u, v : \Delta \to \Delta$, with u(0) = v(0) = 0, satisfying

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{f(z)}{z} + \gamma f'(z) - 1 \right] = \varphi(u(z)) \ (z \in \Delta)$$

$$\tag{13}$$

and

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{g(w)}{w} + \gamma g'(w) - 1 \right] = \varphi(v(w)) \ (w \in \Delta).$$

$$(14)$$

JFCA-2014/5(1)

Define the functions p_1 and p_2 by

$$p_1(z) = \frac{1+u(z)}{1-u(z)} = 1+c_1z+c_2z^2+\cdots$$
 and $p_2(z) = \frac{1+v(z)}{1-v(z)} = 1+b_1z+b_2z^2+\cdots$.

Then p_1 and p_2 are analytic in Δ with $p_1(0) = 1 = p_2(0)$. Since $u, v : \Delta \to \Delta$, the functions p_1 and p_2 have a positive real part in Δ , and in view of Lemma 1.1

$$|b_n| \le 2 \quad and \quad |c_n| \le 2 \ (n \in \mathbb{N}). \tag{15}$$

Solving for u(z) and v(z) we have

$$u(z) = \frac{p_1(z) - 1}{p_1(z) + 1} = \frac{1}{2} \left(c_1 z + \left(c_2 - \frac{c_1^2}{2} \right) z^2 + \cdots \right) (z \in \Delta).$$
(16)

and

$$v(z) = \frac{p_2(z) - 1}{p_2(z) + 1} = \frac{1}{2} \left(b_1 z + \left(b_2 - \frac{b_1^2}{2} \right) z^2 + \cdots \right) (z \in \Delta).$$
(17)

In view of (5) and (13)-(17), clearly

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{f(z)}{z} + \gamma f'(z) - 1 \right]$$

= $\varphi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right)$
= $1 + \frac{1}{2} B_1 c_1 z + \left(\frac{1}{2} B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{1}{4} B_2 c_1^2 \right) z^2 + \cdots$ (18)

and

$$1 + \frac{1}{\tau} \left[(1 - \gamma) \frac{g(w)}{w} + \gamma g'(w) - 1 \right]$$

= $\varphi \left(\frac{p_2(w) - 1}{p_2(w) + 1} \right)$
= $1 + \frac{1}{2} B_1 b_1 w + \left(\frac{1}{2} B_1 \left(b_2 - \frac{b_1^2}{2} \right) + \frac{1}{4} B_2 b_1^2 \right) w^2 + \cdots$ (19)

Since $f \in \Sigma$ has the Maclaurin series given by (1), a computation shows that its inverse $g = f^{-1}$ has the expansion

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 + \cdots$$
 (20)

Using (1) and (20) in (18) and (19), we obtain

$$\frac{(1+\gamma)a_2}{\tau} = \frac{B_1c_1}{2},$$
(21)

$$\frac{(1+2\gamma)a_3}{\tau} = \frac{1}{2}B_1\left(c_2 - \frac{c_1^2}{2}\right) + \frac{1}{4}B_2c_1^2,\tag{22}$$

$$\frac{-(1+\gamma)a_2}{\tau} = \frac{B_1b_1}{2}$$
(23)

and

$$\frac{(1+2\gamma)\left(2a_2^2-a_3\right)}{\tau} = \frac{1}{2}B_1\left(b_2-\frac{b_1^2}{2}\right) + \frac{1}{4}B_2b_1^2.$$
(24)

From (21) and (23), it follows that $c_1 = -b_1$. Further computation gives

$$a_2^2 = \frac{\tau^2 B_1^3 (b_2 + c_2)}{4 \left[\tau B_1^2 (1 + 2\gamma) + (1 + \gamma)^2 (B_1 - B_2) \right]}.$$
(25)

and

$$a_3 = \frac{B_1^2 \tau^2 b_1^2}{4(1+\gamma)^2} + \frac{B_1 \tau}{4(1+2\gamma)} \left(c_2 - b_2\right).$$
(26)

In view of Lemma 1.1 we get the desired result (11) and (12).

Remark 2.1. If we set $\gamma = 1$ and $\tau = 1$ in Theorem 2.1 we get Theorem 2.1 of [1].

