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Comparative study between fixed effect model and random effect model 

in meta-analysis with application to acute lymphoblastic leukemia(ALL) 

Abstract: 

 The phenomenon of acute lymphoblastic leukemia(ALL) is an 

important field of study, and in this study, the meta-analysis methodology of 

20 randomized controlled trials was used to investigate the prognostic impact 

of mutations in )ALL),The study used fixed effects and random effects models 

to study odds ratios, the number of controls and cases event-free with hazard 

ratios. The study conducted subgroup analyzes based on population status and 

mutation, after retrieving relevant studies. 

Fixed effects models and random effects models are two common statistical 

models for meta-analysis, and it may be misunderstood that these two models 

can be used interchangeably due to their use of similar sets of formulas to 

generate statistics and sometimes produce identical estimates for certain 

parameters. The study concluded that the best estimate of the risk ratio under 

publication bias was the Hunter-Schmidt method because it reduced the 

variance between studies. 

Keywords : meta-analysis; fixed-effects; random-effects; Acute 

Lymphoblastic Leukemia, Randomized Controlled trials (RCTs) 
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1. Introduction 

Acute lymphoblastic leukemia (ALL) is a disease that affects lymphoid 

cell tissues in a variety of ways. Precursor B-cell ALL (B-ALL) is the most 

frequent immunological subtype, and the Philadelphia chromosome (Ph-

positive ALL) is the most common genetic defect in B-ALL, seen in about 

one-quarter of adult patients. Allogeneic hematopoietic stem cell 

transplantation (HSCT) is suggested after consolidation. For information of 

leukemia seeFaderl et al. (1998), Fielding (2011), Reaman and Smith (2014) 

and Iacobucci and Mullighan (2017). 

Leukemia's rising prevalence poses a menace to human development 

and cancer control worldwide. Population aging, population growth, and huge 

industrial pollution, particularly from the establishment of large-scale 

petrochemical industrial complexes (PICs), are the main causes of an increase 

in leukemia incidence, see Fitzmaurice et al.(2018), Reynolds et al. (2003). 

Sharma et al. (2017) have shown Benzene and other pollutants used in the 

petrochemical manufacturing process to berecognized as important causes of 

leukemia see Buffler et al. (2005). 

Meta-analysis is only partially a set of statistical procedures, as the 

other articles in this issue reveal. However, the statistical component makes up 

a significant portion of what a meta-analysis entail. We focus on the decisions 

made by a meta-analyst when doing such a review, with a specific focus on 

how these decisions affect the validity of meta-analysis conclusions. We hope 

that by scrutinizing the decisions made during a meta-analysis, others will be 

aware of the ways in which biases and subjectivity might influence the results 
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reached from meta-analytic data. We provide prescriptions and suggestions for 

dealing with bias and subjectivity in meta-analysis whenever possible. In the 

literature study, we also explore the costs and benefits of quantification in 

general. 

A variety of meta-analysis models can be used to incorporate summary 

statistics from each study, which are categorized as fixed-effect models, in 

which studies are weighted according to the amount of information they 

contain; or random effects models, in which studies are weighted using an 

estimate of inter-study variance (heterogeneity). A forest plot, where results 

from each research are presented as a square and a horizontal line, reflecting 

the intervention effect estimate and its confidence interval, is usually included 

in the meta-analysis. 

We've shown how meta-analysis is used to combine effect sizes from 

individual studies to try to determine true effect sizes (i.e., effect sizes in a 

population). Fixed-effects and random-effects models are two ways to think 

about this process. Hedges (1992) and Hedges and Vevea (1998) do an 

excellent job of explaining the differences between these models.  

The study assumes that all the studies included in the meta-analysis 

have the same effect size in the population because, in essence, the effect sizes 

in the community are fixed, but they are not known constants in the fixed 

effect model. (Hunter & Schmidt, in press). The homogeneous case is the 

name given to this scenario. 
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Another explanation is that the population impact sizes differ at random 

from one study to others. Each research in a meta-analysis in this situation 

comes from a population with a different effect size than the other studies in 

the meta-analysis. As a result, population effect sizes can be conceived of as 

being drawn from a vast array of possible outcomes the kind of 

"superovulation" (Hedges, 1992, Becker, 1996). The heterogeneous case 

describes this issue. 

We begin in section 2 with presentation of data description model 

specification.The comparison of two competing models for fixed and random 

experimental effects has been shown in section 3. We proceed to examine and 

illustrate the estimation methods analysis such as maximum likelihood, 

Dersimonian-Laird, Sidik-Jonkman, Hedges-estimator, and Hunter-Schmidt 

methods in section 4. The applied study is shown in section 5. 

