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EXISTENCE OF AT LEAST ONE CONTINUOUS SOLUTION OF

A COUPLED SYSTEM OF URYSOHN INTEGRAL EQUATIONS

A. M. A. EL-SAYED, M. R. KENAWY

Abstract. In this work, we are concerning with a coupled system of nonlinear
Urysohn functional integral equations. We study the existence of at least one

continuous solution. The nonlinear Urysohn functional integral equation will
be given as an special case. Some boundary value problems of coupled system
of nonlinear Urysohn functional integro-differential equations will be studied
as applications.

1. Introduction

It is known that integral equations have many useful applications in describing
numerous events and problems of real world and the theory of integral equation
is rapidly developing with the help of several tools of functional analysis, topology
and fixed point theory [1]-[4],[6]-[8] and [10]-[13].

Let β ∈ (0, 1) and the function f be integrable on [0, T ]. The Riemann-Liouville
fractional order integral operator is given by the singular integral operator of con-
volution type [14]

Iβf(t) =

∫ t

0

(t− s)β−1

Γ(β)
f(s) ds, t ∈ [0, T ].

Let α ∈ (0, 1) and f ∈ AC[0, T ]. Then the Fractional order derivative is defined
by the singular integro-differential operator [15]

Dα f(t) = I1−α d

dt
f(t)

Let I = [0, 1]. Consider the coupled system of nonlinear Urysohn functional integral
equations

x(t) = a1(t) +

∫ 1

0

f1(t, s, I
β1y(s))ds, t ∈ I (1)
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y(t) = a2(t) +

∫ 1

0

f2(t, s, I
β2x(s))ds, t ∈ I. (2)

where Iβ1 and Iβ2 are integral operators of fractional orders β1 and β2.

The existence of at least one solution (x, y) of the coupled system (1)-(2) will
be proved.
The special case, the nonlinear Urysohn functional integral equation

x(t) = a1(t) +

∫ 1

0

f(t, s, Iβx(s))ds, t ∈ I (3)

will be considered as an example.
Also the existence of the maximal and the minimal solution of (3) will be proved.

Finally, the coupled system of functional integro-differential equations

d

dt
x(t) = a1(t) +

∫ 1

0

f1(t, s,D
α1y(s))ds, t ∈ I (4)

d

dt
y(t) = a2(t) +

∫ 1

0

f2(t, s,D
α2x(s))ds, t ∈ I (5)

with the boundary conditions

x(0) = γ1 x(1), and y(0) = γ2 y(1), γ1, γ2 ̸= 1 (6)

will be studied as an application.

2. Main results

Let ai : I = [0, 1] → R be continuous and supt∈I |ai(t)| = a∗i .
Consider the following assumptions
(i) fi : I × I × R → R are continuous in t ∈ I for all (s, x) ∈ I × R, measurable
in s ∈ I for all (t, x) ∈ I ×R and continuous in x ∈ R for all (t, s) ∈ I × I, i = 1, 2.
(ii) There exist two integrable functions mi : I × I → R and two nonnegative
constants bi, i = 1, 2 such that

|fi(t, s, x)| ≤ |mi(t, s)|+ bi|x|.
and

sup
t∈I

∫ 1

0

mi(t, s)ds ≤ Mi.

Let X be the Banach space of all order pairs (x, y) with the norm

∥(x, y)∥X = ∥x∥+ ∥y∥ = sup
t∈I

|x(t)|+ sup
t∈I

|y(t)|.

Define the operator F by

F (x, y) = (T1y, T2x)

where

T1y = a1(t) +

∫ 1

0

f1(t, s,D
α1y(s))ds, t ∈ I

and

T2x = a2(t) +

∫ 1

0

f2(t, s,D
α2x(s))ds, t ∈ I
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Define the set of functions

Qr = {u = (x, y) ∈ X : ||u|| ≤ r, ∥x∥ ≤ r2, ∥y∥ ≤ r1, r1 + r2 = r},
where

r1 =
(a∗1 + M1)

(1− b1
Γ(β1+2) )

and r2 =
a∗2 + M2

(1− b2
Γ(β2+2) )

.

Definition 1. By a solution of the coupled system (1)-(2) we mean the ordered
pair (x, y) such that x, y ∈ C[0, T ]. This ordered pair satisfies the coupled system
(1)-(2).
Now we prove some lemmas which will be used to prove the main Theorem.

