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ULAM STABILITY FOR PARTIAL FRACTIONAL INTEGRAL

INCLUSIONS VIA PICARD OPERATORS

SAÏD ABBAS, MOUFFAK BENCHOHRA, JOHNNY HENDERSON

Abstract. In this paper we investigate some existence and Ulam type stabil-
ity concepts of fixed point inclusions due to Rus, for partial fractional order
integral inclusions. Our results are obtained by using weakly Picard operators
theory.

1. Introduction

The fractional calculus deals with extensions of derivatives and integrals to non-
integer orders. It represents a powerful tool in applied mathematics in study-
ing a myriad of problems from different fields of science and engineering, with
many break-through results found in mathematical physics, finance, hydrology, bio-
physics, thermodynamics, control theory, statistical mechanics, astrophysics, cos-
mology and bioengineering [12, 25, 35]. There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the mono-
graphs of Abbas et al. [5], Kilbas et al. [18], Miller and Ross [20], the papers of
Abbas et al. [1, 2, 3, 4, 6], Vityuk and Golushkov [37], and the references therein.

The stability of functional equations was originally raised by Ulam in 1940 in
a talk given at the University of Wisconsin (for more details see [36]). The first
answer to Ulam’s question was given by Hyers in 1941 in the case of Banach spaces
in [13]. Thereafter, this type of stability is called Ulam-Hyers stability. In 1978,
Rassias [26] provided a remarkable generalization of the Ulam-Hyers stability of
mappings by considering variables. The concept of stability for a functional equa-
tion arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Thus, the stability question for functional equations
is, ”How do the solutions of the inequality differ from those of the given functional
equation?” Considerable attention has been given to the study of the Ulam-Hyers
and Ulam-Hyers-Rassias stability of all kinds of functional equations; one can see
the monographs of [14, 15]. Bota-Boriceanu and Petrusel [8], Petru et al. [22, 23],
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and Rus [27, 28] discussed the Ulam-Hyers stability for operator equations and in-
clusions. Castro and Ramos [9] and Jung [17] considered the Hyers-Ulam-Rassias
stability for a class of Volterra integral equations. Ulam stability for fractional dif-
ferential equations with Caputo derivative were proposed by Wang et al. [38, 39].
Some stability results for fractional integral equation were obtained by Wei et al.
[40]. More details, from a historical point of view, and recent developments of such
stabilities are reported in [16, 27, 40].

The theory of Picard operators was introduced by Ioan A. Rus (see [29, 30, 31]
and their references) to study problems related to fixed point theory. This abstract
approach was used later on by many mathematicians and it seemed to be a very
useful and powerful method in the study of integral equations and inequalities,
ordinary and partial differential equations (existence, uniqueness, differentiability
of the solutions), etc. We recommend the monograph [31] and the references therein.
The theory of Picard operators is a very powerful tool in the study of Ulam-Hyers
stability of functional equations. We only have to define a fixed point equation
from the functional equation we want to study, then if the defined operator is c-
weakly Picard we also have immediately the Ulam-Hyers stability of the desired
equation. Of course, it is not always possible to transform a functional equation
or a differential equation into a fixed point problem, and actually, this point shows
a weakness of this theory. The uniform approach with Picard operators to the
discussion of the stability problems of Ulam-Hyers type is due to Rus [28].

In this article, we discuss the Ulam-Hyers and the Ulam-Hyers-Rassias stability
for the fractional partial integral inclusion

u(x, y) ∈ µ(x, y) + IrθF (x, y, u(x, y)); (x, y) ∈ J := [0, a]× [0, b], (1)

where a, b > 0, θ = (0, 0), F : J × E → P(E) is a set-valued function with
nonempty values in a (real or complex) separable Banach space E, P(E) is the
family of all nonempty subsets of E, IrθF (x, y, u(x, y)) is the definite integral for
the set-valued function F of order r = (r1, r2) ∈ (0,∞)× (0,∞), and µ : J → E is
a given continuous function.

