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FIXED POINTS CLASSIFICATION OF NONLINEAR

FRACTIONAL DIFFERENTIAL EQUATIONS AS A DYNAMICAL

SYSTEM

F. KESHTKAR, H. KHEIRI, G.H. ERJAEE

Abstract. In this article, we have tried to classify fixed points stability of

nonlinear fractional differential equations (NFDE) as a dynamical system. In

this attempt, various types of the fixed points have been analyzed and the con-
ditions on which a NFDE provides an asymptotic stable fixed point have been

proved. Our analytical discussions have been combined with some examples

to observe the accuracy of our claim. Finally, the semi stability of a limit cycle
which exists in a system of NFDE has been analyzed.

1. Introduction

Although the theory of fractional calculus is a 300-year-old topic which can be
traced back to Leibniz, Riemann, Liouville, Grünwald and Letnikov, the applica-
tions of fractional calculus to physics and engineering are recent focus of interest. It
is well known that fractional differential equations (FDE) are a generalization of or-
dinary differential equations to an arbitrary order. These equations have attracted
considerable attention because of their ability to model complex phenomena. In-
deed, FDE capture nonlocal relation in space and time. Due to the extensive
applications of FDE in engineering and science, research in this area has grown sig-
nificantly worldwide. On the other hand, the considerable applications of FDE in
modeling dynamical phenomena provide the motivation to generalize the concepts
of dynamical systems to FDE. There are a good number of articles published in
this regard and some of them noteworthy such as that of Tavazoei and Haeri in [13]
in which they proved no existence of periodic solution in time invariant fractional
order systems. Wang and Li in [14] studied the existence of limit cycles in the
fractional order systems. Ahmad and his coworkers suggested some conditions on
existence of Hopf bifurcation in fractional order dynamical systems [6]. They also
discussed stability and numerical solutions of fractional-order predatorprey [1]. Ma-
touk studied chaos, feedback control and synchronization in FDE [8, 9]. Matignon
in his appealing work [7] analyzed the stability of finite-dimensional linear FDE and
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Taghvafard and Erjaee in [12] discussed the stability of synchronization in chaotic
FDE systems. In [3] Deng and his coworkers studied the stability of n-dimensional
linear FDE with time delays. For such linear systems, a characteristic equation
was introduced using Laplace transform. They found out that if all roots of the
characteristic equation have negative parts, then the equilibrium of linear system
with fractional order is Lyapunov globally asymptotical stable. That is almost the
same as that of classical differential equations. In [5] Diethelma and Ford discussed
existence, uniqueness, and structural stability of solutions of NFDE. Zhang in[15]
chose to study stability and Lyapunov functions for FDE.
In this article, an attempt was made to classify the fixed points of dynamical sys-
tems presented by FDE. For this purpose, in section 2 some basic definitions and
results in fractional calculus have been stated. In section 3, we have analyzed the
stability types of the fixed points in NFDE systems. Using our main theorem dis-
cussed in section 3, the fixed points of FDE systems have been classified in section
4. Finally, in section 5 we have considered a system satisfying Lienard theorem in
the form of FDE. Then, similar to the study of Wang and Li in [14], we have shown
that this system has a limit cycle. We have also shown that this limit cycle is at
least semi stable.

2. PRELIMINARIES

In this section, we recall some basic definitions and results in fractional calculus.
Definition 1. Let α > 0. Then function Eα is defined by

Eα(z) :=

∞∑
j=0

zj

Γ(jα+ 1)
.

Whenever this series converges, it is called Mittag Leffler function of orderα.
Theorem 1. Let α > 0. Then Mittag Leffler function Eα behaves as follows:
(a) Eα(reiφ)→ 0 for r →∞ if |φ| > απ

2 .

(b) Eα(reiφ) remain bounded for r →∞ if |φ| = απ
2 .

(c) |Eα(reiφ)| → ∞ if |φ| < απ
2 .

