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NUMERICAL SOLUTION OF FREDHOLM-VOLTERRA
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH

NONLOCAL BOUNDARY CONDITIONS

AMIT SETIA, YUCHENG LIU, A.S. VATSALA

Abstract. In this paper, a numerical method is proposed to solve Fredholm-
Volterra fractional integro-differential equation with nonlocal boundary con-

ditions. For this purpose, the Chebyshev wavelets of second kind are used in

collocation method. It reduces the given fractional integro-differential equa-
tion (FIDE) with nonlocal boundary conditions in a linear system of equations

which one can solve easily. The test examples are taken from the literature

in order to illustrate the proposed method and different comparisons are also
shown. The involved errors are measured with RMS-norm to show the accu-

racy obtained.

1. Introduction

Qualitative and numerical studies of fractional differential equations have played
an important role due to its application [1]. Computation of the solution of frac-
tional differential [2] has proved to be challenging since we do not have separation
of variable method and product rules which are readily available for integer order
differential equations. Since there is no general method like in case of integer order
differential equations. Many researchers in the field of fractional differential equa-
tions and fractional integro-differential equations have proposed different methods
to compute the solution. A few among these are transform method [3], homo-
topy analysis [4], Adomian decomposition method [5], variational iteration method
[6], homotopy perturbation method [6] and collocation method [7, 8]. But im-
plementation of wavelet based methods [9, 10, 11] for solving fractional differential
equations have started recently. Further some researchers have also worked on frac-
tional integro-differential equation by using wavelet based methods [12, 13, 14, 15].
In this paper, we have proposed a numerical method to solve the most general
Fredholm-Volterra fractional integro-differential equation (1) with non-local bound-
ary conditions (2) from [16] by using Chebyshev wavelets of second kind.
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Table 1. Comparison of recent methods [12, 13] with our pro-
posed method in this paper,

Method in [12] Method in [13] Method in this pa-
per

Type of numerical method Galerkin Galerkin Collocation
Nature of Constraints Local initial condi-

tions
Local boundary
conditions

Non-local bound-
ary conditions

Class of Integral equation Fredholm Fredholm Fredhom-Volterra
Type of Wavelet used Chebyshev CAS Chebyshev
Numerical Stability discussion
for noisy data

No No Yes

Dqu(x) = g(x) + f(x)u(x) +
∫ x

a

k1(x, t)u(t)dt+
∫ b

a

k2(x, t)u(t)dt (1)

m∑
j=1

(
αiju

(j−1)(a) + βiju
(j−1)(b)

)
+ µi

∫ b

a

Hi(t)u(t)dt = ci, i = 1, 2, ...,m. (2)

where m−1 < q ≤ m, a < x, t < b and m ∈ N,Dq denotes a differential operator
with fractional order q; f(x), g(x) and ki(x, t), i = 1, 2, are analytic functions, Hi(t)
is a continuous function, αij , βij , µi and ci, (i = 1, 2, ...,m) are constants and u(x)
is a function of class Cm (functions which are continuously differentiable of order
m on I = (0,∞) and integrable on any finite subinterval of J = [0,∞) ).
Our work is motivated from very recent work in the field of fractional integro-
differential equations involving nonlocal boundary conditions [16, 17], numerical
methods based on wavelets [9, 10, 11, 12, 13, 14, 15] and one of an interesting
application [1]. To the best of our knowledge, nobody has solved a general problem
(1) of Fredholm-Volterra type fractional integro-differetial equation with nonlocal
boundary conditions (2) by using any of wavelet based method. Further, in order
to conclude the originality of our work, we have compared our method with the
recently proposed methods [12, 13] in the Table 1.

2. Basic definition of Chebyshev wavelets

The Chebyshev wavelets of second kind can be defined as

ψn,l(x) =

{√
2k+1

π Tl(2kx− (2n− 1)), n−1
2k−1 ≤ x < n

2k−1

0, elsewhere
(3)

where n = 1, 2, ...., 2k−1 ; k can assume any positive integer; Tl(x) are second kind
Chebyshev polynomials of degree l.

