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AN EFFICIENT METHOD FOR SOLVING FRACTIONAL

DIFFERENTIAL EQUATIONS USING BERNSTEIN

POLYNOMIALS

RAJESH K. PANDEY, ABHINAV BHARDWAJ, AND MUHAMMED I. SYAM

Abstract. In this paper we propose an efficient numerical technique for solv-

ing fractional initial value problems. It is based on the Bernstein polynomials.

We derive an explicit form for the Bernstein operational matrix of fractional

order integration. Numerical results are presented. In order to show the effi-

ciency of the presented method, we compare our results with some operational

matrix techniques.

1. Introduction

Fractional calculus is a branch of mathematics that deals with a generaliza-

tion of the well-known operations of differentiations and integrations to arbitrary

fractional orders. Fractional derivative provides an excellent instrument for the de-

scription of memory and hereditary properties of various materials and processes.

This is the main advantage of fractional derivatives in comparison with the classical

integer-order models in which such effects are in fact neglected. Fractional calculus

found many applications in various fields of physical sciences such as electrochemical

process [1-2], dielectric polarization [3], earthquakes [4], fluid-dynamic traffic model

[5], solid mechanics [6], bioengineering[7-9] and economics[10]. Fractional deriva-

tives and integrals also appear in theory of control of dynamical systems, when

the controlled system and the controller are described by a fractional differential

equation.

In recent years, a number of methods have been proposed and applied success-

fully to approximate various types of fractional differential equations such as Ado-

mian decomposition method [11-13] and [45], Variational iteration method [14-15]

and [40-42], Homotopy perturbation method [16-17] and [43], Homotopy analysis

method [18], fractional differential transform method [19-23], power series method

[24], and other methods [25-29], [38-39], and [46-48].

1991 Mathematics Subject Classification. 35R11, 26A33, 35B50, 34L15.

Key words and phrases. Bernstein polynomial, Operational matrix of integration, Nonlinear

fractional differential equation.

Submitted July 17, 2013 Revised December 13, 2013.

129



130RAJESH K. PANDEY, ABHINAV BHARDWAJ, AND MUHAMMED I. SYAM JFCA-2014/5(1)

Recently, wavelets operational matrix are used to find the solution of the fractional

differential equations. Li et al. [30] derived the Haar wavelets operational matrix of

fractional order integration with the Block pluse functions. Li [31] used chebyshev

wavelet operational matrix to approximate the solution of the same problem. Saa-

datmandi and Dehghan [32] used the Legendre operational matrix of differentiation

to solve such problems.

Bernstein polynomials have been used for solving partial differential equations [33].

More recently, we used Bernstein’s approximation to find the stable solution of the

problem of Abel inversion [34-35]. Then we studied Abel’a integral equation arising

in classical theory of elasticity [36].

In this paper we present an efficient numerical method for solving linear and non-

linear fractional differential equations. Bernstein operational matrix of fractional

order integration is developed and is applied for solving fractional differential equa-

tions. Some illustrative examples are given to demonstrate the validity and the

effectiveness of the proposed method. Finally, we compare our results with some

operational matrix methods such as chebyshev wavelet and Haar wavelets methods.

2. Bernstein polynomials and function approximation

2.1. Bernstein polynomials. A Bernstein polynomial is a linear combination

of Bernstein basis polynomials. The Bernstein basis polynomials of degree  are

defined by

 () =

µ




¶
(1− )−    = 0 1 2 · · ·   (1)

Let  be the linear space that is consisting of all polynomials of degree less than

or equal to  in <[]-the ring of polynomials over the field <. Then,
{ () :  = 0 1 2 · · ·  }

is a basis for . For simplicity, we assume that   = 0 if   0 or   .

Thus, any polynomial  () in  can be written as

 () =

X
=0

 () (2)

In this case,  () is called a polynomial in Bernstein form and the coefficients 
are called Bernstein coefficients. It is easy to verify the following properties:

(1)  (0) =  0 and   (1) =   , where  is the Kronecker delta func-

tion.

(2)  () has one root, each of multiplicity  and −, at  = 0 and  = 1

respectively.