2. Data Description 

Some authors such as (Al-Achkar etal.,2014), (Razmkhah etal., 2011), (Aydin 

etal.,2006)and (Jiang etal.,2008)  used meta-analysis to study the relation 

among CYP1A1 polymorphisms and risk of leukemia(ALL,AML,CML).They 

found that A24 55G GG genotype might have an increased risk of ALL and 

there is no association between CYP1A1*2C polymorphism AG and AML 

patients. 

Also,(Taspinar etal.,2008) studied the influence of cytochromes 

P450(CYP450)1A1*2C insusceptibility to chronic myeloid leukemia 
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(CML).They concluded that polymorphic CYP1A1 andGSTT1 genes appear 

to affect susceptibility to CML. 

Studying the risk of childhood acute leukemia (ALL) has been 

introduced by (Bonaventure etal.,2012) by exploring the interactions between 

prenatal exposure to maternal smoking and polymorphisms in metabolic 

genes. This study concluded that there is no relation between maternal 

smoking and any of the polymorphisms under study. Also,(Saenz, etal.,2018) 

to diagnose childhood leukemia and relapse or death, it assessed the 

relationship between overweight/obesity (body mass index ≥ 85 percent). This 

study did not find any significant associations between overweight/obesity and 

relapse or mortality due to the small sample size, while the results of meta-

analyses revealed an increased risk of death for overweight/obese patients. In 

addition, the findings may suggest a possible association between obesity and 

relapse that may be restricted to children less than 10 years old. 

(Bolufer etal., 2007) delibratedcommon polymorphisms in the genes for 

glutathione S-transferase (GST), cytochrome P450 (CYP), quinone 

oxoreductase (NQO1), methylene tetrahydrofolate reductase (MTHFR), and 

thymidylate synthetase (TYMS) and the role of gender associated with the 

susceptibility to de novo acute leukemia (AL). They concluded that gender 

might influence the risk of (AL) associated with these genetic polymorphisms. 

(Krajinovic, etal.,1999) Examined the glutathione S-transferase and 

cytochrome P450 genes in determining susceptibility to pediatric cancers. The 

results have been suggested that the risk of ALL may actually be associated 

with xenobiotics-metabolism, and thus with environmental exposures. 



102 
 

Explaining the associations of three CYP1A1 polymorphisms (T3801C, 

A2455G, and C4887A) with risks of acute lymphoblastic leukemia (ALL), 

acute myeloid leukemia (AML), and chronic myeloid leukemia (CML) using a 

meta-analysis, has been introduced by (Jiang etal.,2008).The results indicated 

that Asians carrying the T3801C allele C may be at increased risk of acute 

myelogenous leukemia (AML) and Caucasians with the A2455G GG 

genotype may have an increased risk of ALL. 

A study of (Yamaguti etal., 2009) Studied the environmental exposure 

to benzene and tobacco’s polycyclic aromatic hydrocarbons (PAH) has been 

associated with an increased risk for acute myeloid leukemia (AML). The 

study showed that the increased risks of AML related to the variant genotypes 

of the CYP1A1 T6235C, CYP1A1 A4889G and NQO1 C609T polymorphisms, 

isolated and particularly combined, suggest that the inherited abnormalities of 

these carcinogens’ detoxification pathways are important determinant of the 

disease in their country. 

A study (Agha etal., 2014) analyzed the frequency of CYP1A1 allelic 

variants in Egyptian patients with ALL, to assess their role in the development 

of ALL and then correlate these allelic variants with clinical and biological 

characteristics of the patients. Their results suggested that polymorphic 

variants in the CYP1A1*4 gene may raise the risk of childhood ALL, 

particularly in male patients aged 2-10 years. Also, (Alexandar etal.,2018) 

determined the efficacy and risks of levofloxacin prophylaxis in children 

receiving intensive chemotherapy for acute leukemia or undergoing HSCT. 

Among children with acute leukemia receiving intensive chemotherapy, 
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receipt of levofloxacin prophylaxis compared with no prophylaxis resulted in 

a significant reduction in bacteremia and (Valenzuela etal.,2020) performed a 

phenotypic and functional characterization of NK cells in ALL Mexican 

children now of diagnosis and before treatment initiation. A case-control study 

was conducted by the Mexican Interinstitutional Group for the Identification 

of the Causes of Childhood Leukemia (MIGICCL).They concluded that there 

was positive correlation between low SAP expression and decreased NK cell-

mediated cytotoxicity was observed in ALL patients. 