The second kind Chebyshev polynomials Tl(x) are defined by

T0(x) = 1, T1(x) = 2x, Tl+1(x) = 2xTl(x)− Tl−1(x) (4)

where l = 1, 2, ....
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These are orthogonal polynomials with respect to the weight function w(x) =√
1− x2 on [−1, 1]. The dilated and translated weight function can be defined as

wkn(x) = w(2kx− 2n+ 1) (5)

for a given value of k and n appearing in second kind Chebyshev wavelet.
A function u(x) ∈ L2

wkn
[0, 1] is expanded as

u(x) =
∞∑
n=1

∞∑
l=0

cn,lψn,l(x) (6)

where cn,l = 〈u(x), ψn,l(x)〉 in which 〈·, ·〉 denotes the inner product in L2
wkn

[0, 1] .
The truncated series of (6) can be defined as

u(x) =
2k−1∑
n=1

R−1∑
l=0

cn,lψn,l(x) = CTψ(x), (7)

where C = [c1, c2, ...., c2k−1 ]T , ψ(x) = [ψ1, ψ2, ...., ψ2k−1 ]T , ci = [ci,0, ci,1, ...., ci,R−1]T , ψi =
[ψi,0, ψi,1, ...., ψi,R−1]T for i = 1, 2, ...., 2k−1.

The definitions and properties of Rieman-Liouville fractional integral operator
of a given order and Caputo definition of fractional differential operator have been
followed from [2].

3. Methodology for the solution

Let Dqu(x) = CTψ(x),m− 1 < q ≤ m, (8)

where C is defined as in (7).

This gives u(x) = CTP qψ(x) +
m−1∑
k=0

u(k)(0)
xk

k!
,m− 1 < q ≤ m, (9)

where u(k)(x) denotes the kth derivative of function u(x) and the matrix P is defined
as the operational matrix of the fractional integration [18].

Let f1(x) ≈ F1
Tψ(x), (10)

where F1 is a coefficient matrix defined similar as in (7).

f2(x)u(x) ≈ f2(x)

[
CTP qψ(x) +

m−1∑
k=0

u(k)(0)
xk

k!

]
(11)

∫ x

a

k1(x, t)u(t)dt ≈
∫ x

a

[
CTP qψ(t) +

m−1∑
k=0

u(k)(0)
tk

k!

] [
ψ(t)TK1ψ(x)

]
dt

= CTP qLxK1ψ(x) +
m−1∑
k=0

[
u(k)(0)LkxK1ψ(x)

]
(12)
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where ∫ x

a

ψ(t)ψ(t)T dt = Lx∫ x

a

t0

0!
ψ(t)T dt = L0

x∫ x

a

t1

1!
ψ(t)T dt = L1

x

...∫ x

a

tm−1

(m− 1)!
ψ(t)T dt = Lm−1

x

(13)

∫ 1

a

k2(x, t)u(t)dt ≈
∫ 1

a

[
CTP qψ(t) +

m−1∑
k=0

u(k)(0)
tk

k!

] [
ψ(t)TK2ψ(x)

]
dt

= CTP qMK2ψ(x) +
m−1∑
k=0

[
u(k)(0)MkK2ψ(x)

]
(14)

where ∫ 1

a

ψ(t)ψ(t)T dt = M∫ 1

a

t0

0!
ψ(t)T dt = M0

∫ 1

a

t1

1!
ψ(t)T dt = M1

...∫ 1

a

tm−1

(m− 1)!
ψ(t)T dt = Mm−1

(15)

So using the equations (7) to (14), the equation (1) becomes

CTψ(x) = FT1 ψ(x) + f2(x)CTP qψ(x) + f2(x)

[
m−1∑
k=0

u(k)(0)
xk

k!

]

+ CTP qLxK1ψ(x) +

[
m−1∑
k=0

u(k)(0)LkxK1ψ(x)

]

+ CTP qMK2ψ(x) +

[
m−1∑
k=0

u(k)(0)MkK2ψ(x)

]
.
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Choosing xi = 2i−1
2ω , i = 1, 2, ...., ω = 2k−1R, collocation points between 0 and 1,

one gets

CTψ(xi) = FT1 ψ(xi) + f2(xi)CTP qψ(xi) + f2(xi)

[
m−1∑
k=0

u(k)(0)
xki
k!