Proof. Refer to [4].
Definition 2. Let α ∈ R+ then operator, Jαa defined on L1[a, b]

Jαa f(x) :=
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt

for a ≤ x ≤ b is called Riemann-Liouville fractional integral operator of order α.

Here Lp[a, b] := {f : [a, b]→ R; f is measurable on[a, b] and
∫ b
a
|f(x)|pdx <∞}.

Definition 3. Let n ∈ N, f ∈ An[a, b] and t ∈ [a, b], then for n − 1 < α ≤ n the
Cuputo’s definition of the fractional-order derivative is defined as

cDα
a =

1

Γ(n− α)

∫ x

a

(t− τ)n−α−1f (n)(τ)dt.

Definition 4. By An or An[a, b] we denote the set of functions with an absolutely
continuous (n− 1)st derivative, i.e. the functions f for which there exists (almost
everywhere) a function g ∈ L1[a, b] such that

f (n−1) = f (n−1)(a)−
∫ x

a

g(t)dt.
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Remark 1. The subscript a in definition 3 denote the left limit related to the
operator Dα. Whenever it’s clear what is the left limit of the operator or it doesn’t
have any difference whatever it is, for simplicity we eliminate it from notation.
Also for simplicity in notification we eliminate the left superscript c in definition
3 so whenever we use the notation Dα we mean Caputo derivative else, it will be
mentioned.
Theorem 2. Let α > 0,m = dαe and λ ∈ R. Then the solution of the initial value
problem

Dαy(x) = λy(x) + q(x), y(k)(0) = yk0 (k = 0, ...m− 1),

where q ∈ C[0, h] is a given function, and can be expressed in the form of

y(x) =

m−1∑
k=0

y
(k)
0 uk(x) + ỹ(x)

with

ỹ(x) =

{
Jα0 q(x) if λ = 0
1
λ

∫ x
0

(q(x− t)ú0(t)dt if λ 6= 0

uk(x) := Jk0 eα(x), k = 0, 1, ...m− 1, and eα(x) := Eα(λxα).
Proof. Refer to [4].
Remark 2. In the case 0 < α < 1, it is easy to see that the solution of the above
initial value problem is

y(x) = y
(0)
0 Eα(λxα) + α

∫ x

0

q(x− t)tα−1Etα(λtα)dt.

Definition 5. The autonomous system Dαx = Ax with x(0) = x0 is said to be:
- stable iff ∀x0,∃M, ∀t ≥ 0, ||x(t)|| ≤M ,
- asymptotically stable iff limt→∞||x(t)|| = 0, with some norm.
Theorem 3. The autonomous system Dαx = Ax with x(0) = x0 is:
- asymptotically stable iff |arg(eigA)| > απ

2 . In this case, the components of the
state decay towards zero as t−α.
- stable iff either it is asymptotically stable, or those critical eigenvalues which sat-
isfy |arg(eigA)| = απ

2 have geometric multiplicity one.
Proof. Refer to [7].
Definition 6. Let m,n ∈ N and α ∈ R+ and f(x) having dmαe continuous deriv-
tives on a neighborhood of x0 ∈ [a, b]. Then the fractional order Taylor expansion
of f(x) around the x = x0, is defined as follows:

f(x) =

m−1∑
n=0

Dnα
a f(x)|x=x0

Γ(nα+ 1)
(x− x0)nα + Jmαa Dmα

a f(x)|x=x0
.

Definition 7. Suppose that f = (f1, f2), Then the fractional Jacobian matrix of
f(x), Dαf(x), is defined as follow

Dαf(x) =

(
∂αf1
∂xα1

(x) ∂αf1
∂xα2

(x)
∂αf2
∂xα1

(x) ∂αf2
∂xα2

(x)

)
.

It should be noted that the functions f1 and f2 must satisfy the conditions intro-
duce in Definition 3, of course with respect to x1 and x2 or in the other words, the
elements of the Jacobian matrix should be defined.
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Grünwald-Letnikov approximation. Here, to evaluate the components of the
matrix Dαf(x) , the following approximation will be used, arising from the Grünwald-
Letnikov [11]definition; i.e.,

aD
α
t =

1

hα

[
(t−a)
h ]∑
j=0

(−1)j
(
α
j

)
f(t− jh).