Carrying out a cohort analysis has been studied by (Tyneretal.,2018) to 

determine the correlation between drug sensitivity patterns and mutational 

events or gene expression levels. They showed that the response to drugs is 

related to mutational status, containing instances of drug sensitivity that are 

specific to combinatorial mutational events.  

Discussing the nuances of common AML trial endpoints and their data 

presentation introduced by (Medeiros, B.,2018) to better inform evaluation 

and understanding of clinical trial data. (Paz, etal.,2018) reported Galectin-1 at 

various levels in and on different subclasses of BP-ALLs. The effects of 

Galectin-1 inhibition on both BP-ALL cell proliferation and migration suggest 

both the leukemia cells as well as the microenvironment that protects these 

cells may be targeted. 

A research of (Jabbour & Kantarjian, 2018) Discuss the cytogenetic and 

molecular criteria for patients undergoing treatment. Also introduced (Jakšić, 

etal., 2018) new therapies based on the results of first-line, multicenter, 

randomized trials of salvage therapy. They show that new therapeutic 
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research, including genetic diagnosis, offers new options that may eventually 

lead to time-limited therapies without chemotherapy and more effective 

clinical care for B-CLL based on individualized precision medicine. 

In this research, we look at the results of a meta-analysis of numerous 

acute leukemia treatments. This research includes data from twenty studies of 

leukemia from pubmed. site. The data contains the number of patients, risk 

ratio, publication year and number of events for experimental and control 

group of each study. O based on this systematic review of these studies we 

will depend on the data of 20 study of ALL. 

3. Model Specification 

There are three types of statistical models for meta-analysis: the fixed 

effects models, random effects models and mixed effects models 

(Heges,1992).In this paper we will show the first two types. In this section we 

describe the difference between fixed and random effects meta-

analysis(Kelley and Kelley,2012). 

3.1. Fixed effects model 

This model assumes that all observed variations are caused by within-

study sampling errors. Thus, since all studies are assumed to measure the same 

overall effect, the effect size represents quantative measure of the phenomena 

of the research. It indicates a difference between two groups from using tests 

of statistical significance. The effect size concentrates on the weight of the 

difference between groups rather than the sample size. There are various types 
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of effect size in this research, we use effect size based onodds ratio and risk 

ratio. 

The odds ratio take the form: - 

𝛽 =
∏11∏22

∏12∏21
                                                               (1) 

Where: - 

∏11: −The ratio of exposed risk units of both variables;𝑋, 𝑌. 

∏12: -The  ratioof exposed risk of variable 𝑋 to the non-exposed risk unit of 

variable𝑌. 

∏21: -The ratio of non-exposed risk of variable 𝑋 to the  expose risk unit of 

variable𝑌 

∏22: - The ratio  of non-exposed risk of  the two variables;𝑋, 𝑌. 

Also, the risk ratio represents the ratio of the probability of an outcome 

in an experimental group to the probability of an outcome in control group: - 

𝑅𝑖𝑠𝑘 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝐼𝑒

𝐶𝐼𝑐
                            (2) 

Where: - 

𝐶𝐼𝑒: −The cumulative incidence in the experimental group. 

𝐶𝐼𝑐: − The cumulative incidence in the control group. 

The fixed effects model can be denoted as: 

𝜷̂𝒌 = 𝜷 + ԑ𝒌    , ԑ𝒌  ~𝑵(𝟎, 𝟏)(3)    

Where: 
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ԑ𝒌: represents the sampling error for 𝜷̂𝒌. 

In view of the fixed effects model, the observed effects are sampled 

from the real effect distribution β and the variance 𝜎2. More weight is given to 

studies with more information because all studies aresampled from a 

population with an effect size β and we are dealing with a single source Only 

for sampling error - within studies. Each study is weighted by sample size. 

Each study has its description as follows: - 

𝑾𝒊 =
𝟏

𝒗𝒊
 

Where: - 

𝒗𝒊: represents the within–study variance for study(i). 

We note that the combined effect exceeds the estimation of the 

combined effect size, since we assume that the true effect is shared by all 

included studies. 

Under fixed-effects models, the accuracy of the joint effect is the only 

source of error when estimating the combined effect as the random error in the 

studies. Therefore, the error will tend towards zero as the sample size 

increases sufficiently. This is achieved whether the large sample is confined to 

one study or distributed across many studies. 