If we set

$$\varphi(z) = \frac{1+Az}{1+Bz} \ (-1 \le B < A \le 1; z \in \Delta)$$

$$(27)$$

in Theorem 2.1, we get the following Corollary:

Corollary 2.1. Let $f(z) \in \Sigma S_{\gamma}^{\tau}(\frac{1+Az}{1+Bz})$ is of the form (1), then

$$|a_2| \le \frac{|\tau| (A - B)}{\sqrt{\left|\tau(A - B)(1 + 2\gamma) + (1 + \gamma)^2(1 + B)\right|}}$$
(28)

and

$$|a_3| \le (A-B) |\tau| \left(\frac{1}{1+2\gamma} + \frac{(A-B) |\tau|}{(1+\gamma)^2} \right).$$
 (29)

Remark 2.2. If we set $\gamma = 1$, $\tau = 1$, $A = 1 - 2\beta$ ($0 \le \beta < 1$) and B = -1 in Corollary 2.1 we get the Theorem 2 of [17].

Corollary 2.2. Let $f(z) \in \Sigma S^{\tau}_{\gamma}(\left(\frac{1+z}{1-z}\right)^{\alpha})$ is of the form (1), then

$$|a_2| \le \frac{2|\tau|\alpha}{\sqrt{\left|2\alpha\tau(1+2\gamma) + (1+\gamma)^2(1-\alpha)\right|}}$$
(30)

and

$$|a_3| \le 2\alpha |\tau| \left(\frac{1}{1+2\gamma} + \frac{2\alpha |\tau|}{\left(1+\gamma\right)^2} \right). \tag{31}$$

Remark 2.3. Further if we set $\gamma = 1$, $\tau = 1$ in Corollary 2.2, we get Theorem 1 of [17].

Finally setting $\tau = 1, \gamma = 0$ in Corollary 2.1, we get the following new result:

Corollary 2.3. Let $f(z) \in \Sigma S(A, B)$ is of the form (1), then

$$|a_2| \le \frac{A-B}{\sqrt{A+1}}$$
 and $|a_3| \le (A-B+1)(A-B).$ (32)

Acknowledgement

The present investigation of first author is supported by Department of Science and

Technology, New Delhi, Government of India under Sanction Letter No.SR/FTP/MS-015/2010.

References

- R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012) 344–351.
- [2] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
- [3] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18–21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53–60; see also Studia Univ. Babes-Bolyai, Math. 31 (2) (1986) 70–77.
- [4] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970) 476–485.
- [5] P. L. Duren, Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [6] Y.C. Kim and F. Rønning, Integral tranform of certain subclasses of analytic functions, J. Math. Anal. Appl. 258(2001) 466–486.
- W. E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Analyse Math. 36(1979), 167–178 (1980).
- [8] Jan G. Krzyż., Richard J. Libera, and Eligiusz Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103-110 (1981) (English, with Russian and Polish summaries).
- [9] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(1982), 225–230.
- [10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967) 63–68.
- K. Lowner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89(1923), no. 1-2, 103-121 (German).
- [12] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Lang, and S. Zhang, Eds., 157-169, International Press, Cambridge, Mass, USA.
- [13] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal. 32(1969) 100–112.
- [14] Ch. Pommerenke, Univalent functions with a chapter on Quadratic Differentials by Gerd Jensen; Vandenhoeck and Ruprecht, Göttingen, 1975. With a chapter on Quadratic Differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbcher, Band XXV.
- [15] S. Ponnusamy and F. Ronning, Integral transform of a class of analytic functions, Complex Var. Elliptic Equ., 53(5)(2008), 423–434.
- [16] G. Schober, Coefficient estimates for inverses of schlicht functions, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979), Academic Press, London, 1980, pp. 503-513.
- [17] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23(2010) 1188–1192.
- [18] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
- [19] Q.H. Xu, Y.C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990–994.

Deepak Bansal

Department of Mathematics, Govt. College of Engg. and Technology, Bikaner 334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com

Janusz Sokół

Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

 $E\text{-}mail \ address: \texttt{jsokol@prz.edu.pl}$