]

+ CTP qLxiK1ψ(xi) +

[
m−1∑
k=0

u(k)(0)LkxiK1ψ(xi)

]

+ CTP qMK2ψ(xi) +

[
m−1∑
k=0

u(k)(0)MkK2ψ(xi)

]
,

(16)

where i = 1, 2, ...., ω.
Now finding the rth derivative of u(x) as

u(r)(x) = Dru(x) = CTP q−rψ(x), r = 0, 1, 2, ....,m− 1;m− 1 < q ≤ m (17)

For i = 1, 2, ....,m, one can approximate∫ b

a

Hi(t)u(t)dt ≈
∫ b

a

Hi(t)

[
CTP qψ(t) +

m−1∑
k=0

u(k)(0)
tk

k!

]

= CTP qdi +
m−1∑
k=0

[
u(k)(0)dki

]
(18)

where ∫ b

a

Hi(t)ψ(t)dt = di∫ b

a

t0

0!
Hi(t)dt = d0

i∫ b

a

t1

1!
Hi(t)dt = d1

i

...∫ b

a

tm−1

(m− 1)!
Hi(t)dt = d

(m−1)
i

(19)

So using equations (17) to (19), the equation (2) becomes

m∑
j=1

(
αij [CTP q−j+1ψ(0)] + βij [CTP q−j+1ψ(1)]

)
+µi

(
CTP qdi +

m−1∑
k=0

[
u(k)(0)dki

])
= ci

(20)
where i = 1, 2, ....,m.
Hence (16) and (20) form a system of ω +m equations in ω +m unknowns which
one can easily solve.

In the next section, the proposed method is implemented for the test examples
corresponding to fractional integro-differential equations (1) with nonlocal bound-
ary conditions (2). The comparisons are also shown with the results in [16].
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4. Illustrative examples

In equation (1), the exact data function is denoted by g(x). And, one can obtain a
noisy data function by adding a random error εθi to g(x) , i.e. gε(xi) = g(xi) + εθi
where xi = ih; i = 0, 1, 2, ...., N ;Nh = 1 and θi is a uniform random variable
with values in [−1, 1] such that max

1≤i≤N
|gε(xi) − g(xi)| ≤ ε . The accuracy of the

proposed method is further measured with the help of absolute errors and discrete
l2-norm of absolute errors. The discrete l2-norm of absolute errors can be defined

as
(

1
N+1

∑N
i=0 |uexact(xi)− u(xi)|2

)1/2

. This discrete l2-norm of absolute errors is
also known as root mean square error norm (i.e. RMS-norm). Further E0, E1 and
E2 are defined as the random fluctuations uε(xi)− uexact(xi), of the solution u(x).
These occur when random noises are introduced in the given data function g(x).
The random noises are ε = 0, 0.001 and 0.01, respectively for E0, E1 and E2.

Theorem 1(a) Assume η be the number of vanishing moments for a wavelet
ψn,l(x) and let f(x) ∈ Cη[0, 1] . Then the wavelet coefficient cn,l decays as follows:
|cn,l| ≤ Cη2−n(η+ 1

2 ) max
ξ∈[0,1]

|fη(ξ)|

where Cη is an independent constant from n, l and f(x) .

(b) Suppose f(x) ∈ Cη[0, 1] and f(x) ≈
∑2k−1
n=1

∑R−1
l=0 cn,lψn,l(x) = CTψ(x) is the

approximate solution by using Chebyshev wavelets method. Then the error bound
is obtained as follows:
‖error(f(x))‖ ≤ 1

η!2η(k−1) max
ξ∈[0,1]

|fη(ξ)|,

where error(f(x)) = f(x)− CTψ(x) .
Proof: For details, one can refer [19].

Remark: Importance of Theorem 1.
Theorem 1(a) implies that wavelet coefficients are exponentially decayed with re-
spect to η and by increasing η the decay increases while Theorem 1(b) provides an
error bound in a function approximation by Chebyshev wavelet of second kind. One
can notice that f(x) and g(x) (with reference to equation (1)) in all the examples,
belong to a class of infinitely differentiable continuous functions C∞[0, 1]. So the
above theorem concludes that the wavelet coefficients are going to be very small
and a good approximation can be obtained easily.
Example 4.1 Consider the following fractional integro-differential equation from
[16] :

D1/2u(x) =
√
x

Γ(3/2)
− x2

2
− x2 e

x

3
u(x) + ex

∫ x

0

tu(t)dt+
∫ 1

0

x2u(t)dt.