2. Preliminaries

Let L1(J) be the space of Bochner-integrable functions u : J → E with the norm

∥u∥L1 =

∫ a

0

∫ b

0

∥u(x, y)∥Edydx,

where ∥ ·∥E denotes a complete norm on E. By L∞(J) we denote the Banach space
of measurable functions u : J → E which are essentially bounded, equipped with
the norm

∥u∥L∞ = inf{c > 0 : ∥u(x, y)∥E ≤ c, a.e. (x, y) ∈ J}.
As usual, by C := C(J) we denote the Banach space of all continuous functions
from J into E with the norm ∥ · ∥∞ defined by

∥u∥∞ = sup
(x,y)∈J

∥u(x, y)∥E .

Let (X, d) be a metric space induced from the normed space (X, ∥.∥). Denote
Pcl(X) = {Y ∈ P(X) : Y closed}, Pbd(X) = {Y ∈ P(X) : Y bounded}, Pcp(E) =
{Y ∈ P(E) : Y compact} and Pcp,cv(E) = {Y ∈ P(E) : Y compact and convex}.
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Definition 1 A multivalued map T : X → P(X) is convex (closed) valued if
T (x) is convex (closed) for all x ∈ X. T is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set T (x0) is a nonempty closed subset of X, and
if for each open set N of X containing T (x0), there exists an open neighborhood
N0 of x0 such that T (N0) ⊆ N. T is lower semi-continuous (l.s.c.) if the set
{t ∈ X : T (t) ∩ B ̸= ∅} is open for any open set B in X. T is said to be
completely continuous if T (B) is relatively compact for every B ∈ Pbd(X). T has
a fixed point if there is x ∈ X such that x ∈ T (x). The fixed point set of the
multivalued operator T will be denoted by Fix(T ). The graph of T will be denoted
by Graph(F ) := {(u, v) ∈ X ×P(X) : v ∈ T (u)}.

Consider Hd : P(X)×P(X) → [0,∞) ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pbd,cl(X),Hd) is a Haus-

dorff metric space.

Notice that A : X → X is a selection for T : X → P(X) if A(u) ∈ T (u);
for each u ∈ X. For each u ∈ C, define the set of selections of the multivalued
F : J × C → P(C) by

SF,u = {v :∈ L1(J) : v(x, y) ∈ F (x, y, u(x, y)); (x, y) ∈ J}.
Definition 2 A multivalued map G : J → Pcl(E), is said to be measurable if

for every v ∈ E the function (x, y) → d(v,G(x, y)) = inf{d(v, z) : z ∈ G(x, y)} is
measurable.

In what follows we will give some basic definitions and results on Picard operators
[31, 32]. Let (X, d) be a metric space and A : X → X be an operator. We denote by
FA the set of the fixed points of A. We also denote A0 := 1X , A1 := A, . . . , An+1 :=
An ◦A, n ∈ N, the iterate operators of the operator A.

Definition 3 The operator A : X → X is a Picard operator (PO) if there exists
x∗ ∈ X such that:

(i) FA = {x∗};
(ii) The sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 4 The operator A : X → X is a weakly Picard operator (WPO) if
the sequence (An(x))n∈N converges for all x ∈ X, and its limit (which may depend
on x) is a fixed point of A.

Definition 5 If A is a weakly Picard operator, then we consider the operator
A∞ defined by

A∞ : X → X; A∞(x) = lim
n→∞

An(x).

Remark 1 It is clear that A∞(X) = FA.
Definition 6 Let A be a weakly Picard operator and c > 0. The operator A is

c-weakly Picard operator if

d(x,A∞(x)) ≤ c d(x,A(x)); x ∈ X.

In the multivalued case we have the following concepts (see [24, 33]).
Definition 7 Let (X, d) be a metric space, and F : X → Pcl(X) be a multivalued

operator. By definition, F is a multivalued weakly Picard operator (MWPO), if for
each u ∈ X and each v ∈ F (x), there exists a sequence (un)n∈N such that



136 S. ABBAS, M. BENCHOHRA, J. HENDERSON JFCA-2014/5(2)

(i) u0 = u, u1 = v;
(ii) un+1 ∈ F (un), for each n ∈ N;
(iii) the sequence (un)n∈N is convergent and its limit is a fixed point of F.