Lemma 1. Let the assumptions (i)-(ii) be satisfied, then F : Qr → Qr and
the set of functions FQr is uniformly bounded.
Proof. From our assumptions we have

|T1y(t)| ≤ |a1(t)|+ |
∫ 1

0

f1(t, s, I
β1y(s))ds|

≤ a∗1 +

∫ 1

0

m1(t, s)ds + b1∥y∥
∫ 1

0

∫ s

0

θβ1−1

Γ(β1)
dθds

≤ a∗1 + M1 +
b1 r1

Γ(β1 + 2)
≤ r1,

then
∥T1y(t)∥ ≤ r1.

Also

|T2x(t)| ≤ |a∗2|+ |
∫ 1

0

f2(t, s, I
β2x(s))ds|

≤ a∗2 +

∫ 1

0

m2(t, s)ds + b2 ∥x∥
∫ 1

0

∫ s

0

θβ2−1

Γ(β2)
dθds

≤ a∗1 + M2 +
b2 r2

Γ(β2 + 2)
≤ r2,

then
∥T2x∥ ≤ r2.

Now for (x, y) ∈ Qr, we have

∥F (x, y)∥ = ∥(T1y, T2x)∥ = ∥T1y∥+ ∥T2x∥
≤ r1 + r2 = r.

This proves that
F : Qr → Qr,

and the set of function FQr is uniformly bounded.

Lemma 2. Let the assumptions (i)-(ii) be satisfied, then the set of functions
FQr is equicontinuous.
Proof. Let t1, t2 ∈ [0, T ] such that |t2 − t1| < δ, then

|T1y(t2)−T1y(t1)| = |a1(t2)−a1(t1) +

∫ 1

0

f1(t2, s, I
β1 y(s))ds−

∫ 1

0

f1(t1, s, I
β1y(s))ds|
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≤ |a1(t2)− a1(t1)| +

∫ 1

0

|f1(t2, s, Iβ1 y(s))− f1(t1, s, I
β1y(s))|ds

Also

|T2x(t2)−T2x(t1)| = |a2(t2)−a2(t1) +

∫ 1

0

f2(t2, s, I
β2 x(s))ds−

∫ 1

0

f2(t1, s, I
β2y(s))ds|

≤ |a2(t2)− a2(t1)| +

∫ 1

0

|f2(t2, s, Iβ2 y(s))− f2(t1, s, I
β2y(s))|ds

Now

∥F (x(t2), y(t2))− F (x(t1), y(t1))∥ = ∥(T1y(t2), T2x(t2))− (T1y(t1), T2x(t1))∥

= ∥(T1y(t2)− T1y(t1), T2x(t2)− T2x(t1))∥

= ∥(T1y(t2)− T1y(t1)∥+ ∥T2x(t2)− T2x(t1))∥.

≤ |a1(t2)− a1(t1)| +

∫ 1

0

|f1(t2, s, Iβ1 y(s))− f1(t1, s, I
β1y(s))|ds

+ |a2(t2)− a2(t1)| +

∫ 1

0

|f2(t2, s, Iβ2 y(s))− f2(t1, s, I
β2y(s))|ds

Then the set of functions FQr is equicontinuous.

Lemma 3. Let the assumptions (i)-(ii) be satisfied, then the operator F is contin-
uous in Qr.
Proof. Let (xn, yn) ∈ Qr such that (xn, yn) → (x0, y0) ∈ Qr, then

F (xn(t), yn(t)) = (a1(t) +

∫ 1

0

f1(t, s, I
β1 yn(s))ds, a2(t) +

∫ 1

0

f2(t, s, I
β2 xn(s)ds)

and

lim
n→∞

T1yn(t) = a1(t) + lim
n→∞

∫ t

0

f1(t, s, I
β1 yn(t)(s))ds.

From the properties of the fractional calculus we have

Iβ1 yn(t) → Iβ1 yo(t),

then from our assumptions (i)-(ii) we have

f1(t, s, I
β1 yn(t) yn(s)) → f1(t, s, I

β1 yn(t)yo(s))

and

|f1(t, s, Iβ1 yn(t)yn(s))| ≤ m1(t, s) +
b1r1

Γ(β1 + 2)
.

Applying Lebesgue dominated convergence theorem, we obtain

lim
n→∞

∫ 1

0

f1(t, s, I
β1 yn(t)(s))ds =

∫ 1

0

f1(t, s, I
β1 yn(t)y0(s))ds.

and

lim
n→∞

T1yn(t) = a1(t) +

∫ 1

0

f1(t, s, I
β1 yo(s))ds = T1 yo(t).
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By the same way we have

lim
n→∞

T2xn(t) = a2(t) +

∫ t

0

f2(t, s, I
β2 xo(φ(s)))ds = T2xo(t).

Now we can deduced that

F (xn(t), yn(t)) → F (x0(t), y0(t))

which implies that the operator F is continuous in Qr.

Now for the existence of at least one solution of the coupled system of integral
equations (1)-(2) we have the following theorem.

