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FRACTIONAL MODELING OF TEMPERATURE DISTRIBUTION

AND HEAT FLUX IN THE SEMI INFINITE SOLID

JYOTINDRA C. PRAJAPATI AND KRUNAL B. KACHHIA

Abstract. The work carried out in this paper is an interdisciplinary study of

Fractional Calculus and Mechanical engineering. The aim of this paper is to
introduce new model of temperature distribution and heat flux by transformed
the problem into fractional partial differential equation and solved it by using

fractional calculus and special functions approach.

1. Introduction

Fractional calculus is now considered as a practical technique in many branches
of science including physics (Oldham and Spainier [7]). A growing number of works
in sciences and engineering deal with dynamical system described by fractional or-
der equations that involve derivatives and integrals of non-integer order (Benson,
Wheatcraft and Meerschaert [1], Metzler and Klafter [5], Zaslavsky [13]). These
new models are more adequate than the previously used integer order models, be-
cause fractional order derivatives and integrals describe the memory and hereditary
properties of different substances (Podulbny [8]). This is the most significant ad-
vantage of the fractional order models in comparison with integer order models in
which such effects are neglected.

A semi-infinite solid is an idealized body that has a single plane surface and
extends to infinity in all directions. This idealized body is used to indicate that
the temperature change in the part of the body in which we are interested (the re-
gion close to the surface) is due to the thermal conditions on a single surface. The
earth, for example, can be considered to be a semi-infinite medium in determining
the variation of temperature near its surface. Also, a thick wall can be modeled
as a semi-infinite medium if all we are interested in is the variation of temperature
in the region near one of the surfaces, and the other surface is too far to have any
impact on the region of interest during the time of observation.
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Consider semi-infinite solid initially at temperature T0. The left face of the solid
is suddenly raised to temperature Ts at time zero. Defining θ = T−T0

Ts−T0
. If we assume

constant thermal conductivity, no internal heat generation and negligible temper-
ature variations in the y and z directions. The applicable differential equation is
given by classical non-homogenous heat equation defined in Mills and Ganesan [6]:

∂θ

∂t
= C

∂2θ

∂x2
(1)

where C is the thermal diffusivity. Subject to boundary conditions

t = 0 : θ = 0 (2)

x = 0 : θ = 1 (3)

x → ∞ : θ → 0 (4)

The following well-known facts are consider to study the temperature distribution
and heat flux in the semi infinite solid.
The Laplace Transform (Sneddon [12]) is defined as

L{f(x)} =

∞∫
0

e−stf(t) dt (Re(s) > 0) (5)

The Fourier sine transform (Debnath [2]) is defined as

u(n, t) =

∞∫
0

u(x, t) sinnx dx (6)

The Caputo fractional derivative of order α is given by Podulbny [8]

Dα
t f(t) =

1

Γ(n− α)

t∫
0

f (n)(τ)

(t− τ)n−α−1
dτ (n− 1 < α < n) (7)

The Laplace transform of the Caputo fractional deriative is given by Podulbny [8]

∞∫
0

e−stDα
t f(t) dt = sαf(s)−

n−1∑
j=0

sα−j−1f j(0) (n− 1 < α < n) (8)

The Mittag-Leffler function Eα,β(z) (Podulbny [8]) defined by series representation

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
(α > 0, β > 0) (9)

Some remarkable properties of generalized Mittag-Leffler function studied by
Singh and Rawat [11].
The Wright function W (α, β; z) (Podulbny [8]) defined by series representation

W (α, β; z) =

∞∑
k=0

zk

Γ(αk + β) k!
(10)

Generalized k-Wright function is an interesting generalization of Wright function
(10). Some interesting properties of generalized k-Wright function obtained by



40 J.C. PRAJAPATI AND K. B. KACHHIA JFCA-2014/5(2)

Gehlot and Prajapati [4].
Following integral (El-Shahed and Salem [3]) is required for simplification

∞∫
0

n sinnx Eα,α+1(−n2Ctα) dn =
π

2Ctα
W

(
−α

2
, 1;

−x√
Ctα

)
(11)

The error function erf(x) is defined (Rainville [10]) as

erf(x) =
2√
π

x∫
0

e−t2 dt (12)

The complementary error function erfc(x) is defined (Rainville [10]) as

erfc(x) = 1− erf(x) =
2√
π

∞∫
x

e−t2 dt (13)

The relationship between theWright function and the complementary error function
is given by

W

(
−1

2
, 1; z

)
= erfc

(z
2

)
(14)

2. Formulation of fractional partial differential equation

Now, consider a new model in the form of fractional partial differential equation

∂αθ

∂tα
= C

∂2θ

∂x2
(15)

where

0 < α ≤ 1, t > 0, x ∈ R and θ =
T − T0

Ts − T0
(16)

The relevant boundary conditions are as follows:

θ(x, 0) = 0 (17)

θ(0, t) = 1 (18)

lim
x→∞

θ(x, t) = 0 (19)

If we consider α = 1 then equation (15) reduces in classical heat equation (1).

