
Journal of Fractional Calculus and Applications,

Vol. 5(1) Jan. 2014, pp. 177-187.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

SUFFICIENT CONDITIONS FOR THE OSCILLATION OF

NONLINEAR FRACTIONAL DIFFERENCE EQUATIONS

J. O. ALZABUT, T. ABDELJAWAD

Abstract. Sufficient conditions are established for the oscillation of solutions

for fractional difference equations of the form ∇q
a(q)−1

x(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t ∈ Na(q),

∇−(1−q)
a(q)−1

x(t)
∣∣∣
t=a(q)

= x(a(q)) = c, c ∈ R,

where m − 1 < q < m, m ∈ N, ∇q
a(q)

is the Riemann–Liouville’s difference

operator of order q and ∇−q
a(q)

is the Riemann–Liouville’s sum operator where

Na(q) = {a(q) + 1, a(q) + 2, . . .}, a(q) = a+m− 1, m = [q] + 1 and [q] is the
greatest integer less than or equal to q. The main theorems are also stated for
fractional difference equation of Caputo’s type{

c∇q
a(q)

x(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t ∈ Na(q),

∇kx(a(q)) = bk, bk ∈ R, k = 0, 1, 2, . . . ,m− 1,

where c∇q
a(q)

is the Caputo’s difference operator of order q. A couple of numer-

ical examples are constructed to demonstrate the validity of the assumptions
of the main theorems.

1. Introduction

Fractional differential equations are generalization of differential equations of
integer order to an arbitrary non integer order. In spite of its old history which
is dated back to the 16–th century, fractional differential equations have ambigu-
ously lagged behind differential equations of integer order. In the last two decades,
however, fractional differential equations have noticeably started attracting con-
siderable interest because of their ability to provide more adequate description of
memory and hereditary properties to various complex phenomena. Indeed, these
equations capture nonlocal relations in space and time with power–law memory
kernels. Due to extensive applications of these equations, research in this area has
grown significantly all around the world. The recent years have witnessed the ap-
pearance of many papers and books that have investigated the qualitative aspects
of fractional differential equations such as the fractional calculus, the existence and
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uniqueness of solutions for Cauchy type problems and the stability and periodicity
of solutions for these types of equations, we suggest the reader to consult the rele-
vant monographs [1, 2, 3, 4, 5, 6] and some recent papers [7, 8, 9, 10, 11, 12, 13]. The
oscillation of fractional differential equations, in particular, has been lately attacked
in the new papers [14, 15] in which the authors claimed that their contributions
had initiated the subject.

Fractional difference equations, nevertheless, which is the discrete counterpart
of the corresponding fractional differential equations have comparably gained less
attention among researchers. Indeed, the development of the qualitative features of
fractional difference equations are still considered to be at its first stage of progress.
There are a few papers which have taken the lead to develop some fundamental
concepts concerning the nature of fractional difference equations among them we
list the papers [16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

To the best of authors’ observation, however, no paper has been published in the
literature regarding the oscillation of solutions for fractional difference equations.
A primary purpose of this paper is to establish several oscillation criteria for a type
of nonlinear fractional difference equations involving the Riemann–Liouville’s and
Caputo’s operators of arbitrary order. Two examples are provided to demonstrate
the effectiveness of the main theorems.

2. Preliminary assertions and essential lemmas

Let N be the set of positive integer numbers, R the set of real numbers and R+

the set of nonnegative real numbers. Define the set Na(q) = {a(q) + 1, a(q) + 2, . . .}
where a(q) = a + m − 1, m = [q] + 1, m ∈ N and [q] is the greatest integer less

than or equal to q. Let ρ(t) = t− 1 and tq = Γ(t+q)
Γ(t) , t ∈ R−{. . . ,−2,−1, 0} where

0q = 0. Define the Riemann–Liouville’s sum operator ∇−q
a(q) as

∇−q
a(q)x(t) =

1

Γ(q)

t∑
s=a(q)+1

(
t− ρ(s)

)q−1
x(s), t ∈ Na(q). (1)

By using (1), the Riemann–Liouville’s difference operator is defined by

∇q
a(q)x(t) = ∇m∇−(m−q)

a(q) x(t) =
∇m

Γ(m− q)

t∑
s=a(q)+1

(
t− ρ(s)

)m−q−1
x(s), t ∈ Na(q).