3.2. Random effects model: - 

Under this model the combined effect size cannot represent the only 

common effect as there is no single true effect but there is a distribution of 

true effect sizes and thus represents instead the mean of the population of true 

effects. 
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When assigning weights to estimate the true effect, we need to deal with 

both the source of sampling error within studies and between studies, since the 

random effects model has two sampling levels and two sources of error 

(Borenstein et al., 2007). 

This model can be referred to as: - 

  𝜷̂𝒌 = 𝜷 + 𝝈𝒌 + ԑ𝒌    , ԑ𝒌  ~𝑵(𝟎, 𝟏)    (4)  

Where: - 

𝝈𝒌: represents sample estimation of 𝑣𝑎𝑟(𝛽̂𝑘). 

The main aim of a meta- analysis will often be to estimate the overall, 

or combined effect. We could simply compute the mean of the effect sizes if 

all studies in the analysis were equally precise. In contrast, if some studies 

were more precise than others, we could assign more weight to the studies that 

carried more information.So, we compute aweighted mean of the effect sizes 

with more weight given to some studies and less weight given to others rather 

than compute a simple mean. 

The assigned weight for each study is: - 

                                    𝑾𝒊 =
𝟏

𝒗𝒊+𝝉𝒊
     (5) 

Where: - 

𝒗𝒊  is the within –study variance for study (i). 

𝝉𝒊is the between study variance for study (i). 
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To compute the precision of the combined effect sizesaccording to this 

model which has two levels of sampling and two levels of errors, each study is 

used to estimate the true effect in a specific population first. Second, all the 

true effects are used to estimate the meaning of the true effects. 

4. Estimation Methods: - 

In the following, we consider the commonly used Dersimonian and 

Laird(DL), Maximum Likelihood (ML), Sidik Jonkman, Hedges estimator, 

and Hunter Schmidt. 

4.1 Maximum Likelihood (ML) Method 

For a meta – analysis with 𝑚 studies a model for trend estimation can be 

written: - 

      𝑦𝑖 = 𝛽𝑖𝑥𝑖 + 𝜀𝑖        , 𝑖 = 1,2, … … , 𝑚  (6) 

where 𝑣𝑎𝑟(𝜀𝑖) = 𝛺𝑖  

If we consider a random- effects model, we can further assume that  

has a normal distribution, as: 

𝛽𝑖 ~𝑁(𝛽, 𝜏2) 

f both𝛺𝑖 and 𝜏2 are given, the estimate of 𝛽can be calculatedby using 

maximum likelihood method. As: 

𝛽̂𝑅 =
∑ 𝑥𝑖

𝑇𝛺𝑖
−1𝑚

𝑖=1 𝑦𝑖

∑ 𝑥𝑖
𝑇𝛺𝑖

−1𝑚
𝑖=1 𝑦𝑖

      (7) 

which depends on 𝜏2. 
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Thus, the CI of 𝛽 based on the random- effects model can be 

constructed as e follows: 

𝛽̂ ± 𝑍𝛼

2
(∑ 𝑥𝑖

𝑇𝑚
𝑖=1 𝛺𝑖

−1𝑥𝑖)
−

1

2,                  (8)  

where 𝑍𝛼

2
 is the

𝛼

2
 upper quantile of the standard normal distribution.  

4.2 Dersimonian and Laird method 

From the estimation of the effect size under random effects models, we get the 

variance of 𝛽̂𝑅 as follows:  

𝑣𝑎𝑟(𝛽̂𝑅) =
1

∑ 𝑥𝑖
𝑇 ∑ 𝑥𝑖

−1
𝑖

𝑚
𝑖=1

                                                              (9) 

Thus, the Dersimonian and Laird estimation of effect size is(Shi, 

etal.,2015): 

  𝛽̂ ± 𝑍𝛼

2
(∑ 𝑥𝑖

𝑇𝑚
𝑖=1 𝛴𝑖

−1𝑥𝑖)
−

1

2,    (10)  

Where:- 

∑ = 𝛺𝑖

𝑖

+ 𝜏2𝑥𝑖𝑥𝑖
𝑇 

4.3 Sidik and Jonkman CI Method: - 

To construct CI in meta-regression models, weuse the fact that: 

∑(𝑦𝑖−𝛽̂𝑅𝑥𝑖)
𝑇

𝛴𝑖
−1(𝑦𝑖 − 𝛽̂𝑅𝑥𝑖)~𝜒𝑁−1  

2

𝑚

𝑖=1

      (11) 
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We know that: 