Remark 2 A sequence (un)n∈N satisfying condition (i) and (ii) in Definition
2 is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F ).

If F : X → Pcl(X) is a (MWPO), then we define F1 : Graph(F ) → P(Fix(F ))
by the formula F1(x, y) := {u ∈ Fix(F ) : there exists a sequence of successive
approximations of F starting from (x, y) that converges to u}.

Definition 8 Let (X, d) be a metric space and let Ψ : [0,∞) → [0,∞) be
an increasing function which is continuous at 0 and Ψ(0) = 0. Then F : X →
Pcl(X) is said to be a multivalued Ψ−weakly Picard operator (Ψ−MWPO) if it is a
multivalued weakly Picard operator and there exists a selection A∞ : Graph(F ) →
Fix(F ) of F∞ such that

d(u,A∞(u, v)) ≤ Ψ(d(u, v)); for all (u, v) ∈ Graph(F ).

If there exists c > 0 such that Ψ(t) = ct, for each t ∈ [0.∞), then F is called a
multivalued c-weakly Picard operator (c−MWPO).

Let us now recall the notion of comparison.
Definition 9 A function φ : [0,∞) → [0,∞) is said to be a comparison function

(see [31]) if it is increasing and φn → 0, as n → ∞.
As a consequence, we also have φ(t) < t, for each t > 0, φ(0) = 0 and φ is

continuous at 0.
Definition 10 A function φ : [0,∞) → [0,∞) is said to be a strict comparison

function (see [31]) if it is strictly increasing and

∞∑
n=1

φn(t) < ∞, for each t > 0.

Example 1 The mappings φ1, φ2 : [0,∞) → [0,∞) given by φ1(t) = ct; c ∈
[0, 1), and φ2(t) =

t
1+t ; t ∈ [0,∞), are strict comparison functions.

Definition 11 A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ ≥ 0 such that

Hd(N(u), N(v)) ≤ γd(u, v); for each u, v ∈ X,

b) a multivalued γ−contraction if and only if it is γ-Lipschitz with γ ∈ [0, 1).
c) a multivalued φ−contraction if and only if there exists a strict comparison

function φ : [0,∞) → [0,∞) such that

Hd(N(u), N(v)) ≤ φ(d(u, v)); for each u, v ∈ X,

Now, we introduce notations and definitions related to partial fractional calculus
theory.

Definition 12 [37] Let θ = (0, 0), r1, r2 ∈ (0,∞) and r = (r1, r2). For f ∈ L1(J),
the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(·) is
the (Euler’s) Gamma function defined by Γ(ξ) =

∫∞
0

tξ−1e−tdt; ξ > 0.
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In particular,

(Iθθ f)(x, y) = f(x, y), (Iσθ f)(x, y) =

∫ x

0

∫ y

0

f(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1).
For instance, Irθf exists for all r1, r2 ∈ (0,∞), when f ∈ L1(J). Note also that,
when u ∈ C, then (Irθf) ∈ C, and moreover

(Irθf)(x, 0) = (Irθf)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2 Let λ, ω ∈ (−1, 0) ∪ (0,∞), r = (r1, r2), r1, r2 ∈ (0,∞) and

h(x, y) = xλyω; (x, y) ∈ J.

We have h ∈ L1(J), and we get

(Irθh)(x, y) =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 ; for almost all (x, y) ∈ J.

Definition 13 [3] Let F : J×E → P(E) be a set-valued function with nonempty
values in E. IrθF (x, y, u(x, y)) is the definite integral for the set-valued functions F
of order r = (r1, r2) ∈ (0,∞)× (0,∞) which is defined as

IrθF (x, y, u(x, y)) =

{∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t)dtds : f ∈ SF,u

}
; (x, y) ∈ J.

Remark 3 Solutions of the inclusion (1) are solutions of the fixed point inclusion
u ∈ N(u) where N : C → P(C) is the multivalued operator defined by

(Nu)(x, y) = {µ(x, y) + Irθf(x, y); f ∈ SF,u} ; (x, y) ∈ J.

