COEFFICIENT BOUND FOR A NEW CLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

DEEPAK BANSAL, JANUSZ SOKÓモ

Abstract

In the present investigation we consider a new class of bi-univalent functions in the unit disk Δ using subordination and obtain estimates for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

1. Introduction and Preliminaries

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and \mathcal{S} denote the subclass of class \mathcal{A} consisting functions in \mathcal{A} which are also univalent in Δ. A domain $D \subset \mathbb{C}$ is convex if the line segment joining any two points in D lies entirely in D, while a domain is starlike with respect to a point $w_{0} \in D$ if the line segment joining any point of D to w_{0} lies inside D. A function $f \in \mathcal{A}$ is starlike if $f(\Delta)$ is a starlike domain with respect to origin, and convex if $f(\Delta)$ is convex. Analytically, $f \in \mathcal{A}$ is starlike if and only if $\mathfrak{R e}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0$ in Δ, whereas $f \in \mathcal{A}$ is convex if and only if $\mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0$. The classes consisting of starlike and convex functions are denoted by \mathcal{S}^{*} and \mathcal{K} respectively. The classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha, 0 \leq \alpha<1$, are respectively characterized by $\mathfrak{R e}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha$ and $\mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha$ in $\Delta, f \in \mathcal{A}$. Also let \mathcal{P} denote the family of analytic functions $p(z)$ in Δ such that $p(0)=1$ and $\mathfrak{R e}(p(z))>0$ in Δ.

An analytic function f is subordinate to an analytic function g, written as $f(z) \prec$ $g(z)(z \in \mathbb{U})$, if there is an analytic function w defined on Δ with $w(0)=0$ and $|w(z)|<1, z \in \Delta$ such that $f(z)=g(w(z))$. In particular, if g is univalent in Δ then we have the following equivalence:

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\Delta) \subset g(\Delta) .
$$

[^0]It is well known by the Koebe one quarter theorem [5] that the image of Δ under every function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \Delta)$ and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)
$$

The inverse of $f(z)$ has a series expansion in some disk about the origin of the form

$$
\begin{equation*}
f^{-1}(w)=w+\gamma_{2} w^{2}+\gamma_{3} w^{3}+\ldots \tag{2}
\end{equation*}
$$

It was shown early [11, 14] that the inverse of the Koebe function provides the best bound for all $\left|\gamma_{k}\right|$. New proofs of the latter along with unexpected and unusual behavior of the coefficients γ_{k} for various subclasses of \mathcal{S} have generated further interest in this problem [7, 8, 9, 16].
A function $f(z)$ univalent in a neighborhood of the origin and its inverse satisfy the condition $f\left(f^{-1}(w)\right)=w$. Using (1), we have

$$
\begin{equation*}
w=f^{-1}(w)+a_{2}\left(f^{-1}(w)\right)^{2}+a_{3}\left(f^{-1}(w)\right)^{3}+\ldots \tag{3}
\end{equation*}
$$

Now using (2) we get the following result

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{4}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if both f and f^{-1} are univalent in Δ. Let Σ denote the class of all bi-univalent functions defined in the unit disk Δ given by the Taylor-Maclaurin series expansion (1). Note the familiar Koebe function is not a member of Σ because it maps unit disk univalently onto entire complex plane minus slit along $-1 / 4$ to $-\infty$. Hence the image domain does not contain unit disk.

Lewin [10] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [13], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$. The coefficient estimate problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\})$ for each $f \in \Sigma$ given by (1) is still an open problem. Several authors have subsequently studied similar problems in this direction. In [3] (see also [4, 18, 19]), certain subclasses of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found. In the present investigation, estimates on the initial coefficients of a new class of bi-univalent functions are obtained. Several related classes are also considered and a connection to earlier known result are made. The classes introduced in this paper are motivated by the corresponding classes investigated in [6, 12, 15]

Let φ be an analytic function with positive real part on Δ, satisfying $\varphi(0)=$ $1, \varphi^{\prime}(0)>0$, and $\varphi(\Delta)$ is symmetric with respect to the real axis. Such a function has a series expansion of the form

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots\left(B_{1}>0\right) \tag{5}
\end{equation*}
$$

We now introduce the following class of functions:
Definition 1.1. Let $0 \leq \gamma \leq 1, \tau \in \mathbb{C} \backslash\{0\}$. A function $f \in \Sigma$ is in the class $\Sigma S_{\gamma}^{\tau}(\varphi)$, if the following subordinations hold:

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\gamma) \frac{f(z)}{z}+\gamma f^{\prime}(z)-1\right] \prec \varphi(z)(z \in \Delta) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\gamma) \frac{g(w)}{w}+\gamma g^{\prime}(w)-1\right] \prec \varphi(w)(w \in \Delta) \tag{7}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
We list few particular cases of this class discussed in the literature
[1] If we set $\gamma=1$ and $\tau=1$ in $\Sigma S_{\gamma}^{\tau}(\varphi)$ we obtain the class introduced in [1].
[2] If we set $\gamma=1$ and $\tau=1$ and $\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$ we obtain the class introduced in [17, p. 1191].
[3] If we set $\gamma=1$ and $\tau=1$ and $\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$ we obtain the class introduced in [17, p. 1190].
For more details about these classes see the corresponding references.
Further if we set $\tau=1, \gamma=0$ and $\varphi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1 ; z \in \Delta)$ in Definition 1.1, we obtain a new class $\Sigma S(A, B)$ defined in the following way.
A function $f \in \Sigma$ is in the class $\Sigma S(A, B)$, if the following subordinations hold:

$$
\begin{equation*}
\frac{f(z)}{z} \prec \frac{1+A z}{1+B z} \text { and } \frac{g(w)}{w} \prec \frac{1+A w}{1+B w}(z, w \in \Delta) \text {, } \tag{8}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
To prove our main result we need following Lemma:
Lemma 1.1 (see [5]). Let the function $p \in \mathcal{P}$ be given by the series

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots(z \in \Delta) \tag{9}
\end{equation*}
$$

then, the sharp estimate

$$
\begin{equation*}
\left|c_{n}\right| \leq 2(n \in \mathbb{N}) \tag{10}
\end{equation*}
$$

holds.

2. Main Results

For functions in the class $\Sigma S_{\gamma}^{\tau}(\varphi)$, the following result is obtained.
Theorem 2.1. Let $f(z) \in \Sigma S_{\gamma}^{\tau}(\varphi)$ is of the form (1), then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau| B_{1}^{3 / 2}}{\sqrt{\left|\tau B_{1}^{2}(1+2 \gamma)+(1+\gamma)^{2}\left(B_{1}-B_{2}\right)\right|}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq B_{1}|\tau|\left(\frac{1}{1+2 \gamma}+\frac{B_{1}|\tau|}{(1+\gamma)^{2}}\right) \tag{12}
\end{equation*}
$$

Proof. Let $f \in \Sigma S_{\gamma}^{\tau}(\varphi)$ and $g=f^{-1}$. Then there are analytic functions u, v : $\Delta \rightarrow \Delta$, with $u(0)=v(0)=0$, satisfying

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\gamma) \frac{f(z)}{z}+\gamma f^{\prime}(z)-1\right]=\varphi(u(z))(z \in \Delta) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[(1-\gamma) \frac{g(w)}{w}+\gamma g^{\prime}(w)-1\right]=\varphi(v(w))(w \in \Delta) \tag{14}
\end{equation*}
$$

Define the functions p_{1} and p_{2} by
$p_{1}(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1} z+c_{2} z^{2}+\cdots$ and $p_{2}(z)=\frac{1+v(z)}{1-v(z)}=1+b_{1} z+b_{2} z^{2}+\cdots$.
Then p_{1} and p_{2} are analytic in Δ with $p_{1}(0)=1=p_{2}(0)$. Since $u, v: \Delta \rightarrow \Delta$, the functions p_{1} and p_{2} have a positive real part in Δ, and in view of Lemma 1.1

$$
\begin{equation*}
\left|b_{n}\right| \leq 2 \quad \text { and } \quad\left|c_{n}\right| \leq 2(n \in \mathbb{N}) \tag{15}
\end{equation*}
$$

Solving for $u(z)$ and $v(z)$ we have

$$
\begin{equation*}
u(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left(c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right)(z \in \Delta) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{p_{2}(z)-1}{p_{2}(z)+1}=\frac{1}{2}\left(b_{1} z+\left(b_{2}-\frac{b_{1}^{2}}{2}\right) z^{2}+\cdots\right)(z \in \Delta) . \tag{17}
\end{equation*}
$$

In view of (5) and (13)-17), clearly

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\gamma) \frac{f(z)}{z}+\gamma f^{\prime}(z)-1\right] \\
= & \varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \\
= & 1+\frac{1}{2} B_{1} c_{1} z+\left(\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right) z^{2}+\cdots . \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{\tau}\left[(1-\gamma) \frac{g(w)}{w}+\gamma g^{\prime}(w)-1\right] \\
= & \varphi\left(\frac{p_{2}(w)-1}{p_{2}(w)+1}\right) \\
= & 1+\frac{1}{2} B_{1} b_{1} w+\left(\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2}\right) w^{2}+\cdots . \tag{19}
\end{align*}
$$

Since $f \in \Sigma$ has the Maclaurin series given by (1), a computation shows that its inverse $g=f^{-1}$ has the expansion

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{20}
\end{equation*}
$$

Using (1) and (20) in (18) and 19 , we obtain

$$
\begin{gather*}
\frac{(1+\gamma) a_{2}}{\tau}=\frac{B_{1} c_{1}}{2} \tag{21}\\
\frac{(1+2 \gamma) a_{3}}{\tau}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} \tag{22}\\
\frac{-(1+\gamma) a_{2}}{\tau} \tag{23}
\end{gather*}=\frac{B_{1} b_{1}}{2} .
$$

and

$$
\begin{equation*}
\frac{(1+2 \gamma)\left(2 a_{2}^{2}-a_{3}\right)}{\tau}=\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2} . \tag{24}
\end{equation*}
$$