(3)  () ≥ 0 for  ∈ [0 1] and  (1− ) = − ().
(4) For  6= 0,  has a unique local maximum in [0 1] at  =  and the

maximum value is −(− )−
µ





¶
.

(5)
P

=0 () = 1.

(6)  −1() =
¡
−


¢
 () +

¡
+1


¢
+1 ()

(7) Let () ∈  [0 1], then () () =
P

=0 
¡



¢
 () converges to

() uniformly on [0 1] as  →∞
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(8) Let () ∈ ()[0 1]  then°°°()
()
°°°
∞
≤ ()



°°° ()°°°
∞


°°° () −()

()
°°°
∞
→ 0

as  → ∞, wherek  k ∞ is the supremum norm and

()


=

µ
1− 0



¶ µ
1− 1



¶
· · ·

µ
1−  − 1



¶
is an eigenvalue of . For more details, see [44].

2.2. Function approximation. Using Gram-Schmidt orthonormalization process,

we can normalize the Bernstein basis polynomials. The new set of orthonormal poly-

nomials is denoted by { () :  = 0 1 2 · · ·  }. Any function  in 2[0 1]

can be in terms of { () :  = 0 1 2 · · ·  } as

() = lim
→ ∞

X
=0

   () (3)

where,   = h  i =
1Z
0

() () .

If the series (2.3) is truncated at  = − 1, then we have

 () ∼=
X

=0

   = () (4)

where  and () are × 1 matrices which are given by

 = [0 1 · · ·  ]  (5)

and

() = [0 () 1 () · · ·  ()]  (6)

If the domain is [0  ] where   1, we use define

() = [0 () 1 () · · ·  ()]

where  (
−
 ) =

 (
−
  )√




3. Bernstein operational matrix of fractional order integration

3.1. Fractional integral and derivative. In this section, we review the defini-

tion and some preliminary results of the fractional derivatives.

Definition 1. The Rimann-Liouville fractional integral operator   of order  

0 on the usual Lebesgue space 1[0 1] is given by

 () =
1

Γ()

Z
0

()

(− )1−
 (7)

 0() = () (8)
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where Γ() =
∞R
0

 −1− is the Euler gamma function.

In the next definition we define the Caputo fractional derivative of order 

Definition 2. The Caputo fractional derivative of order  is defined by

 () =  − () =
1

Γ(− )

Z
0

 ()()

(− )−+1
 (9)

provided that the integral exists, where  = [] + 1 [] is the integer part of the

positive real number    0

The following properties hold:

( ) =
Γ(+ 1)

Γ(+ + 1)
+ (10)

and

  () = ()−
−1X
=0

 ()(0+)


!
 (11)

for  ∈ 1[0 1]. From now on all fractional derivatives are in Caputo sense.

3.2. Block Pulse Functions and operational matrix of fractional integra-

tion. A set of  Block Pulse Functions (BPF) on [0 1) are defined as follows:

 () =

½
1 


≤   +1



0 
 (12)

where  = 0 1   − 1 These functions are disjoint and orthogonal, i.e.,

 ()  () =

½
0  6= 

 ()  = 
 (13)

and Z 1

0

 ()  () =

½
0  6= 
1


 = 
 (14)

Kilicman and Al Zhour [37] have obtained the Block Pulse operational matrix of

the fractional order integration  as follows:

(

 ) () =  () (15)

where  () = [0 ()  1 ()      −1()]

,  = ( + 1)

+1 − 2+1 +
( − 1)+1 and

 =
1



1

Γ(+ 2)

⎡⎢⎢⎢⎢⎣
1 1 2  −1
0 1 1    −2
0 0 1    −3
0 0 0  :

0 0 0 0 1

⎤⎥⎥⎥⎥⎦ 

If the domain of the solution in the fractional differential equation is [0  ] where

  1, we can use the same definition for ()
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3.3. Bernstein operational matrix of the fractional integration. In this sec-

tion, we derive the Bernstein polynomials operational matrix of the fractional order

integration. First, we rewrite the Riemann—Liouville fractional order integration as

follows:

  () =
1

Γ()