(2)
Consider the nonlinear fractional difference equation of the form ∇q

a(q)−1x(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t ∈ Na(q),

∇−(1−q)
a(q)−1 x(t)

∣∣∣
t=a(q)

= x(a(q)) = c, c ∈ R, (3)

where m − 1 < q < m, r : Na(q) → R, fi : Na(q) × R → R (i = 1, 2) and ∇−q
a(q) and

∇q
a(q) are defined as in (1) and (2), respectively.

The initial value problem (3) can be expressed by using the Caputo’s difference
operator. Indeed, equation (3) is replaced by{

c∇q
a(q)x(t) + f1(t, x(t)) = r(t) + f2(t, x(t)), t ∈ Na(q),

∇kx(a(q)) = bk, bk ∈ R, k = 0, 1, 2, . . . ,m− 1,
(4)
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where m − 1 < q < m, r : Na(q) → R, fi : Na(q) × R → R (i = 1, 2) and c∇q
a(q) is

the Caputo’s difference operator defined by

c∇q
a(q)x(t) = ∇−(m−q)

a(q) ∇mx(t) =
1

Γ(m− q)

t∑
s=a(q)+1

(t−ρ(s))q−1∇mx(s), t ∈ Na(q).

(5)
Remark 1 It is to be noted that the initial value problem within Riemann–
Liouville’s operators of form (3) involves one single initial value whereas the initial
value problem within Caputo’s difference operator of form (4) involves m−1 initial
values. This surprising conclusion consolidates the fact that fractional derivatives of
Caputo’s type are much closer than those of Riemann’s type to ordinary derivatives
of integer order. Further explanation regarding this remark can be found in [24, 25].

By a solution of equation (3) (or (4)), we mean a real–valued sequence x(t)
satisfying equation (3) (or (4)) for t ∈ Na(q). A solution x(t) of (3) (or (4)) is
said to be oscillatory if for every integer N > 0, there exists t ≥ N such that
x(t)x(t + 1) ≤ 0; otherwise it is called non oscillatory. An equation is said to be
oscillatory if all of its solutions are oscillatory.

Before proceeding to the main results, we set forth some essential lemmas needed
in the proofs of the main theorems. We borrow the details and terminologies from
the recent papers [24, 25]. The identities are stated without proofs whereas the
proof of Lemma 3 is provided for the sake of readers’ convenience.
Lemma 1 [24] Let g : Na(q) → R. Then, for any real number q and any positive
integer m the following equalities hold

I. ∇tq = qtq−1;
II. ∇−q

a(q)∇
q
a(q)g(t) = g(t);

III. ∇−q
a(q)∇

mg(t) = ∇m∇−q
a(q)g(t)−

∑m−1
k=0

(t−a(q))q−m+k

Γ(q+k−m+1) ∇
kg(a(q)).

Lemma 2 [24] Let q > 0 and µ > −1. Then for t ∈ Na(q), we have

∇−q
a(q)(t− a(q))µ =

Γ(µ+ 1)

Γ(µ+ q + 1)
(t− a(q))q+µ. (6)

Lemma 3 If x(t) is a solution of equation (3), then it satisfies the following
fractional Volterra sum equation

x(t) =
(t− a(q) + 1)q−1

Γ(q)
c+∇−q

a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
, t ∈ Na(q). (7)

Proof. Applying the sum operator ∇−q
a(q) to both sides of equation (3), we obtain

∇−q
a(q)

{
∇q

a(q)x(t) +∇mgq(t)
}
= ∇−q

a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
, (8)

where gq(t) =
(t−a(q)+1)m−q−1

Γ(m−q) x(a(q)). In view of (II) of Lemma 1, it follows that

x(t) +∇−q
a(q)∇

mgq(t) = ∇−q
a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
. (9)
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By using relation (III) of Lemma 1, we get

x(t) +∇m∇−q
a(q)gq(t) −

m−1∑
k=0

(t− a(q))q−m+k

Γ(q + k −m+ 1)
∇kgq(a(q)) (10)

= ∇−q
a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
.

