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FRACTIONAL STURM-LIOUVILLE PROBLEMS WITH
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Abstract. In this paper, we verify the solution around an α-ordinary point

x0 ∈ [a, b] for fractional Sturm-Liouville equation

(D2αy)(x) + p(x)y(x) = λq(x)y(x),
1

2
< α < 1. (1)

Also, the solutions around an α-singular point x0 ∈ [a, b] for fractional differ-
ential equation

(x− x0)
2α(D2αy)(x) + p(x)y(x) = (x− x0)

2αλq(x)y(x),
1

2
< α < 1, (2)

is investigated. Here, p(x) and q(x) are α-analytic functions and (D2αy)(x)
represents fractional sequential derivative of order 2α of function y(x). The
fractional derivatives are described in the Caputo sense.

1. Introduction

In the recent decades, we have seen the important role of fractional calculus
in many sciences, specially mathematics and engineering sciences. Many natural
phenomena can be presented by boundary value problems of fractional differential
equations. Many authors in different fields such as chemical physics, fluid flows,
electrical networks, viscoelasticity, try to model of these phenomena by boundary
value problems of fractional differential equations [[1]-[4]]. To achieve extra infor-
mation in fractional calculus, specially boundary value problems, reader can refer
to more valuable papers or books that are written by authors [[5]-[10]].
The linear sequential fractional differential equation of order nα with constant co-
efficients has been extensively studied, and there are methods to obtain explicitly
the general solution for both equation, homogeneous and non-homogeneous, with-
out using the integral transform [[11]-[13]].
In this article, we apply the series method, based on the expansion of the unknown
solution y(x) in a fractional power series to obtain solutions of fractional Sturm-
Liouville equation. In singular sense, we present a generalization of the Frobenius
theory.
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2. Fractional calculus

In this section, we present some definitions which will be used in the remainder
of this paper.
Definition 1 Fractional sequential derivative of function y(x) is defined as:

(Dα
a+y)(x) = (Dα

a+y)(x),

(Dkα
a+y)(x) = Dα

a+D(k−1)α
a+ y(x), k = 2, 3, ...

where Dα
a+ denote the Caputo fractional derivative of order α.

Definition 2 Let α ∈ (0, 1], f(x) be a real function defined on the interval [a, b]
and x0 ∈ [a, b]. Then f(x) is said to be α-analytic at x0, if there exists an interval

N(x0) such that for x ∈ N(x0), f(x) can be expressed as
∞∑

n=0
an(x−x0)

nα (an ∈ R),

this series being absolutely convergent for |x− x0| < r, (r > 0).
Definition 3 A point x0 ∈ [a, b] is said to be an α-ordinary point of the equation

(Dnαy)(x) +
n−1∑
k=0

ak(x)(Dkαy)(x) = f(x), (3)

if ak(x), (k = 0, 1, ..., n − 1) are α-analytic in x0. A point x0 ∈ [a, b] which is not
α-ordinary will be called α-singular.
Definition 4 Let x0 ∈ [a, b] be an α-singular point of the equation (3). Then, x0

is said to be a regular α-singular point of this equation if the functions

(x− x0)
(n−k)αak(α), k = 0, 1, ..., n− 1

are α-analytic in x0. Otherwise, x0 is said to be an essential α-singular point.
Definition 5 [see [6]-[8]] Let α ∈ (0, 1), a ∈ R and β ∈ R\Z−. Then, the derivative
of order 2α of (x− a)β is defined as:

D2α
a+(x− a)β =

Γ(β + 1)

Γ(β − 2α+ 1)
(x− a)β−2α, x > a. (4)

Definition 6 The Mittag-Leffler function Eν(z) for ν > 0 and z ∈ C is defined by
the series representation:

Eν(z) =
∞∑
k=0

zk

Γ(kν + 1)
, ν > 0, z ∈ C.

3. Solutions of fractional Sturm-Liouville problems with α-ordinary
and α-singular points

In first, we consider the solutions around α-ordinary point x0 > a to the Eq.(1).

Theorem 1 Let α ∈ ( 12 , 1), and x0 > a be an α-ordinary point of the Sturm-
Liouville equation

(D2αy)(x) + p(x)y(x) = λq(x)y(x), (5)

where p(x) =
∞∑

n=0
pn(x − x0)

nα and q(x) =
∞∑

n=0
qn(x − x0)

nα are power series

expansion of the α-analytic function p(x) and q(x), respectively. Then, there exists
function

y(x) =
∞∑

n=0

an(x− x0)
nα, (6)
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which is the solution of Eq.(5) for x ∈ (x0, x0 + r), (r > 0). Here, a0 is a non-zero
arbitrary constant, a1 = 0 and the coefficients an, n = 2, 3, ..., are given by

an+2 =
Γ(nα+ 1)(λcn − bn)

Γ((n+ 2)α+ 1)
, n = 0, 1, 2, ...,

where bn =
n∑

l=0

plan−l and cn =
n∑

l=0

qlan−l.