Z 

0

(− )
−1

 ()  =
1

Γ()
 −1 ∗  ()  (16)

where   0 and −1 ∗  () denotes the convolution product of the functions
−1 and  (). The operational matrix of integration of () which is defined in

equation (2.6), can be obtained asZ 

0

 ()   =  () (17)

where  is × matrix. Orthonormal Bernstein polynomials can be written in

terms of the Block Pulse functions as

 () = Φ× () (18)

where

 () = [0 ()  1 ()      −1 ()]



Let  
× be the Bernstein polynomials operational matrix of the fractional order

integration. Then

  () =  
× ()  (19)

Equations (3.9) and (3.12) imply that

  () =  Φ× () = Φ×   () = Φ× ()  (20)

From equations (3.12), (3.13) and (3.14) we get

 
× () =  

×Φ× () = Φ× ()  (21)

Then, the Bernstein polynomials operational matrix of the fractional order integra-

tion  
× is given by

 
× = Φ×

Φ×−1 (22)

4. Results and discussions

In this section we consider six examples to demonstrate the performance and

efficiency of the present method. Comparison with Haar wavelet operational ma-

trix method (HWOM method) and Chebyshev wavelet operational matrix method

(CWOM method).

Examples 4.1 Consider the linear fractional differential equation, [25],

 () = − ()  0   ≤ 2  (23)

subject to

(0) = 1 0 (0) = 0
The exact solution of the above problem is

 () =  (−)
where

 () =

∞X
=0



Γ( + 1)
 (24)
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It is easy to see that for  = 1 the exact solution is  () = − If 0   ≤ 1 we
use only the condition (0) = 1 For 1   ≤ 2 we use both initial conditions.

Let  () = 
  ()  then

 () =  
  () + 1 = 

 
× () + 1 (25)

Using equation (3.12), we have

 () = 
 

×Φ× () + 1 (26)

From Equation (4.1) and Equation (4.3), we have


 Φ× () +

 
×Φ× () + 1 = 0

or


 Φ× () +

 
×Φ× () + 1 = 0 (27)

For solving Equation (4.5), we use the Matlab function fsolve. Figure 1 represents

the graphs of the exact solution and the approximate solutions using the proposed

method for different values of  which are  = 05 (red), 075 (green), 095 (blue),

and 1 (yellow) for  = 24. Figure 2 represents the graphs of the exact solution

and the approximate solutions using the proposed method, HWOM method, and

HWOM method for  = 1 and  = 24 It is worth mention that the graphs of the

proposed method, HWOM method, and HWOM method for  = 1 are coincide.

Figure 3 represents the graphs of the exact solution and the approximate solutions

using the proposed method for different values of  which are  = 125 (blue), 15

(green), 175 (red), and 195 (yellow) for  = 24. Figure 4 represents the graphs of

the absolute error of the proposed method for  = 125 and  = 24
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Figure 1: Proposed solution (—) and Exact solution (-o-o-)
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Figure 2: Proposed solution (—) with exact one (-o-o-)

0 1 2 3 4 5 6
�1.0

�0.5

0.0

0.5

1.0

t

y�
t�

Figure 3: Proposed solution (—) and Exact solution (-o-o-)
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Figure 4: Absolute error of the proposed method for  = 24
Example 4.2 Consider the nonlinear fractional differential equation, [31],

 2 () +   2  () +   1() +  3() =  ()  0  1 ≤ 1 1  2 ≤ 2
(28)
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subject to

 (0) = 0 (0) = 0

where

 () =
2

Γ(2)
+

2

Γ(4− 2)
3−2 +

2

Γ(4− 1)
3−1 +

9

27


The exact solution of Problem (4.6) is  () = 1
3
3 Let

2 () = 
  () 

 2 () = 
  2−2×  () 

1 () = 
  2−1×  () 

then

() =  2
  () = 

  2
× () = 

  2
×Φ× () 

(29)

Similarly, () can be expanded in terms of the orthonormal Bernstein polynomials

as follows

 ()=  () (30)

or

 ()= Φ× ()  (31)

Assume that


  2× Φ× = [12    ]  (32)

Equation (3.7) implies that

3() =
£
31  32     

3


¤
 ()  (33)

Equations (3.12) and (4.6)-(4.11) give us

 
Φ× () +  


2−2
×Φ× ()+ (34)

 


2−1
× Φ×  () + 

£
31  

3
2    3

¤
 ()−Φ× () = 0

In this example, we chose  = 1  = 1  = 1  = 1 1 = 0333 and 2 = 1234.