From (21) and 23), it follows that $c_{1}=-b_{1}$. Further computation gives

$$
\begin{equation*}
a_{2}^{2}=\frac{\tau^{2} B_{1}^{3}\left(b_{2}+c_{2}\right)}{4\left[\tau B_{1}^{2}(1+2 \gamma)+(1+\gamma)^{2}\left(B_{1}-B_{2}\right)\right]} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{B_{1}^{2} \tau^{2} b_{1}^{2}}{4(1+\gamma)^{2}}+\frac{B_{1} \tau}{4(1+2 \gamma)}\left(c_{2}-b_{2}\right) \tag{26}
\end{equation*}
$$

In view of Lemma 1.1 we get the desired result 11 and 12 .
Remark 2.1. If we set $\gamma=1$ and $\tau=1$ in Theorem 2.1 we get Theorem 2.1 of [1].

If we set

$$
\begin{equation*}
\varphi(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1 ; z \in \Delta) \tag{27}
\end{equation*}
$$

in Theorem 2.1, we get the following Corollary:
Corollary 2.1. Let $f(z) \in \Sigma S_{\gamma}^{\tau}\left(\frac{1+A z}{1+B z}\right)$ is of the form (1), then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\tau|(A-B)}{\sqrt{\left|\tau(A-B)(1+2 \gamma)+(1+\gamma)^{2}(1+B)\right|}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq(A-B)|\tau|\left(\frac{1}{1+2 \gamma}+\frac{(A-B)|\tau|}{(1+\gamma)^{2}}\right) \tag{29}
\end{equation*}
$$

Remark 2.2. If we set $\gamma=1, \tau=1, A=1-2 \beta(0 \leq \beta<1)$ and $B=-1$ in Corollary 2.1 we get the Theorem 2 of 17 .

Corollary 2.2. Let $f(z) \in \Sigma S_{\gamma}^{\tau}\left(\left(\frac{1+z}{1-z}\right)^{\alpha}\right)$ is of the form (1), then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2|\tau| \alpha}{\sqrt{\left|2 \alpha \tau(1+2 \gamma)+(1+\gamma)^{2}(1-\alpha)\right|}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2 \alpha|\tau|\left(\frac{1}{1+2 \gamma}+\frac{2 \alpha|\tau|}{(1+\gamma)^{2}}\right) \tag{31}
\end{equation*}
$$

Remark 2.3. Further if we set $\gamma=1, \tau=1$ in Corollary 2.2, we get Theorem 1 of [17].

Finally setting $\tau=1, \gamma=0$ in Corollary 2.1, we get the following new result:
Corollary 2.3. Let $f(z) \in \Sigma S(A, B)$ is of the form (1), then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{\sqrt{A+1}} \text { and }\left|a_{3}\right| \leq(A-B+1)(A-B) \tag{32}
\end{equation*}
$$

Acknowledgement

The present investigation of first author is supported by Department of Science and

Technology, New Delhi, Government of India under Sanction Letter No.SR/FTP/MS015/2010.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012) 344-351.
[2] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
[3] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press (Elsevier Science Limited), Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai, Math. 31 (2) (1986) 70-77.
[4] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970) 476-485.
[5] P. L. Duren, Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[6] Y .C. Kim and F. Rønning, Integral tranform of certain subclasses of analytic functions, J . Math. Anal. Appl. 258(2001) 466-486.
[7] W. E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Analyse Math. 36(1979), 167-178 (1980).
[8] Jan G. Krzyż., Richard J. Libera, and Eligiusz Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103-110 (1981) (English, with Russian and Polish summaries).
[9] R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(1982), 225-230.
[10] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967) 63-68.
[11] K. Lowner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89(1923), no. 1-2, 103-121 (German).
[12] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Lang, and S. Zhang, Eds., 157-169, International Press, Cambridge, Mass, USA.
[13] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32(1969) 100-112.
[14] Ch. Pommerenke, Univalent functions with a chapter on Quadratic Differentials by Gerd Jensen;, Vandenhoeck and Ruprecht, Göttingen, 1975. With a chapter on Quadratic Differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbcher, Band XXV.
[15] S. Ponnusamy and F. Ronning, Integral transform of a class of analytic functions, Complex Var. Elliptic Equ., 53(5)(2008), 423-434.
[16] G. Schober, Coefficient estimates for inverses of schlicht functions, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979), Academic Press, London, 1980, pp. 503-513.
[17] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23(2010) 1188-1192.
[18] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[19] Q.H. Xu, Y.C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.

Deepak Bansal
Department of Mathematics, Govt. College of Engg. and Technology, Bikaner 334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com

Janusz Sokó́
Department of Mathematics, Rzeszów University of Technology, al. Powstańców Warszawy
12, 35-959 Rzeszów, Poland
E-mail address: jsokol@prz.edu.pl

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions, Subordination, univalent functions, Bi-univalent functions.

 Submitted 2013 .