Proof. We shall seek a solution of Eq.(5) of the form
∞∑

n=0
an(x − x0)

nα. Substi-

tuting (6) in (5) and definition 5, we get
∞∑

n=1

Γ(nα+ 1)

Γ((n− 2)α+ 1)
an(x−x0)

(n−2)α+

∞∑
n=0

(

n∑
l=0

alpn−l−λ

n∑
l=0

alqn−l)(x−x0)
nα = 0.

To add the two series, it is necessary that both summation indices start with the
same number and that the powers of x in each series be ”in phase” that is, if one
series starts with a multiple of, say, x to the first power, then we want the other
series to start with the same power. Here, the first series starts with x1−α, whereas
the second series starts with x0. By writing the first term of the first series outside
the summation notation, we see that both series start with the same power of x-
namely x0

a1
Γ(α+ 1)

Γ(1− α)
(x− x0)

−α +

∞∑
n=2

Γ(nα+ 1)

Γ((n− 2)α+ 1)
an(x− x0)

(n−2)α (7)

+
∞∑

n=0

(
n∑

l=0

alpn−l − λ
n∑

l=0

alqn−l)(x− x0)
nα = 0.

Now, to get the same summation index, we are inspired by the exponents of x. We
are in a position to add the series in term by term

a1
Γ(α+ 1)

Γ(1− α)
(x− x0)

−α +
∞∑

n=0

{Γ((n+ 2)α+ 1)

Γ(nα+ 1)
an+2 (8)

+(
n∑

l=0

alpn−l − λ
n∑

l=0

alqn−l)}(x− x0)
nα = 0.

Since (8) is identically zero, it is necessary that the coefficient of each power of x
be set equal to zero. So, we obtain a1 = 0 and the following recurrence formula

an+2 =
Γ(nα+ 1)(λcn − bn)

Γ((n+ 2)α+ 1)
, n = 0, 1, 2, ..., (9)

with

bn =
n∑

l=0

plan−l, cn =
n∑

l=0

qlan−l,

which allows us to express an (n ≥ 2), in terms of a0 and a1.
Now, we prove the convergence of the series (6). Let 0 < r1 < r, since p(x) and
q(x) are convergent, there exist constants M1 > 0 and M2 > 0, such that

|pn−l| ≤
M1r

lα

rnα
|qn−l| ≤

M2r
lα

rnα
.
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Consequently,

|Γ((n+ 2)α+ 1)

Γ(nα+ 1)
||an+2| ≤

(M1 + |λ|M2)(
n∑

l=0

alr
lα)

rnα
.

Now, we define d0 = |a0| , d1 = 0 and dn (n > 0) as follows:

|Γ((n+ 2)α+ 1)

Γ(nα+ 1)
|dn+2 =

(M1 + |λ|M2)(
n∑

l=0

dlr
lα)

rnα
. (10)

Using the asymptotic representation

Γ(w + a)

Γ(w + b)
= wa−b[1 +O(

1

t
)], |arg(w + a)| < π, |w| → ∞, (11)

we have that the series
∑∞

n=0 dn(x−x0)
nα, converges for all x, such that |x−x0| <

r1, and from this we conclude that the series (6) converges for x− x0 < r.

Example 1 Consider the regular fractional eigenvalue problem

D 3
2 y(x) + λy(x) = 0. (12)

subject to

y′(0) = 0, y(1) = 0. (13)

We shall seek to equation (12) the solution around the α-ordinary point x0 = 0.

According with theorem 1, the general solution is y(x) =
∞∑

n=0
anx

nα, where a0 is

arbitrary constant, a1 = 0 and

an+2 =
(−λ)

n
2

Γ( 3n4 + 1)
a0, n = 0, 1, 2, ...

Thus, general solution is

y(x) = a0

∞∑
n=0

(−λx
3
2 )n

Γ( 3n2 + 1)
= a0E 3

2
(−λx

3
2 ),

where E 3
2
denotes the Mittag-Leffler function.