Let us now give the definition of Ulam-Hyers stability of a fixed point inclusion
due to Rus.

Definition 14 [28] Let (X, d) be a metric space and A : X → X be an operator.
The fixed point equation x = A(x) is said to be Ulam-Hyers stable if there exists a
real number cA > 0 such that: for each real number ϵ > 0 and each solution y∗ of
the inequality d(y,A(y)) ≤ ϵ, there exists a solution x∗ of the equation x = A(x)
such that

d(y∗, x∗) ≤ ϵcA; x ∈ X.

In the multivalued case we have the following definition.
Definition 15 [23] Let (X, d) be a metric space and A : X → P(X) be a mul-

tivalued operator. The fixed point inclusion u ∈ A(u) is said to be generalized
Ulam-Hyers stable if and only if there exists Ψ : [0,∞)× [0,∞) increasing, contin-
uous at 0 and Ψ(0) = 0 such that for each ϵ > 0 and for each solution v∗ of the
inequality Hd(u,A(u)) ≤ ϵ, there exists a solution u∗ of the inclusion u ∈ A(u) such
that

d(u∗, v∗) ≤ Ψ(ϵ); x ∈ X.

From the above definition, we shall give four types of Ulam stability of the fixed
point inclusion u ∈ N(u). Let ϵ be a positive real number and Φ : J → [0,∞) be a
continuous function.

Definition 16 The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers
stable if there exists a real number cN > 0 such that for each ϵ > 0 and for each
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solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤ ϵ; (x, y) ∈ J, there exists
a solution v ∈ C of the inclusion u ∈ N(u) with

∥u(x, y)− v(x, y)∥E ≤ ϵcN ; (x, y) ∈ J.

Definition 17 The fixed point inclusion u ∈ N(u) is said to be generalized Ulam-
Hyers stable if there exists an increasing function θN ∈ C([0,∞), [0,∞)), θN (0) = 0
such that for each ϵ > 0 and for each solution u ∈ C of the inequalityHd(u(x, y), (Nu)(x, y)) ≤
ϵ; (x, y) ∈ J, there exists a solution v ∈ C of the inclusion u ∈ N(u) with

∥u(x, y)− v(x, y)∥E ≤ θN (ϵ); (x, y) ∈ J.

Definition 18 The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers-
Rassias stable with respect to Φ if there exists a real number cN,Φ > 0 such that for
each ϵ > 0 and for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤
ϵΦ(x, y); (x, y) ∈ J, there exists a solution v ∈ C of the inclusion u ∈ N(u) with

∥u(x, y)− v(x, y)∥E ≤ ϵcN,ΦΦ(x, y); (x, y) ∈ J.

Definition 19 The fixed point inclusion u ∈ N(u) is said to be generalized
Ulam-Hyers-Rassias stable with respect to Φ if there exists a real number cN,Φ >
0 such that for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤
Φ(x, y); (x, y) ∈ J, there exists a solution v ∈ C of the inclusion u ∈ N(u) with

∥u(x, y)− v(x, y)∥E ≤ cN,ΦΦ(x, y); (x, y) ∈ J.

Remark 4 It is clear that

(i) Definition16 implies Definition 17,
(ii) Definition 18 implies Definition 19, and
(iii) Definition 18, for Φ(x, y) = 1, implies Definition 16.

The following result, a generalization of Covitz-Nadler fixed point principle (see
[11, 21]), is known in the literature as Wȩgrzyk’s fixed point theorem.

Lemma 1 [41] Let (X, d) be a complete metric space. If A : X → Pcl(X) is
a φ−contraction, then Fix(A) is nonempty and for any u0 ∈ X, there exists a
sequence of successive approximations of A starting from u0 which converges to a
fixed point of A.

Also, the following result is known in the literature as Wȩgrzyk’s theorem.
Lemma 2 [41] Let (X, d) be a Banach space. If an operator A : X → Pcl(X) is

a φ−contraction, then A is a (MWPO).