However, we observe that

gq(t)
∣∣∣
t=a(q)

=
1m−q−1

Γ(m− q)
x(a(q)) =

Γ(m− q)

Γ(m− q)
x(a(q)) = x(a(q)),

∇gq(t)
∣∣∣
t=a(q)

=
(m− q − 1)(t− a(q) + 1)m−q−2

Γ(m− q)
x(a(q))

∣∣∣
t=a(q)

=
(t− a(q) + 1)m−q−2

Γ(m− q − 1)
x(a(q))

∣∣∣
t=a(q)

= x(a(q)),

∇2gq(t)
∣∣∣
t=a(q)

=
(m− q − 2)(t− a(q) + 1)m−q−3

Γ(m− q − 1)
x(a(q))

∣∣∣
t=a(q)

=
(t− a(q) + 1)m−q−3

Γ(m− q − 2)
x(a(q))

∣∣∣
t=a(q)

= x(a(q)),

and also

∇3gq(t)
∣∣∣
t=a(q)

= x(a(q))

which inductively implies that

∇kgq(a(q)) = x(a(q)), k = 0, 1, 2, . . . ,m− 1. (11)

The term ∇m∇−q
a(q)gq(t) in (10) can be expanded by using the power formula (6) as

∇m
{
∇−q

a(q)gq(t)
}
= −∇m (t− a(q) + 1)q−1

Γ(q)
x(a(q)). (12)

Substituting (11) and (12) back in equation (10) we reach to

x(t) = Φm
q (t)x(a(q)) +∇−q

a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
,

where

Φm
q (t) = ∇m (t− a(q) + 1)q−1

Γ(q)
+

m−1∑
k=0

(t− a(q))q−m+k

Γ(q + k −m+ 1)
.

Let m = 1 and a(q) = a. Thus

Φ1
q(t) =

(t− a+ 1)q−1

Γ(q)
.

Let m = 2 and a(q) = a+ 1. Thus

Φ2
q(t) =

(t− a)q−3

Γ(q − 2)
+

(t− a− 1)q−2

Γ(q − 1)
+

(t− a− 1)q−1

Γ(q)
=

(t− a)q−1

Γ(q)
.

Proceeding inductively, we end up with

x(t) =
(t− a(q) + 1)q−1

Γ(q)
c+∇−q

a(q)

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
,

which is the desired result. The proof is complete.
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For the case 0 < q < 1, Lemma 3 is reduced to the following immediate corollary
which has been discussed in [26].
Corollary 1 [26] Let 0 < q < 1. If x(t) is a solution of equation (3), then it satisfies
the following Volterra sum equation

x(t) =
(t− a+ 1)q−1

Γ(q)
x(a) +∇−q

a

[
r(t) + f2(t, x(t))− f1(t, x(t))

]
. (13)

By employing the same technique used to obtain formula (7) and in view of
Proposition 5.6 in [25], one can derive the corresponding fractional Volterra sum
equation for (4).
Lemma 4 If x(t) is a solution of equation (4), then it satisfies the following frac-
tional Volterra sum equation

x(t) =

m−1∑
k=0

(t− a(q))k

k!
bk+

1

Γ(q)

t∑
s=a(q)+1

(t−ρ(s))q−1
[
r(s)+f2(s, x(s))−f1(s, x(s))

]
.

(14)
The following immediate consequence of Lemma 4 has been investigated in [25].

Corollary 2 [25] Let 0 < q < 1. If x(t) is a solution of equation (4), then it satisfies
the following Volterra sum equation

x(t) = b0 +
1

Γ(q)

t∑
s=a+1

(t− ρ(s))q−1
[
r(s) + f2(s, x(s))− f1(s, x(s))

]
. (15)

3. The main results

In this section, we establish the main results of this paper. Indeed, several criteria
are reported for the oscillation of equations (3) and (4). We should note that the
main theorems are obtained without imposing any restriction on the forcing term
r(t). The investigations are carried out by employing the following key–tool lemma.
Lemma 5 [27] Let X ≥ 0 and Y > 0. Then, we have

Xλ + (λ− 1)Y λ − λXY λ−1 ≥ 0, λ > 1 (16)

and

Xλ − (1− λ)Y λ − λXY λ−1 ≤ 0, λ < 1, (17)

where equality holds if and only if X = Y .