Theorem 1. Let the assumptions (i)-(ii) be satisfied. If

bi
Γ(βi + 2

< 1, i = 1, 2,

then the coupled system of the integral equations (1)-(2) has at least one solution.
Proof. From lemmas (1)-(3) we deduced that F satisfied the axioms of Schauder
fixed point theorem, then the operator F has a fixed point (x, y) ∈ X, then the
coupled system of integral equations (1)-(2) has at least one continuous solution.

3. Urysohn functional integral equation

Let

x = y, f1 = f2 = f, β1 = β2 = β and a1 = a2 = a,

then the coupled system (1)-(2) will be reduced to the Urysohn functional integral
equation

x(t) = a(t) +

∫ 1

0

f(t, s, Iβx(s))ds, t ∈ I (7)

and we have the following corollary.

Corollary 1. Let x = y, f1 = f2 = f, β1 = β2 = β and a1 = a2 = a in
Theorem 1. Let the assumptions of Theorem 1. be satisfied , then the integral
equation (7) has at least one continuous solution x ∈ C[0, T ].

4. Coupled system of Hammerstein functional integral equations

Let

f1(t, s, y) = k1(t, s) g1(s, y(s), and f2(t, s, x) = k2(t, s) g2(s, x(s).

Then the coupled system (1)-(2) will be the coupled system of Hammerstein func-
tional integral equations (5)-(6)

x(t) = a1(t) +

∫ 1

0

k1(t, s)g1(s, I
β1y(s))ds, t ∈ I (8)

y(t) = a2(t) +

∫ 1

0

k2(t, s)g(s, I
β2x(s))ds, t ∈ I. (9)
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Consider the following assumptions
(iii) gi : I×R → R are measurable in s ∈ I for all x ∈ R and continuous in x ∈ R
for all s ∈ I and there exist two functions m∗

i ∈ L1[0, T ] and two positive constants
b∗i > 0, i = 1, 2 such that

|g1(t, y)| ≤ m∗
1(t) + b∗1|x|

|g2(t, x)| ≤ m∗
2(t) + b∗2|y|

(iv) ki : I × R → R are continuous in t ∈ I for every s ∈ I and measurable in
s ∈ I for all t ∈ I such that

sup
t∈I

∫ 1

0

|ki(t, s)| |m∗
i (s)|ds ≤ Ki, t ∈ I.

Now we have the following corollary.

Corollary 2. Let the assumptions (iii)-(iv) be satisfied.

b∗i
Γ(βi + 2)

< 1, i = 1, 2,

then the coupled system of integral equations (8)-(9) has at least one continuous
solution.

Let

x = y, g1 = g2 = g, β1 = β2 = β, a1 = a2 = a and k1 = k2,

then the coupled system (8)-(9) reduced to the Hammerstein functional integral
equation

x(t) = a1(t) +

∫ 1

0

k(t, s) g1(s, y(φ1(s)))ds, t ∈ I (10)

and we have the following corollary

Corollary 3. Let x = y, g1 = g2 = g, β1 = β2 = β, a1 = a2 = a and k1 = k2.
If the assumption of Corollary 2 are satisfied then the functional integral equation
(10) has at least one continuous solution.

5. Maximal and minimal solutions

Definition 2. Let q be a solution of (3), then q is said to be a maximal solution
of (3) if for every solution of (3) satisfies the inequality x(t) < q(t) t ∈ I.
A minimal solution s can be defined by similar way by reversing the above inequal-
ity i.e. x(t) > s(t) t ∈ I.

The following lemma will be used later.

Lemma 4. Let the assumptions of Corollary 1 be satisfied. Let u, v be continuous
functions on I satisfying

u(t) ≤ a(t) +

∫ 1

0

f(t, s, Iβu(s))ds, t ∈ I.
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v(t) ≥ a(t) +

∫ 1

0

f(t, s, Iβv(s))ds, t ∈ I,

and one of them is strict. If f(t, s, x) is monotonic nondecreasing in x, then

x(t) < y(t), t ∈ I. (11)

Proof. Let the conclusion (11) be false, then there exists t1 such that

u(t1) = v(t1), t1 > 0

and

u(t) < v(t), 0 < t < t1.

From the monotonicity of f , we get

u(t1) ≤ a(t1) +

∫ 1

0

f(t1, s, I
βu(s))ds

< a(t1) +

∫ 1

0

f(t1, s, I
βv(s))ds

< v(t1),

which contradicts the fact u(t1) = v(t1), then u(t) < v(t), t ∈ I.

For the existence of the maximal and minimal solutions we have the following
theorem.