(𝛽̂𝑅 − 𝛽)/(∑ 𝑥𝑖
𝑇𝑚

𝑖=1 𝛴𝑖
−1𝑥𝑖)

−
1

2

√∑ (𝑦𝑖−𝛽̂𝑅𝑥𝑖)
𝑇

𝛴𝑖
−1(𝑦𝑖 − 𝛽̂𝑅𝑥𝑖)/𝑁 − 1𝑚

𝑖=1

 

has 𝑡–distribution with𝑁 − 1 degrees of freedom,which leads tothe following 

approximate CI: - 

𝛽̂𝑅 ± 𝑡𝑁−1,
𝛼

2

√∑
(𝑦𝑖−𝛽̂𝑅𝑥𝑖)

𝑇
𝛴𝑖

−1(𝑦𝑖−𝛽̂𝑅𝑥𝑖)

𝑁
− 1 ∑ 𝑥𝑖

𝑇𝑚
𝑖=1 𝛴𝑖

−1𝑥𝑖
𝑚
𝑖=1 (12) 

where𝑡𝑁−1,
𝛼

2
 is the upper 

𝛼

2
 quantile of the related t- distribution.  

4.4 Hunter-Schmidt method 

This method assumes that between –studies variance is small, so it will 

underestimate the standard error and overestimate 𝑍 if between- studies 

variance is not small (Anker, etal., 2010). The Hunter and Schmidt (2004) 

estimator is given by: - 

 𝜏̂𝐻𝐶 = 𝑚𝑎𝑥 {0,
𝑄−𝑁

∑ 𝑊𝑖,𝑅𝐸
}                                                                         (13) 

5. AppliedStudy 

Meta- analysis is used to collect results from various studies to achieve 

high level of statistical precision unlike the estimations based on a single 

study. 
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The effects size contains many measures such as odds ratio, risk ratio and 

effect size based on correlation. This section will depend on risk ratio to 

compute the effect size of chemotherapy on decreasing the leukemia risk. 

This section contains the application of leukemia patient's data on the random 

effects model of twenty studies. Also, it covers the parameters estimation of 

this model by various methods of estimation and a comparison between these 

methods. 

The data set includes the following:  

1-Risk ratio of each study (Effect Size). 

2- Number of experimental cases. 

3-Number of controls. 

4-Number of events for experimental group. 

5- Number of events for control group. 

6- publication year of each study. 

Table1: The Risk ratio, Confidence interval and weight of fixed effects model and 

Random effects model of each study. 

Weight 

(Random) 

Weight 

(Fixed) 

95% CI 

 

Risk 

Ratio 

Study 

1.2% 0.2% [2.04; 570.44] 34.09 1 

1.0% 0.2% [0.16; 91.90] 3.78 2 

1.0% 0.2% [0.02; 8.92] 0.37 3 

2.9% 0.6% [0.05; 1.52] 0.28 4 

3.2% 0.7% [0.07; 1.52] 0.32 5 

1.1% 0.2% [0.02; 8.39] 0.40 6 

8.7% 6.5% [0.53; 1.52] 0.89 7 

1.2% 0.2% [0.00; 1.49] 0.09 8 

7.4% 3.7% [1.90; 7.69] 3.82 9 
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5.5% 1.8% [0.55; 4.10] 1.50 10 

1.6% 0.3% [0.08; 9.63] 0.88 11 

2.6% 0.6% [0.27; 9.55] 1.61 12 

7.5% 3.9% [0.53; 2.09] 1.06 13 

10.3% 22.1% [0.88; 1.56] 1.17 14 

2.0% 0.4% [0.30;21.60] 2.54 15 

9.8% 13.3% [1.54; 3.22] 2.23 16 

5.1% 1.6% [1.76; 14.91] 5.13 17 

10.5% 30.4% [0.56; 0.92] 0.72 18 

8.5% 5.9% [0.57;1.74] 1.00 19 

8.9% 7.1% [0.60;1.66] 1.00 20 

Table1 contains risk ratio and weight of each study from published 

studies under fixed effects model and random effects model, where the weight 

equals the inverse of the variance 𝑊𝑖 =
1

𝑣𝑖
 ;𝑣𝑖 = 𝜀𝑖 represents the variance 

within studies under fixed effects model and represents the variance within 

studies in addition to the variance between studies under random effects 

model𝑣𝑖 = 𝜀𝑖 + 𝜏𝑖.                                                   

For effect size (Risk ratio), the first study represents the highly effect 

size from all twenty studies and this means that the number of experimental 

cases is greater than the number of control cases. For weight: the highest 

weight was 30.4% for fixed effects model and 10.3% for random effects 

model. 
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Figure (1): the forest plot of single studies of acute lymphoblastic leukemia 

The forest plot in figure(1), shows all results of all studies in one graph. 