3.1. Oscillation of equation (3). Let

H.1 xfi(t, x) > 0, (i = 1, 2), x ̸= 0, t ∈ Na(q).

Define

c(T ) := M |c|+
T∑

s=a(q)+1

Ms|F (s)|, (18)

where F (s) = r(s) + f2(s, x(s)) − f1(s, x(s)), M > 0 and 0 < Ms is a constant

depending on s and bounding the term t1−q(t− s+ 1)q−1 for all t.
The first theorem is concerned with the oscillation of equation (3) when f2 = 0.

Theorem 1 Let f2 = 0 and condition (H.1) holds. If

lim inf
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1r(s) = −∞, (19)
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and

lim sup
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1r(s) = ∞, (20)

then equation (3) is oscillatory.
Proof. Let x(t) be a non oscillatory solution of equation (3) with f2 = 0. Suppose
that T ∈ Na(q) is large enough so that x(t) > 0 for t ∈ NT . In view of formula (7),
we obtain

x(t) ≤ (t− a(q) + 1)q−1

Γ(q)
|c|

+
1

Γ(q)

T∑
s=a(q)+1

(t− s+ 1)q−1|F (s)|+ 1

Γ(q)

t∑
s=T+1

(t− s+ 1)q−1|r(s)|,

or

Γ(q)t1−qx(t) ≤ t1−q(t− a(q) + 1)q−1|c|+ t1−q
T∑

s=a(q)+1

(t− s+ 1)q−1|F (s)|

+ t1−q
t∑

s=T+1

(t− s+ 1)q−1|r(s)|, t ∈ NT . (21)

By using the Stirling’s formula limn→∞
Γ(n)nε

Γ(n+ε) = 1, ε > 0, we observe that

lim
t→∞

t1−q(t− a(q) + 1)q−1 = lim
t→∞

t1−q

(t− a(q))

Γ(t− a(q) + q)

Γ(t− a(q))

(t− a(q))q

(t− a(q))q

= lim
t→∞

( t

t− a(q)

)1−q

= 1. (22)

Hence, there exists M > 0 such that∣∣∣t1−q(t− a(q) + 1)q−1
∣∣∣ ≤ M, t ∈ NT . (23)

It follows from (21) that

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
t∑

s=T+1

(t− s+ 1)q−1r(s), t ∈ NT , (24)

where c(T ) is defined as in (18). Taking the limit inferior of both sides of (24) as
t → ∞, we get a contradiction to condition (19). In case x(t) is eventually negative,
one can proceed in the same way and reach to a contradiction with (20). The proof
is finished.

Let

H.2 |f1(t, x(t))| ≥ p1(t)|x|β and |f2(t, x(t))| ≤ p2(t)|x|γ , x ̸= 0, t ≥ a(q),

where p1, p2 : Na(q) → R+ and β, γ > 0 are real numbers.
Theorem 2 Let conditions (H.1)–(H.2) hold with β > 1 and γ = 1. If

lim inf
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ(s)] = −∞, (25)
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and

lim sup
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ(s)] = ∞, (26)

where

Hβ(s) = (β − 1)ββ/1−βp
1/(1−β)
1 (s)p

β/β−1
2 (s),

then equation (3) is oscillatory.
Proof. Let x(t) be a non oscillatory solution of equation (3). Suppose that x(t) > 0
for t ≥ T > a(q). Using condition (H.2) in formula (7) with γ = 1 and β > 1, we
obtain

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
[ t∑
s=T+1

(t− s+ 1)q−1r(s)

+
t∑

s=T+1

(t− s+ 1)q−1
[
p2(s)x(s)− p1(s)x

β(s)
]]
. (27)

In virtue of relation (16) of Lemma 5, we observe that

p2(t)x(t)− p1(t)x
β(t) ≤ (β − 1)ββ/1−βp

1/(1−β)
1 (t)p

β/β−1
2 (t), (28)

where we assign λ = β, X = p
1/β
1 and Y =

(p2p
−1/β
1

β

)1/(β−1)
.