Diethelm method to solve FDE. Diethelm method [4], which is a PECE (pre-
dict, evaluate, correct, evaluate) numerical type method with Caputo derivative
will be used. This method is based on fractional PC (predictor-corrector) algo-
rithm whereby the following FDE

aD
α
t = f(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = yk0 , k = 0, 1, ...m− 1, (m = dαe)
is equivalent to the Volterra integral equation

y(t) =

m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds.

Now, set h = T
N , tn = nh, n = 0, 1...N , and let yh(tn) be an approximation of y(tn).

Then the approximation of yh(tn+1) is given by

yh(tn+1) =

m−1∑
k=0

ck
tkn+1

k!
+

hα

Γ(α+ 2)
f(tn+1, y

p
h(tn+1))+

hα

Γ(α+ 2)

n∑
j=0

aj,n+1f(tj , yh(tj)),

where

aj,n+1 =

 nα+1 − (n− α)(n+ 1)α if j = 0
(n− j − 2)α+1 + (n− j)α+1 − 2(n− j − 1)α+1 if 1 ≤ j ≤ n− 1
1 if j = n,

and

yph(tn+1) =

m−1∑
k=0

ck
tkn+1

k!
+

1

Γ(α)

n∑
j=0

bj,n+1f(tj , yh(tj)),

in which bj,n+1 = hα

α ((n + 1 − j)α − (n − j)α)). Therefore, the estimation error
of the approximation is maxj=0,1,...n|y(tj)− yh(tj) = O(hp) where p = min(2, 1 +
α),[12, 14].

3. STABILITY ANALYSES

In this section, we state and prove the following theorem which can be considered
as a corollary of the above stated Theorem 3.
Theorem 4. Let α > 0, f satisfy conditions of Definition 3 and x̄ be the equilibrium
point of the autonomous system of NFDE Dαx = f(x). Then x̄ is
- asymptotically stable iff |arg(eigDαf(x̄))| > απ

2 .
- stable iff either it is asymptotically stable, or those critical eiganvalues which
satisfy |arg(eigDαf(x̄))| = απ

2 have geometric multiplicity one.
proof. To study the stability properties of x̄, it is convenient to introduce a new
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variable y(t) = x(t)− x̄, and so the equilibrium point x̄ of Dαx = f(x) corresponds
to the equilibrium point y = 0 of the FDE

Dα(y) = f(y + x̄). (1)

Using series expansion in fractional form, we can expand f(y+x̄) about x̄ to obtain

f(y + x̄) = f(x̄) +
1

Γ(1 + α)
Dαf(x)y + g(y),

where the remainder function g(y) satisfies

g(0) = 0 and Dαg(0) = 0. (2)

Since f(x̄) = 0, FDE Dα(y) = f(y + x̄) can be written in the form of

Dαy =
1

Γ(1 + α)
Dαf(x̄)y + g(y) (3)

The properties in (2) show that near the origin g(y) is small compared to y. There-
fore, (3) yields

Dαy =
1

Γ(1 + α)
Dαf(x̄)y.

Now, according to Theorem 3 this system is asymptotically stable iff |arg(eigDαf(x̄))|
> απ

2 . This means y(t) approaches to (0, 0) as t goes toward infinity. So (0, 0) is an
asymptotically stable fixed point of Dαy = f(y + x̄) or equivalently x̄ is asymptot-
ically stable fixed point of system Dαx = f(x). Similarly x̄ is a stable fixed point
of the system Dαx = f(x) if and only if the second condition of the theorem is
satisfied.