Theorem 2. Let the assumption of Theorem 1 be satisfied. If f(t, s, x) is nonde-
creasing in x on I, then there exist maximal and minimal solutions of the integral
equation (3).
Proof. Firstly we shall prove the existence of the maximal solution of (3).
Let ϵ > 0 be given and consider the integral equation

uϵ(t) = a(t) +

∫ 1

0

fϵ(t, sI
βuϵ(s))ds, t ∈ I. (12)

where

fϵ(t, s, I
βuϵ(s) = f(t, s, Iβu(s)) + ϵ

Clearly the function fϵ(t, s, I
βuϵ(s) satisfies the assumptions of Theorem 1. and

therefore equation (13) has at least one continuous solution uϵ(t) ∈ C[0, T ].
Let ϵ1 and ϵ2 such that 0 < ϵ2 < ϵ1 < ϵ, then

uϵ2(t) = a(t) +

∫ 1

0

fϵ2(t, s, I
βuϵ2(s)ds

= a(t) +

∫ 1

0

(f(t, s, Iβuϵ2(s)) + ϵ2)ds (13)
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and

uϵ1(t) = a(t) +

∫ 1

0

fϵ1(t, s, I
βuϵ1(s)ds

= a(t) +

∫ 1

0

(f(t, s, Iβuϵ1(s)) + ϵ1)ds

> a(t) +

∫ 1

0

(f(t, s, Iβuϵ1(s)) + ϵ2)ds (14)

Applying Lemma 4. on (14) and (15), we have

uϵ2(t) < uϵ1(t), t ∈ I.

As shown before the family of functions xϵ(t) is equi-continuous and uniformly
bounded. Hence by Arzela- Ascoli Theorem, there exists a decreasing sequence ϵn
such that ϵ → 0 as n → ∞, and

lim
n→∞

uϵn(t)

exist uniformly in I.
Denote this limit by q, then from the continuity of the function fϵ(t, s, I

βuϵ(s) in
the third argument, we get

q(t) = lim
n→∞

uϵn(t) = a(t) +

∫ 1

0

f(t, s, Iβuϵ(s)ds

which implies that q is a solution of (3).
Finally, we shall show that q is the maximal solution of (3). To do this, let u be
any solution of (3). Then

uϵ(t) = a(t) +

∫ 1

0

fϵ(t, s, I
βuϵ(s)ds

= a(t) +

∫ 1

0

(f(t, s, Iβuϵ(s)) + ϵ)ds

> a(t) +

∫ 1

0

f(t, s, Iβuϵ(s)ds

Also applying Lemma 4. we have

u(t) = a(t) +

∫ 1

0

f(t, s, Iβuϵ(s)ds ⇒ x(t) < uϵ(t) for t ∈ I,

from the uniqueness of the maximal solution [14], it is clear that uϵ(t) tends to q(t)
uniformly in t ∈ I as ϵ → 0.
By similar way as done above we set

fϵ(t, s, I
βuϵ(s) = f(t, s, Iβu(s)− ϵ.

and prove the existence of the minimal solution.
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6. Boundary value problems

Let α ∈ (0, 1]. Consider the boundary value problem of the functional integro-
differential equation

d

dt
x(t) = a(t) +

∫ 1

0

f(t, s,Dαx(s))ds, t ∈ [0, 1] (15)

with the boundary condition

x(0) = γ x(1), γ ̸= 1. (16)

Let the assumptions of Corollary 1 be satisfied.
Letting d

dtx(t) = y(t), then there exists at least one solution of the boundary
value problem (15)-(16) is given by

x(t) =
γ

1− γ

∫ 1

0

y(s)ds +

∫ t

0

y(s)ds (17)

where y is the solution of the nonlinear Urysohn functional integral equation

y(t) = a(t) +

∫ 1

0

f(t, s, I1−αy(s))ds, t ∈ [0, 1].

Consider now the boundary value problem of the coupled system of functional
integro-differential equations (4)-(6).
Let the assumptions of Theorem 1 be satisfied.
Letting

d

dt
x(t) = u(t) and

d

dt
y(t) = v(t),

then there exits at least one solution (x, y) of the boundary value problem of the
coupled system of functional integro-differential equations (4)-(6) is given by

x(t) =
γ1

1− γ1

∫ 1

0

u(s)ds +

∫ t

0

u(s)ds

and

y(t) =
γ2

1− γ2

∫ 1

0

v(s)ds +

∫ t

0

v(s)ds

where u, v are the solution of the coupled system of the integral equations

u(t) = a(t) +

∫ 1

0

f(t, s, I1−α1v(s))ds, t ∈ [0, 1].

and

v(t) = a(t) +

∫ 1

0

f(t, s, I1−α2u(s))ds, t ∈ [0, 1].
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