3. Solution of Problem

Applying Fourier transform (6) on (15), yields

∂αθ(n, t)

∂tα
= C

√
2

π

∞∫
0

∂2θ

∂x2
sinnx dx (20)

Integrating by parts gives

∂αθ(n, t)

∂tα
= C

√
2

π

[
sinnx

∂θ

∂x

]∞
0

− nC

√
2

π

∞∫
0

∂θ

∂x
cosnx dx

= C

√
2

π

[
sinnx

∂θ

∂x

]∞
0

− nC

√
2

π
[θ cosnx ]

∞
0 − n2C

√
2

π

∞∫
0

θ sinnx dx (21)
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Now, applying boundary conditions (17) to (19) on (21), we get

∂αθ(n, t)

∂tα
= C

√
2

π
(0)− nC

√
2

π
(−1)− n2Cθ(n, t) (22)

Therefore,

∂αθ(n, t)

∂tα
= nC

√
2

π
− n2Cθ(n, t) (23)

Using (8), Laplace transform of (23) gives

sαθ(n, s)−
n−1∑
j=0

sα−j−1θj(n, 0) = nC

√
2

π
L{1} − n2CL{θ(n, t)} (24)

This reduces to

sαθ(n, s) + n2Cθ(n, s) = nC

√
2

π

1

s
(25)

i.e.

θ(n, s) = nC

√
2

π

1

s(sα + n2C)
(26)

The inverse Laplace transform of (26) is given by (Prajapati et al [9])

θ(n, t) = nC

√
2

π
L−1

{
1

s(sα + n2C)

}
= nC

√
2

π
tαEα,α+1(−n2Ctα) (27)

Now, inverse Fourier sine transform of equation (27) gives,

θ(x, t) =
2C

π
tα

∞∫
0

n sinnx Eα,α+1(−n2Ctα) dn (28)

Using (11), equation (28) can be written in the form of Wright function as

θ(x, t) = W

(
−α

2
, 1;

−x√
Ctα

)
(29)

If we consider α = 1, then equation (29) reduces to

θ(x, t) = erfc

(
x

2
√
Ct

)
(30)
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4. The Surface Heat flux

The heat flux at the surface is given by

qs = −k

[
∂T

∂x

]
x=0

= −k
∂

∂x

{
T0 + (Ts − T0) W

(
−α

2
, 1;

−x√
Ctα

)}
x=0

= −k(Ts − T0)
∂

∂x

 ∞∑
k=0

(
−x√
Ctα

)k

Γ(−αk
2 + 1)k!


x=0

= −k(Ts − T0)
∂

∂x

1−

(
x√
Ctα

)
Γ(−α

2 + 1)
+

(
−x√
Ctα

)2

Γ(−α+ 1)2!
− ......


x=0

= −k(Ts − T0)

−

(
1√
Ctα

)
Γ(−α

2 + 1)


Finally, we get

qs =
k(Ts − T0)√
CtαΓ(1− α

2 )
(31)

5. Concrete Example

A 15 cm thick concrete firewall has a black silicone paint surface. The wall is
approximated as a black body at 1000 K. It will take 2 minutes for the surface to
reach 500 K if the initial temperature of the wall is 300 K. Find the surface heat
flux. Solution: We have given

Ts = 500 K, T0 = 300 K

The required concrete properties are

k = 1.4 W/m K, C = 0.75× 10−6 m2/s t = 2 sec = 120 seconds

In particular for α = 0.5, the heat flux is obtain by using equation (31) as follow

qs =
1.4× (500− 300)√

0.75× 10−6 ×
√
120 Γ( 34 )

=
1.4× 200

0.002866× 0.6102
= 160109.7896 W/m2

(32)
For different values of α, different values of heat flux qs for above problem are shown
in following table

α qs
0.50 160109.7896
0.625 142849.3595
0.67 121370.7964
0.75 105904.157
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6. Conclusion

The Fractional Calculus approach introduced in this paper for study new con-
stitutive model of temperature distribution and heat flux in semi infinite solid. In
conventional method (considered only for α = 1), equation (15) reduces to classical
heat equation (1) whose solution obtained in the form of complementary error func-
tion. In this paper, authors obtained exact solution of fractional partial differential
equation (15) by using Integral transform and Special functions for 0 < α < 1, i.e.
this new method introduced in paper is useful than conventional method.

Acknowledgement: Authors are indeed extremely grateful to the referees for their
valuable suggestions for the betterment of paper.
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