The nonlocal boundary condition is given by

u(0) + u(1)− 3
∫ 1

0

tu(t)dt = 0.

The Example 4.1 has an exact solution u(x) = x . For the problem defined in
Example 4.1, the absolute errors are compared by using different basis functions.
Like the basis functions in matrix form for k = 2, R = 2, are given by ψ(x) =
[ψ1,0, ψ1,1, ψ2,0, ψ2,1]T . The numerical results are shown in Figure 1. It is observed
that as the value of k or R or both increases, the absolute error decreases. From the
Figure 1, it can be noticed that the maximum absolute error occurs for k = 2, R = 2,
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Figure 1. compares the
absolute errors by using
different basis functions
for Example 4.1.
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Figure 2. compares the
absolute errors by using
different basis functions
for Example 4.2.

while the least error occurs for k = 4, R = 2. And, the absolute errors are also
compared with [16].

Example 4.2 Consider the following fractional integro-differential equation from
[16] :

D5/4u(x) =
8
3
x3/4

Γ(3/4)
+2−2 cosx+x2 sinx−2x sinx+[cosx−sinx]u(x)+

∫ x

0

sin tu(t)dt.

The nonlocal boundary conditions are given as follows:

u(0) + u(1) +
(
e+ 1
e+ 2

)
u′(0) +

1
2
u′(1)−

∫ 1

0

tu(t)dt = 0,

2u(0) + 2u(1) +
(

e

e+ 1

)
u′(0)− u′(1) = 0.

Further, the Example 4.2 has an exact solution u(x) = x2 . And, the numerical
results for absolute errors by using different pair of values of k and R (like k =
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Figure 4. compares
the errors measured with
RMS-norm for all the ex-
amples by using different
basis functions.

2, R = 2; k = 2, R = 3; k = 3, R = 2; k = 2, R = 5 and k = 4, R = 2) are shown in
Figure 2. We have obtained a similar behaviour as in Example 4.1, but magnitudes
of errors are increased.

Example 4.3 Let the fractional integro-differential equation from [16] be:

D1/3u(x) =
3
2
x2/3

Γ(2/3)
− 1 + ex

2
− x2ex

2
+
∫ x

0

x2extu(t)dt.

The nonlocal boundary condition is

u(0) + 2u(1) + 3
∫ 1

0

tu(t)dt = 3.

Example 4.3 has an exact solution u(x) = x . Figure 3 compares the absolute
errors when different basis functions are used in Example 4.3. The results are also
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compared with those obtained in [16]. And, one can easily observe that a desired
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Table 2. It measures errors with the help of RMS-norm for k =
2, R = 2;N = 50.

E0 E1 E2

Example 4.1 0.0096 0.0096 0.0104
Example 4.2 0.0203 0.0203 0.0204
Example 4.3 0.0088 0.0087 0.0087

accuracy can be obtained by choosing higher values of k and R. Figure 4 compares
the errors measured with RMS-norm. It also shows the comparison among all the
three examples by using different basis functions. Figures 5, 6 and 7 compare the
random fluctuations E0, E1 and E2 for Example 4.1, Example 4.2 and Example
4.3, respectively. It shows that on introducing a small random noise in the given
data, the random fluctuations also remain small. It concludes that the proposed
numerical solutions are numerically stable with respect to noisy data. In practical
situations, it may not be possible all the times to find the exact data or sometimes
it may not be economical to obtain it. Then the numerical stability result is of
great importance.

In Table 2, the errors E0, E1, E2 are measured by using RMS-norm for N = 50.
A particular case of basis functions (i.e. k = 2, R = 2), is used and the results
are compared for all the three examples. It is observed from Table 2 that the least
random fluctuation occurs in Example 4.3. This shows that the problem described
in Example 4.3 is more stable than the problems described in other two examples.

5. Conclusions

A numerical method is proposed for solving the most general Fredholm-Volterra
fractional integro-differential equation with non-local boundary conditions by us-
ing Chebyshev wavelet of second kind. The accuracy of proposed algorithm is
illustrated by calculating the parameters like absolute error and RMS-error as in
[20]. Figure 2(b) clearly shows that as the basis functions increase, the RMS-errors
decrease very fast and a given accuracy can be obtained by choosing the suitable
number of basis functions. Table 2 confirms the numerical stability of the proposed
algorithm even when given data function is very noisy.
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