Now we present an important characterization lemma from the point of view of
Ulam-Hyers stability.

Lemma 3 [23] Let (X, d) be a metric space. If A : X → Pcp(X) is a (Ψ −
MWPO), then the fixed point inclusion u ∈ A(u) is generalized Ulam-Hyers stable.
In particular, if A is (c−MWPO), then the fixed point inclusion u ∈ A(u) is Ulam-
Hyers stable.

Another Ulam-Hyers stability result, more efficient for applications, was proved
in [19].

Theorem 1 [19] Let (X, d) be a complete metric space and A : X → Pcl(X) be
a multivalued φ−contraction. Then:

(i) Existence of the fixed point: A is a (MWPO);



JFCA-2014/5(2) ULAM STABILITY FOR PARTIAL FRACTIONAL INTEGRAL INCLUSIONS139

(ii) Ulam-Hyers stability for the fixed point inclusion: If additionally φ(ct) ≤
cφ(t) for every t ∈ [0,∞) (where c > 1,) and t = 0 is a point of uniform

convergence for the series

∞∑
n=1

φn(t), then A is a (Ψ−MWPO), with Ψ(t) :=

t+

∞∑
n=1

φn(t), for each t ∈ [0,∞);

(iii) Data dependence of the fixed point set: Let S : X → Pcl(X) be a multival-
ued φ−contraction and η > 0 be such that Hd(S(x), A(x)) ≤ η, for each
x ∈ X. Suppose that φ(ct) ≤ cφ(t) for every t ∈ [0,∞) (where c > 1,)

and t = 0 is a point of uniform convergence for the series
∞∑

n=1

φn(t). Then,

Hd(Fix(S), F ix(F )) ≤ Ψ(η).

In the sequel, we will make use of the following Theorem [[7],Th. 8.6.3] of Aubin
and Frankowska for the representation of extremal points of closure of set-valued
integral.

Theorem 2 [7] Let P = (Ω, F,P) be a nonatomic probability space, and let H
be a measurable set-valued map from Ω to subsets of Rn with nonempty closed
images. Then the following hold:

(a) The set-valued integral
∫
Ω
HdP is convex.

(b) If H is integrably bounded, then the integral
∫
Ω
HdP is also compact.

By the above Theorem, we conclude a representation of points in a set-valued
integral in the following Lemma.

Lemma 4 Let F : J ×E → Pcl(E) be such that (x, y) 7−→ F (x, y, u) is measur-
able for each u ∈ E. Then the following hold:

(a) The set-valued integral IrθF is convex.
(b) If F is integrably bounded, then the integral IrθF is also compact.

3. Existence and Stability Results

In this section, we present conditions for the existence and the Ulam stability of
the inclusion (1).

Theorem 3 Assume that the multifunction F : J ×E → Pcl,cv(E) satisfies the
following hypotheses:

(H1) (x, y) 7−→ F (x, y, u) is measurable for each u ∈ E;
(H2) u 7−→ F (x, y, u) is lower semicontinuous for almost all (x, y) ∈ J ;
(H3) There exists p ∈ L∞(J, [0,∞)) and a strict comparison function φ : [0,∞) →

[0,∞) such that for each (x, y) ∈ J and each u, v ∈ E, we have

Hd(F (x, y, u(x, y), F (x, y, u)∥ ≤ p(x, y)φ(∥u− u∥E), (2)

and
ar1br2∥p∥L∞

Γ(1 + r1)Γ(1 + r2)
≤ 1; (3)

(H4) There exists an integrable function q : [0, b] → [0,∞) such that for each
x ∈ [0, a] and u ∈ E, we have F (x, y, u) ⊂ q(y)B(0, 1), a.e. y ∈ [0, b], where
B(0, 1) = {u ∈ E : ∥u∥E < 1}.