For solving Equation (4.12), we use the Matlab function fsolve. Figure 5 represents

the graphs of the exact solution (Red) and the approximate solutions using the

proposed method (green), HWOM method(blue), and HWOM method (yellow )

for  = 24 It is worth mention that the graphs of the proposed method, HWOM

method, and HWOM method for  = 1 are coincide.
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Figure 5: Exact solution, proposed method, HWOM method, and HWOM method
In Table 1 we compare the absolute error of our results with the absolute error of

the results of Li [31]. It is worth mention that the proposed method gives better

results that Li’s results with fewer number of Bernstein polynomials.

Table (1)

t Proposed

method

(m=16)

Li[31]

(m=24)

0.1 1.53E-4 8.195E-5

0.2 2.93 E-4 2.052E-4

0.3 4.23 E-4 2.951E-4

0.4 5.43 E-4 3.054E-4

0.5 6.55 E-4 5.080E-4

0.6 7.60 E-4 4.296E-4

0.7 8.90E-4 6.385E-4

0.8 9.50 E-4 7.118E-4

0.9 1.03 E-3 6.027E-4

Example 4.3 Consider the nonlinear fractional differential equation, [30],

22 ()+ 2  ()+ 1 ()+  3() =  ()  0  1 ≤ 1 1  2 ≤ 2
(35)

subject to

 (0) = 0 (0) = 
00
(0) = 0

where

 () =
2

Γ(18)
08 +

2

Γ(4− 2)
3−2 +

2

Γ(4− 1)
3−1 + 

9

27


The Exact solution of problem (4.13) is  () = 1
3
3 Let

22 () = 
  ()

2 () = 


22−2
×  () 

1 () = 


22−1
×  () 

then

 () = 


22
×Φ× () 
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Using the same procedure as in Example 4.2, we get


Φ× () +


22−2
× Φ× ()+ (36)




22−1
× Φ× () +

£
31  32  

3


¤
 ()− Φ× () = 0

In this example, we chose  = 1  = 1  = 1  = 1 1 = 075 2 = 125. For

solving Equation (4.14), we use Matlab function fsolve. Figure 6 represents the

graphs of the exact solution (red) and the approximate solutions using the proposed

method (green), HWOM method(blue) , and CWOM method (yellow) for  = 24
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Figure 6: Exact solution, proposed method, HWOM method, and CWOM method

In Table 2 we compare the absolute error of our results with absolute error of

the results of Li [30].

Table 2
t Proposed

method

(m=12)

Li [30]

(m=16)

Proposed

method

(m=16)

Li [30]

(m=32)

0.1 3.25E-4 2.0 E-4 1.87E-4 6.96E-5

0.2 6.58E-4 5.0E-4 3.8 E-4 1.17 E-4

0.3 9.72E-4 8.0 E-4 5.6 E-4 1.75 E-4

0.4 1.26E-3 9.0 E-4 7.3 E-4 2.74 E-4

0.5 1.52E-3 1.4 E-3 8.74 E-4 3.52 E-4

0.6 1.76E-3 1.2 E-3 1.01 E-4 3.87 E-4

0.7 1.97E-3 1.7 E-3 1.13 E-4 3.58 E-4

0.8 2.16E-3 1.9 E-3 1.24 E-4 3.96 E-4

0.9 2.33E-3 1.6 E-3 1.34 E-4 5.36 E-4

Example 4.4 Consider the nonlinear fractional differential equation, [30],

20 () +  ()
2  () +  () () +  ()

1() +  ()  () =  () 

subject to

 (0) = 2 0 (0) = 0



JFCA-2014/5(1) AN EFFICIENT METHOD FOR SOLVING 139

where

 () = −  ()

Γ (3− 2)
2−2 −  () +

 ()

Γ (3− 1)
2−1 +  ()

µ
2− 1

2
2
¶


 () = 05

 () = 13

 () = 14

 () = 15

and 0  1 ≤ 1 1  2 ≤ 2 The Exact solution of problem (4.15) is  () =

2− 1
2
2 Let

2 () =  () 