The results are the same as ADM [[14]] and HAM [[15]] when we consider h = −1.
By using boundary condition (13), we explore the first three eigenvalues (λ1,i ,λ2,i

and λ3,i) numerically in following table where represents the number of terms used
in the following series, i.e.

y(t) ∼=
i∑

n=0

yn(t).

The numerical evidence in table suggests that the first three eigenvalues are

λ1 = 2.11027708, λ2 = 13.76538223, λ3 = 24.24328676
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Table : The approximation to the first three eigenvalues

i λ1,i λ2,i λ3,i

17 2.11027708 13.76538387 24.10237991
18 2.11027708 13.76538208 24.26958889
19 2.11027708 13.76538224 24.23941883
20 2.11027708 13.76538223 24.24383027
21 2.11027708 13.76538223 24.24329538
22 2.11027708 13.76538223 24.24328578
23 2.11027708 13.76538223 24.24328687
24 2.11027708 13.76538223 24.24328675
25 2.11027708 13.76538223 24.24328676

Example 2 Consider the regular fractional eigenvalue problem

D 3
2 y(x) + x

3
4 y(x) = λx

3
2 y(x). (14)

Using theorem 1, we shall seek to equation (14) the solution around the α-ordinary

point x0 = 0. According with theorem 1 the general solution is y(x) =
∞∑

n=0
anx

nα,

where a0 is arbitrary constant, a1 = a2 = 0 and

an =
Γ( 3n4 − 1

2 )

Γ( 3n4 + 1)
(λan−4 − an−3), n = 4, 5, ...

Thus, general solution is

y(x) = a0
(
1−

Γ( 74 )

Γ(134 )
x

9
2

)
+

∞∑
n=4

Γ(3n4 − 1
2 )

Γ(3n4 + 1)
(λan−4 − an−3)x

3n
4 .

Now, we consider the solutions around regular α-singular point x0 > a to the
equation

(x− x0)
2αD2αy(x) + p(x)y(x) = (x− x0)

2αλq(x)y(x),
1

2
< α < 1, (15)

where p(x) =
∞∑

n=0
pn(x − x0)

nα and q(x) =
∞∑

n=0
qn(x − x0)

nα are power series ex-

pansion of the α-analytic function p(x) and q(x), respectively.

Theorem 2 Let α ∈ ( 12 , 1), and x0 > 0 be a singular point of the Eq.(10). Then,
there exists a unique solution on semi interval (x0, x0 + r), for some (r > 0) of
Eq.(13) given by

y(x) = (x− x0)
s

∞∑
n=0

an(x− x0)
nα, (16)

where a0 ̸= 0 and s being a number to be determined.
Proof. We shall seek a solution of Eq.(15) of the form (16). Substituting (16) in
(15) and using definition 5, similar to theorem (3.1), we get

a0(
Γ(s+ 1)

Γ(s− 2α+ 1)
+ p0)(x− x0)

s + (a1
Γ(s+ α+ 1)

Γ(s− α+ 1)
+ p0a1 + p1a0)(x− x0)

s+α

+
∞∑

n=2

an(
Γ(nα+ s+ 1)

Γ((n− 2)α+ s+ 1)
+bn−λcn−2)(x−x0)

nα+s = 0
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where

bn =

n∑
l=0

plan−l, cn =

n∑
l=0

qlan−l.

So, since a0 ̸= 0, we obtain

Γ(s+ 1)

Γ(s− 2α+ 1)
+ p0 = 0, a1 =

−p1a0
Γ(s+α+1)
Γ(s−α+1) + p0

,

an =
λcn−2 − bn−1

Γ(nα+s+1)
Γ((n−2)α+s+1) + p0

, n = 2, 3, ....

The proof of convergence for x− x0 < r is analogous to that used for theorem 1, if
we take into a account the above mentioned asymptotic relation (11).

Example 3 Consider the following fractional equation

x
3
2D 3

2 y(x) + y(x) = λx
3
2 y(x). (17)

According to theorem 2 we find to equation (17), the solution around singular point
x = 0 in the form (13). From (16), we obtain s = −.25 a0 ̸= 0 (arbitrary constant),
a1 = 0 and

an =
λan−2 − an−1

Γ( 3
4 (n+1))

Γ( 3
4 (n−1))

+ 1
, n = 2, 3, ...

Thus, the general solution of (17) is

y(x) = a0x
−1
4 +

∞∑
n=2

λan−2 − an−1

Γ( 3
4 (n+1))

Γ( 3
4 (n−1))

+ 1
x

1
4 (3n−1).

Remark For the case when the Caputo derivatives is replaced by the Riemann-
Liouville derivative the results coincide exactly with those in the Caputo sense.
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