Then the following conclusions hold:



140 S. ABBAS, M. BENCHOHRA, J. HENDERSON JFCA-2014/5(2)

(a) The integral inclusion (1) has least one solution and N is a (MWPO).
(b) If additionally φ(ct) ≤ cφ(t) for every t ∈ [0,∞) (where c > 1,) and t = 0

is a point of uniform convergence for the series

∞∑
n=1

φn(t), then the integral

inclusion (1) is generalized Ulam-Hyers stable, and N is a (Ψ−MWPO),

with the function Ψ defined by Ψ(t) := t +
∞∑

n=1

φn(t), for each t ∈ [0,∞).

Moreover, in this case the continuous data dependence of the solution set
of the integral inclusion (2) holds.

Remark 5 For each u ∈ C, the set SF,u is nonempty since by (H1), F has a
measurable selection (see [10], Theorem III.6).

Proof We shall show that N defined in Remark 3 satisfies the assumptions of
Theorem 1. The proof will be given in two steps.

Step 1: N(u) ∈ Pcp(C) for each u ∈ C.
From the continuity of µ and Theorem 2 in Rybiński [34], we have that, for each
u ∈ C, there exists f ∈ SF,u, for all (x, y) ∈ J, such that f(x, y) is integrable
with respect to y and continuous with respect to x. Then the function v(x, y) =
µ(x, y) + Irθf(x, y) has the property v ∈ N(u). Moreover, from (H1) and (H4), via
Lemma 4, we get that N(u) is a compact set, for each u ∈ C.

Step 2: Hd(N(u), N(u)) ≤ φ(∥u− u∥∞) for each u, u ∈ C.
Let u, u ∈ C and h ∈ N(u). Then, there exists f(x, y) ∈ F (x, y, u(x, y)) such that,
for each (x, y) ∈ J, we have

h(x, y) = µ(x, y) + Irθf(x, y).

From (H3) it follows that

Hd(F (x, y, u(x, y)), F (x, y, u(x, y))) ≤ p(x, y)φ(∥u(x, y)− u(x, y)∥E).

Hence, there exists w(x, y) ∈ F (x, y, u(x, y) such that

∥f(x, y)− w(x, y)∥E ≤ p(x, y)φ(∥u(x, y)− u(x, y)∥E); (x, y) ∈ J.

Consider U : J → P(E) given by

U(x, y) = {w ∈ E : ∥f(x, y)− w(x, y)∥E ≤ p(x, y)φ(∥u(x, y)− u(x, y)∥E)}.

Since the multivalued operator u(x, y) = U(x, y) ∩ F (x, y, u(x, y)) is measurable
(see Proposition III.4 in [10]), there exists a function f(x, y) which is a measurable
selection for u. So, f(x, y) ∈ F (x, y, u(x, y)), and for each (x, y) ∈ J,

∥f(x, y)− f(x, y)∥E ≤ p(x, y)φ(∥u(x, y)− u(x, y)∥E).

Let us define for each (x, y) ∈ J,

h(x, y) = µ(x, y) + Irθf(x, y).



JFCA-2014/5(2) ULAM STABILITY FOR PARTIAL FRACTIONAL INTEGRAL INCLUSIONS141

Then for each (x, y) ∈ J, we have

∥h(x, y)− h(x, y)∥E ≤ Irθ∥f(x, y)− f(x, y)∥E
≤ Irθ (p(x, y)φ(∥u(x, y)− u(x, y)∥E))

≤ ∥p∥L∞φ(∥u− u∥∞)

(∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
dtds

)
≤ ar1br2∥p∥L∞

Γ(1 + r1)Γ(1 + r2)
φ(∥u− u∥∞).

Thus, by (3), we get

∥h− h∥∞ ≤ φ(∥u− u∥∞).

By an analogous relation, obtained by interchanging the roles of u and u, it follows
that

Hd(N(u), N(u)) ≤ φ(∥u− u∥∞).

Hence, N is a φ−contraction.

(a) By Lemma 1, N has a fixed point which is a solution of the inclusion (1) on
J, and by Theorem 1,(i), N is a (MWPO).

(b) We will prove that the fixed point inclusion problem (1) is generalized Ulam-
Hyers stable. Indeed, let ϵ > 0 and v ∈ C for which there exists u ∈ C such that

u(x, y) ∈ µ(x, y) + IrθF (x, y, v(x, y)); if (x, y) ∈ J,

and

∥u− v∥∞ ≤ ϵ.