It follows that

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
t∑

s=T+1

(t− s+ 1)q−1[r(s) +Hβ(s)], t ≥ T.

The remaining part of the proof is the same as in the proof of Theorem 1. Hence,
it is omitted.
Theorem 3 Let conditions (H.1)–(H.2) hold with β = 1 and γ < 1. If

lim inf
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hγ(s)] = −∞, (29)

and

lim sup
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hγ(s)] = ∞, (30)

where

Hγ(s) = (1− γ)γγ/1−γp
γ/(γ−1)
1 (s)p

1/(1−γ)
2 (s),

then equation (3) is oscillatory.
Proof. Let x(t) be a non oscillatory solution of equation (3). Suppose that x(t) > 0
for t ≥ T > a(q). Using condition (H.2) in formula (7) with β = 1 and γ < 1, we
find

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
[ t∑
s=a(q)

(t− s+ 1)q−1r(s)

+
t∑

s=a(q)

(t− s+ 1)q−1
[
p2(s)x

γ(s)− p1(s)x(s)
]]
. (31)
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In virtue relation (17), we observe that

p2(t)x
γ(t)− p1(t)x(t) ≤ (1− γ)γγ/1−γp

γ/(γ−1)
1 (t)p

1/(1−γ)
2 (t), (32)

where we assign λ = γ, X = p
1/γ
2 and Y =

(p1p
−1/γ
2

γ

)1/(γ−1)
.

It follows that

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
t∑

s=T+1

(t− s+ 1)q−1[r(s) +Hγ(s)], t ≥ T.

The remaining part of the proof is the same as in the proof of Theorem 1. Hence,
it is omitted.
Theorem 4 Let conditions (H.1)–(H.2) hold with β > 1 and γ < 1. If

lim inf
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ,γ(s)] = −∞, (33)

and

lim sup
t→∞

t1−q
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ,γ(s)] = ∞, (34)

where

Hβ,α(s) = (β−1)ββ/1−βp
1/(1−β)
1 (s)ξβ/β−1(s)+(1−γ)γγ/1−γξγ/(γ−1)(s)p

1/(1−γ)
2 (s)

with ξ : Na(q) → R+, then equation (3) is oscillatory.
Proof. Let x(t) be a non oscillatory solution of equation (3). Suppose that x(t) > 0
for t ≥ T > a(q). Using condition (H.2) in formula (7), we find

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
t∑

s=T+1

(t− s+ 1)q−1r(s)

+ t1−q
t∑

s=T+1

(t− s+ 1)q−1
[
ξ(s)x(s)− p1(s)x

β(s)
]

(35)

+ t1−q
t∑

s=T+1

(t− s+ 1)q−1
[
p2(s)x

γ(s)− ξ(s)x(s)
]
, t ≥ T.

In virtue of the inequalities (28) and (32), we get

ξ(t)x(t)− p1(t)x
β(t) ≤ (β − 1)ββ/1−βp

1/(1−β)
1 (t)p

β/β−1
2 (t),

and

p2(t)x
γ(t)− ξ(t)x(t) ≤ (1− γ)γγ/1−γp

γ/(γ−1)
1 (t)p

1/(1−γ)
2 (t).

It follows that

Γ(q)t1−qx(t) ≤ c(T ) + t1−q
t∑

s=T+1

(t− s+ 1)q−1[r(s) +Hβ,γ(s)], t ≥ T.