4. FIXED POINTS CLASSIFICATION OF NFDE SYSTEMS

Using Theorem (3), fixed points of a NFDE system, Dαx = f(x) can be classified
as in the following theorem
Theorem 5. Let α > 0, f satisfy conditions of Definition 3 and x̄ be the equilib-
rium point of the autonomous NFDE system Dαx = f(x). Then x̄ is
i) asymptotically stable or stable node, respectively, if all the eigenvalues of Dαf(x̄)
are real and satisfy |arg(eigDαf(x̄))| > απ

2 or those critical eigenvalues which sat-
isfy |arg(eigDαf(x̄))| = απ

2 have geometric multiplicity one.
ii) unstable node if all the eigenvalues of Dαf(x̄) satisfy |arg(eigDαf(x̄))| < απ

2 .
iii) saddle point if some eigenvalues satisfy |arg(eigDαf(x̄))| > απ

2 and some others
satisfy|arg(eigDαf(x̄))| < απ

2 .
iv) stable improper node if all eigenvalues are the same and satisfy |arg(eigDαf(x̄))| >
απ
2 .

v) unstable improper node if all eigenvalues are the same and satisfy |arg(eigDαf(x̄))|
< απ

2 .
vi) stable focus if eigenvalues are complex and satisfy |arg(eigDαf(x̄))| > απ

2 .
vii) unstable focus if eigenvalues are complex and satisfy |arg(eigDαf(x̄))| < απ

2 .

Proof. Here, we consider the case in R2, the case for higher dimension will be the
same. To start with, we consider NFDE system Dα(x) = f(x) and its linearization
as

Dαx =
1

Γ(α+ 1)
Dαf(x̄)x. (4)
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Now, we suppose matrix Dαf(x̄) has two real eigenvalues. Then system (4), without
loss of generality, can be written in the normal form:{

Dαx1 = λ1x1
Dαx2 = λ2x2.

(5)

According to Remark 1 system (5) has the following solution{
x1(t) = x1(0)Eα(λ1t

α)
x2(t) = x2(0)Eα(λ2t

α).
(6)

Considering Theorem 1, here t ∈ R and arguments of λ1 and λ2 correspond to
φ . Therefore, if |arg(λ1)| > απ

2 and |arg(λ2)| > απ
2 , then limt→∞x1(t) = 0

and limt→∞x2(t) = 0, which proves the asymptotic stability of the fixed point
in part (i). Note that if |arg(eigDαf(x̄))| = απ

2 , then, from Theorem 1(b), x(t)
remains bounded and consequently x̄ is stable and this complete the proof of part
(i). Obviously, if |arg(λ1)| < απ

2 and |arg(λ2)| < απ
2 , then limt→∞x1(t) = ∞ and

limt→∞x2(t) = ∞, which proves part (ii). On the other hand, if |arg(λ1)| < απ
2

and |arg(λ2)| > απ
2 , then limt→∞x1(t) = ∞ and limt→∞x2(t) = 0, which means

that the fixed point is a saddle. Similar proofs can be stated for the cases (iv) and
(v) for which we have the same eigenvalues.
Note that for cases (i) to (iii), to obtain the direction field near the equilibrium
point, from (6) we have:

dx2
dx1

=
d(x2(0)Eα(λ2t

α)

d(x1(0)Eα(λ1tα)
=
x2(0)λ2Eα(λ2t

α)

x1(0)λ1Eα(λ1tα)
=
x2(0)λ2x2
x1(0)λ1x1

. (7)

In cases (iv) and (v), since λ1 = λ2 the slope is obtained as follows:

dx2
dx1

=
x2(0)

x1(0)

To prove parts (vi) and (vii) it is assumed that Dαf(x̄) has complex eigenvalues.
Therefore, the normal form of the linearized system Dαx = f(x) is as follows
(assuming that λ1,2 = a± ib)

Dαx1 = ax1 + bx2
Dαx2 = −bx1 + ax2.

(8)

To show that the trajectories are in spiral shape near the equilibrium point, we
consider system (8) in the matrix form Dαx = Bx, where

B =

(
a −b
b a

)
.

Noting that Theorem 2 holds for matrix form too ([2]), we need to calculate
Eα(Btα), i.e.