Then Hd(v,N(v)) ≤ ϵ. Moreover, by part of the proof above, we have that N
is a multivalued φ−contraction, and using Theorem 1,(i)-(ii), we obtain that N
is a (Ψ − MWPO). Then, by Lemma 3, we obtain that the fixed point problem
u ∈ N(u) is generalized Ulam-Hyers stable. Thus, the integral inclusion (1) is
generalized Ulam-Hyers stable.
Concerning the conclusion of the theorem, we apply Theorem 1,(iii).

4. An Example

Let E = l1 = {w = (w1, w2, . . . , wn, . . .) :
∑∞

n=1 |wn| < ∞} , be the Banach space
with norm ∥w∥E =

∑∞
n=1 |wn|, and consider the following partial functional frac-

tional order integral inclusion of the form

u(x, y) ∈ µ(x, y) + IrθF (x, y, u(x, y)); a.e. (x, y) ∈ [0, 1]× [0, 1], (4)

where r = (r1, r2), r1, r2 ∈ (0,∞),

u = (u1, u2, . . . , un, . . .), µ(x, y) = (x+ e−y, 0, . . . , 0, . . .),

and

F (x, y, u(x, y)) := {v ∈ C([0, 1]× [0, 1],R) : ∥f1(x, y, u(x, y))∥E ≤ ∥v∥E ≤
∥f2(x, y, u(x, y))∥E}, (x, y) ∈ [0, 1]× [0, 1],

where f1, f2 : [0, 1]× [0, 1]× E → E,

fk = (fk,1, fk,2, . . . , fk,n, . . .); k ∈ {1, 2}, n ∈ N,
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f1,n(x, y, un(x, y)) =
xy2un

(1 + ∥un∥E)e10+x+y
; n ∈ N,

and

f2,n(x, y, un(x, y)) =
xy2un

e10+x+y
; n ∈ N.

We assume that F is closed and convex valued. We can see that the solutions
of the inclusion (4) are solutions of the fixed point inclusion u ∈ A(u) where A :
C([0, 1] × [0, 1],R) → P(C([0, 1] × [0, 1],R)) is the multifunction operator defined
by

(Au)(x, y) = {µ(x, y) + Irθf(x, y); f ∈ SF,u} , (x, y) ∈ [0, 1]× [0, 1].

For each (x, y) ∈ [0, 1]× [0, 1] and all z1, z2 ∈ E, we have

∥f2(x, y, z2)− f1(x, y, z1)∥E ≤ xy2e−10−x−y∥z2 − z1∥E .

Thus, the hypotheses (H1)−(H3) are satisfied with p(x, y) = xy2e−10−x−y.We shall
show that condition (3) holds with a = b = 1. Indeed, ∥p∥L∞ = e−10, Γ(1 + ri) >
1
2 ; i = 1, 2. A simple computation shows that

ζ :=
ar1br2∥p∥L∞

Γ(1 + r1)Γ(1 + r2)
< 4e−10 < 1.

The condition (H4) is satisfied with q(y) = y2e−10−y

∥F∥P
; y ∈ [0, 1], where

∥F∥P = sup{∥f∥C : f ∈ SF,u}; for allu ∈ C.

Consequently, by Theorem 3 we conclude that:

(a) The integral inclusion (4) has least one solution and A is a (MWPO).
(b) The function φ : [0,∞) → [0,∞) defined by φ(t) = ζt satisfies φ(ζt) ≤

ζφ(t) for every t ∈ [0,∞, ) and t = 0 is a point of uniform convergence

for the series

∞∑
n=1

(ζt)n. Then the integral inclusion (4) is generalized Ulam-

Hyers stable, and A is a (Ψ−MWPO), with the function Ψ defined by
Ψ(t) := t+ (1− ζt)−1, for each t ∈ [0, ζ−1). Moreover, the continuous data
dependence of the solution set of the integral inclusion (2) holds.
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