The remaining part of the proof is the same as in the proof of Theorem 1. Hence,
it is omitted.
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3.2. Oscillation of equation (4). This subsection is devoted to oscillation criteria
for equation (4). The proofs of the main theorems are similar to those of Subsection
3.1 and hence they are omitted.
Theorem 5 Let f2 = 0 and condition (H.1) hold. If

lim inf
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1r(s) = −∞, (36)

and

lim sup
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1r(s) = ∞, (37)

then equation (4) is oscillatory.
Theorem 6 Let conditions (H.1)–(H.2) hold with β > 1 and γ = 1. If

lim inf
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ(s)] = −∞, (38)

and

lim sup
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ(s)] = ∞, (39)

where

Hβ(s) = (β − 1)ββ/1−βp
1/(1−β)
1 (s)p

β/β−1
2 (s)

then equation (4) is oscillatory.
Theorem 7 Let conditions (H.1)–(H.2) hold with β = 1 and γ < 1. If

lim inf
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hγ(s)] = −∞, (40)

and

lim sup
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hγ(s)] = ∞, (41)

where

Hγ(s) = (1− γ)γγ/1−γp
γ/(γ−1)
1 (s)p

1/(1−γ)
2 (s)

then equation (4) is oscillatory.
Theorem 8 Let conditions (H.1)–(H.2) hold with β > 1 and γ < 1. If

lim inf
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ,γ(s)] = −∞, (42)

and

lim sup
t→∞

t1−m
t∑

s=a(q)

(t− s+ 1)q−1[r(s) +Hβ,γ(s)] = ∞, (43)

where

Hβ,γ(s) = (β−1)ββ/1−βp
1/(1−β)
1 (s)ξβ/β−1(s)+(1−γ)γγ/1−γξγ/(γ−1)(s)p

1/(1−γ)
2 (s)

with ξ : Na → R+, then equation (4) is oscillatory.
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4. Examples

In what follows, two examples are constructed in the text of equations (3) and
(4). We conclude that the assumed conditions of Theorem 2 and Theorem 6 can
not be dropped.
Example 1 Consider the Riemann–Liouville’s fractional difference equation

∇q
0x(t) + x3et =

t1−q

Γ(2− q)
+ tet(t2 − 1) + xet, ∇−(1−q)

0 x(t)
∣∣
t=1

= x(1) = 1, (44)

where m = 1, 0 < q < 1, a = 1, c = 1, f1(t, x) = x3et, f2(t, x) = xet and

r(t) = t1−q

Γ(2−q) + tet(t2 − 1). It is clear that conditions (H.1)–(H.2) are satisfied for

β = 3, γ = 1 and p1(t) = p2(t) = et. However, since r(t) ≥ 0 we may write

t1−q
t∑

s=1

(t− s+1)q−1
[ s1−q

Γ(2− q)
+ ses(s2 − 1) + 0.4es

]
≥ t1−q

t∑
s=1

(t− s+1)q−10.4es

(45)
and

t1−q
t∑

s=1

(t− s+ 1)q−10.4es ≥ t1−q
t∑

s=1

(t− s+ 1)q−1 =
t1−qΓ(t+ q)

qΓ(t)
≥ 0. (46)

This tells that condition (25) of Theorem 2 does not hold. Indeed, one can easily
verify that x(t) = t is a non oscillatory solution of equation (44).
Example 2 Consider the Caputo’s fractional difference equation

c∇q
1x(t) + x3et =

(t− 1)1−q

Γ(2− q)
+ tet(t2 − 1) + xet, x(1) = 1, (47)

where m = 1, 0 < q < 1, a = 1, b0 = 1, f1(t, x) = x3et, f2(t, x) = xet and

r(t) = (t−1)1−q

Γ(2−q) + tet(t2 − 1). It is clear that conditions (H.1)–(H.2) are satisfied for

β = 3, γ = 1 and p1(t) = p2(t) = et. However, since r(t) ≥ 0 we may write

t∑
s=1

(t− s+ 1)q−1
[ s1−q

Γ(2− q)
+ ses(s2 − 1) + 0.4es

]
≥

t∑
s=1

(t− s+ 1)q−10.4es (48)

and
t∑

s=1

(t− s+ 1)q−10.4es ≥
t∑

s=1

(t− s+ 1)q−1 =
Γ(t+ q)

qΓ(t)
≥ 0. (49)

Thus, condition (38) of Theorem 6 does not hold. Indeed, one can easily verify that
x(t) = t is a non oscillatory solution of equation (47).
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