Eα(Btα) =

∞∑
k=0

Bktαk

Γ(αk + 1)

However, it is easy to see that ([10])

Bk =

(
a −b
b a

)k
=

(
Re(λk) −Im(λk)
Im(λk) Re(λk)

)
.
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Therefore,

Eα(Btα) =

∞∑
k=0

tαk

Γ(αk + 1)

(
Re(λk) −Im(λk)
Im(λk) Re(λk)

)

On the other hand, if we write λ = reiθ, where r =
√
a2 + b2 and θ = arctg(

b

a
),

then λk = rkeikθ = rk(cos(kθ) + i sin(kθ)) and therefore

Eα(Btα) =

∞∑
k=0

tαk

Γ(αk + 1)

(
cos(kθ) −sin(kθ)
sin(kθ) cos(kθ)

)
.

As it can be seen, the rotation matrix is apparent in the solution of the system
which shows that the trajectories of (8) are in spiral shape near the equilibrium
point. Note that according to Theorem 5, x̄ is asymptotically stable if and only

if |argλ1,2| >
απ

2
, stable if |argλ1,2| =

απ

2
and unstable if |argλ1,2| <

απ

2
. This

completes the Theorem. Now, we consider some examples.
Example 1. The following NFDE system with α = 0.98{

Dαx1 = 4− x21
Dαx2 = −x2 + x1x

2
2,

(9)

has a fixed point at (2, 0) and at this point we have

D0.98f |(2,0) =

(
−3.8218 0

0 −0.9647

)
.

Obviously, λ1 = −3.8218, λ2 = −0.9647 and the absolute values of arguments λ1, λ2

are equal to π which are more than
απ

2
. Therefore, (2, 0) is a stable node for NFDE

system (9). See Figure(1) for numerical results.
Example 2. As a saddle point example, we consider{

Dαx1 = −x1
Dαx2 = −x2 + x21.

(10)

The only fixed point of this system is the origin. Evaluating Dαf |(0,0) and then
|arg(eigDαf |(0,0))| with α = 0.98, we can see that one of them is zero which is less

than
απ

2
and the other one is π which is greater than

απ

2
. Therefore, as we can

see in Figure (2) we have a saddle point in (0, 0).
Example 3. Consider the following system{

Dαx1 = x1 + x2
Dαx2 = x21x2 + x2.

(11)

This system has a fixed point at (0,0) for which we have

D0.98f |(2,0) =

(
0.9134 0.9134

0 0.9134

)
and λ1 = λ2 = 0.9134. Hence, (0, 0) is an improper node. Again note that since the

absolute value of the arguments of the eigenvalues are zero which are less than
απ

2
,

with α = 0.98, therefore, (0, 0) is an unstable improper node. See the numerical
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Figure 1. Stable node for NFDE system (9) with α = 0.98.

results in Figure (3).
Example 4. As an example of stable focus, we can consider the following system Dαx1 = x1(1− x1

2
− x2)

Dαx2 = x2(x1 − 1− x2
2
.

(12)

This system has a fixed point at (6/5, 2/5) with

D0.98f |(2,0) =

(
−0.5718 −1.1478
0.3826 −0.1892

)
,

λ1,2 = −0.3805± i0.6354, and the absolute value of the argument is equal to 2.1110

which is more than
απ

2
with α = 0.98. Therefore (6/5, 2/5) is a stable focus. We

can see the numerical results in Figure 4.
Example 5. As an example of unstable focus consider{

Dαx1 = x2
Dαx2 = x1(1− x21) + x2,

(13)

This system has a fixed point at (1,0) with

D0.98f |(2,0) =

(
0 0.9134

−1.8257 0.9134

)
,

λ1,2 = −0.4566±i1.208 and absolute value of the argument λ1, λ2 is equal to 1.2094

which is less than
απ

2
with α = 0.98. Therefore (1,0) is an unstable focus. See

Figure (5) for numerical results.