2 () =  2−2× () 

 () =  1× ()

1 () =  2−1× () 

then

 () =  2× () + 2 (37)

Using the same procedure as in Example 4.2, we get

 () +  () 2−2× () +  () 1× () + (38)

 () 2−1× () +  ()
£
 2× () + 2

¤
= () 

In this example, we chose  = 1  1 = 0333 and 2 = 1234. For solving

Equation (4.17), we use Matlab function fsolve. Figure 7 represents the graphs of

the exact solution (red) and the approximate solutions using the proposed method

green), HWOM method (blue), and CWOM method (yellow) for  = 24 Figure 8

represents the graphs of the absolute error of the proposed method for  = 24
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Figure 7: Exact solution, proposed method, HWOM method, and CWOM method
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Figure 8: Absolute error of the proposed method for  = 24
Example 4.5 Consider the nonlinear fractional differential equation, [25],

 () =  ()− 
3
2 ()  0  2 ≤ 2 (39)

subject to

 (0) = 0 0 (0) = 0

where

 () =  () =
40320

Γ (9− )
8− − Γ

¡
5 + 

2

¢
Γ
¡
5− 

2

¢ 4−
2 +

9

4
Γ (+ 1) + (

3

2
2 − 4)

3



The Exact solution of problem (4.18) is  () = 8 − 34+

2 + 9

4
 Let

 () =  () 

2 () =  2−2× () 

 () =  1× ()

1 () =  2−1× () 

then

 () = 
× ()   ()=  ()  (40)

Using the same procedure as in Example 4.2, we generate a system of nonlinear

equations which can be solve by Matlab. Figure 9 represents the graphs of the exact

solution and the approximate solutions using the proposed method for different

values of  which are  = 05 (red), 075 (green), 125 (blue), 15 (yellow), and 175

(black) for  = 24. It is worth mention that the absolute error of the proposed

method for  = 05 075 125 15 175 and  = 24 is less that 2 ∗ 10−3



JFCA-2014/5(1) AN EFFICIENT METHOD FOR SOLVING 141

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

y�
t�

Figure 9: Proposed solution (—) and Exact solution (-o-o-)
Example 4.6 Consider the nonlinear fractional differential equation, [27],

05 () = −  () + 2 +
2

Γ (25)
15 (41)

subject to

 (0) = 0

The Exact solution of problem (4.18) is  () = 2 Using the same procedure

as in Example 4.2, we generate a system of linear equations which can be solve by

Matlab. Figure 10 represents the graphs of the exact solution and the approximate

solutions using the proposed method for  = 24. Figure 11 represents the graphs

of the absolute error of the proposed method for  = 24
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Figure 10: Proposed solution (—) and Exact solution (-o-o-)
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Figure 11: Absolute error of the proposed method for  = 24

In Table 3 we compare the absolute error of our results with absolute error of

the results of Ford [27].

Table 3
Time

t

Error obtained by Diethelm &

Ford [27]

Error ob-

tained using

proposed

method

h=0.1 h=0.04

5 0.010995 0.002819 0.000426

10 0.012018 0.003067 0.000312

5. Conclusion

In this paper we present an efficient numerical method for solving linear and

nonlinear fractional differential equations. We develop and apply the Bernstein

operational matrix of fractional order integration for solving fractional differential

equations. We present six numerical examples to demonstrate the validity and the

effectiveness of the proposed method. In addition, we compare our results with Ford

[27], HWOM method [30], and CWOM method [31], see Figures (5)-(7). Also, we

compare our results with the exact solution of the fractional initial value problems

which are presented in Examples (1)-(6), see Figures (1)-(3), (5)-(7),(9), (10). From

Figures (4)-(8) and (11), we see that the absolute error of the proposed method

is within 10−3 The main advantage of the proposed method is small size of the
Bernstein operational matrix of fractional order integration produces high accuracy,

see tables (1)-(3). Also, the complexity of the proposed method is small comparing

with the complexity of the CWOM method and HWOM method. This method is

computer oriented and it is easy to program it. Finally, one can generalize these

techniques to system of fractional differential equations. We will leave this for the

future work.
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