5. SEMI STABILITY OF LIMIT CYCLES IN NFDE SYSTEMS

Suppose NFDE system Dαx = f(x) has a limit cycle surrounding just a fixed
point. Then it is clear that this limit cycle is at least semi stable whenever the fixed
point is unstable. On the other hand, limit cycle is at least semi unstable whenever
the fixed point is stable. In this case, it is enough to analyze the stability of the
fixed point inside the limit cycle. However, fixed point stability of a NFDE system
can be analyzed by Theorem 5 in the above section. Therefore, using Theorem 5
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Figure 2. Saddle point for NFDE system (10) with α = 0.98.

Figure 3. Unstable improper node for NFDE system (11) with
α = 0.98.

Figure 4. Stable focus point for NFDE system (12) with α = 0.98.

we can analyze (at least) semi stability of existing limit cycle in a NFDE system.
For this purpose, we consider fractional order which satisfies Lienard theorem. As
is well known, in the classical case such a system has a limit cycle containing a fixed
point[10]. Here, for the fractional order, first the stability of the fixed point inside
the limit cycle is analyzed, then using Diethelm method the numerical results are
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Figure 5. Unstable focus point for NFDE system (13) with α = 0.98.

illustrated. Note that as long as the limit cycle exists in the classical ODE system
this limit cycle also exists for its NFDE counterpart, provided that stability of fixed
point inside the limit cycle does not change its stability as α varies.
Remark 2. From above discussion, we emphasis that the condition on which a
limit cycle exists in a NFDE systems is the same as in ODE counterpart systems.
Provided that as we change the value of derivative order α, the stability type of
equilibrium point inside limit cycle does not change. Of course, this stability can
be checked by above Theorem 5. In another word, no need to prove the existence
of limit cycles in NFDE systems as long as we know the existence of limit cycle in
ODE counterpart systems.

Example 6. Consider the following system which satisfies the Lienard theorem
conditions  ẋ = y − (x3 − x)

x2 + 1
ẏ = −x,

(14)

This system has one stable limit cycle containing just one unstable fixed point (0,0)
[10]. Now, according to Theorem 5, (0, 0) is an unstable fixed point. Since, matrix
Dαf with α = 1 is in the following form

Df =

−3x2 − 1

x2 + 1
+

2(x3 − x)x

(x2 + 1)2
1

−1 0

 , Df(0, 0) =

(
1 1
−1 0

)

The eigenvalues of this matrix are
1

2
±i1

2

√
3 with positive real parts which confirms

instability of (0,0). Note that |arg(eigDf(0, 0)| = π

3
<
απ

2
=
π

2
(See Figure 6 (a)).

Converting this Lienard system to a fractional one with various fractional orders
i.e., 0.97 and 0.7, we have the following results. For α = 0.97 we obtain

D0.97f |(0,0) =

(
0.9352 0.9630
−0.9630 0

)
,

with eigenvalues 0.4676± i0.8419 and

|arg(eigD0.97f |(0,0)| = 1.0638 <
0.97π

2
= 1.5237
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Figure 6. (a) Semi stable limit cycle in Lienard system with derivative order and

initial value (x0, y0) = (0.001, 0.002). (b) and (c) Semi stable limit cycle in Lienard system

with order α = 0.97 , initial value (x0, y0) = (0.001, 0.002), orderα = 0.9 and initial value

(x0, y0) = (0.001, 0.002), respectively. (d) Limit cycle no longer exists in Lienard system

with α = 0.7 and initial value (x0, y0) = (1, 2).

This shows that (0, 0) is an unstable fixed point and the system has a limit cycle
which is at least semi stable. See Figure 6 (b) for numerical results. Now, for
α = 0.7 we have

|arg(eigD0.7f |(0,0)| = 1.1714 >
0.7π

2
= 1.0996,

which shows that (0, 0) is asymptotically stable in fact it is a stable focus. Therefore,
as we claimed above, limit cycle no longer exists in this NFDE system, since the
stability type of the fixed point (0, 0) inside limit cycle has been changed from
unstable case (for α = 0.97) to stable case (for α = 0.7 ) (Figure 6(d)).
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