The points represent risk ratio of each study, the lines represent confidence 

intervals estimations of contribution of each study in meta- analysis. The 

vertical line shows that there is no any significant difference between 

experimental and control group, so, from this graph  it can be determined 

which study is significant. So, from this plot we can see that the significant 

studies are the first, eighth, sixteenth and seventeenth study. 



114 
 

Table(2): Overall effect size estimation of fixed effects model and random effects 

model of single studies. 

P-Value Z 95%CI Risk Ratio Model 

0.1139 1.58 [0.9743; 1.2757] 1.1149 Fixed effects model 

0.1892 1.33 [0.8991; 1.7345] 1.2506 Random effects model 

 

 From table (2) we can find that the effect size of fixed effects model is 

smaller than the one of random effects modelwhere the studies has been taken 

from the same population.  

Table(3): The estimation of variance between studies of random effects 

model. 

𝜏̂2 𝐼2 𝐻 

0.2536 69.9% 1.82 

Table (3), represents the estimation of the variation of effect size 

between studies, where:-   

𝜏̂2represents the variation between effect size and it represents small value, 

𝐼2 represents the ratio of variability between effect size estimations. 

So from previous table we found that there is a heterogeneity between studies. 
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Figure (2): The radial plot of risk ratio of each study 

The radial plot is used to compare the estimations which are different in 

their accuracy, so it represents scatter plot of standard estimations versus the 

inverse of standard error
1

𝑆𝐸𝑖
 , in addition, it is used to show the heterogeneity 

of data. Studies with higher weight are close to the Y axis where the symmetry 

line begins from the point (0, 0). The studies that lies between confidence 

intervals lines represent homogeneous studies, and the studies that lies outside 

the symmetry line represent extreme values. From the previous figure there 

are five studies lies outside the lines and represents extreme values. 
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Figure (3). The funnel plot of risk ratio of each study. 

The funnel plot represents in figure (3) scatter plot of effect size 

estimations from single studies versus the accuracy of each published study. 

This plot is used to test the presence of publication bias. So, the studies with 

high precision are close to the mean in contrast to the studies with low 

precision that are spread on the plot sides and the deviation from this plot 

performs publication bias. From the previous plot, there is a publication bias 

because of the presence of some studies on the right side of the plot. 
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Table 4: The estimation methods of the effect size. 

Method Estimate SE Z-

Value 

P-

Value 

Confidence 

Intervals  

Maximum Likelihood  0.2013 0.2347 0.8575 0.3912 [-0.2588, -0.6613] 

Sidik-Jonkman 0.2238 0.3127 0.7156 0.4742 [-0.389,0.8366] 

Hedges Estimator 0.2199 0.2964 0.7420 0.4581 [-0.3610, 0.8009] 

Hunter-Schmidt 0.1983 0.2270 0.8736 0.3823 [-0.2466, 0.6432] 

Dersimonian and 

Laird 

0.20 0.24 0.85 0.39 [-0.2618, 0.67] 

 

From table(4) we can find that the largest effect size is the estimate of 

Sidik- Jonkman method and this means that the number of experimental cases 

is greater than the number of controls, while the other methods represent less 

effect size.  

Table 5: The test of heterogeneity of single studies. 

Q df P-Value 

63.21 19 <0.0001 

From table(5) the test of heterogeneity is significant and this represents 

that there is variation between studies. 

Table 6: Ratio of variation between studies (variance between studies). 

𝐼2 𝜏̂2 P-Value 

70% 0.2536 <0.01 
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From table (6), the variance between studies is large and significant. This 

means that there is variation between studies, and they have been taken from 

different populations. 

Table7: The test of heterogeneity of each estimation method. 

Method Q df P-Value 

Maximum Likelihood 51.1405 19 <0.0001 

Sidik-Jonkman 51.1405 19 <0.0001 

Hedges estimator 51.1405 19 <0.0001 

Hunter-Schmidt 51.1405 19 <0.0001 

Dersimonian and Larid 51.14 19 <0.01 

The test of heterogeneity of each method according to table (7) is significant. 

This indicates that there is heterogeneity between studies. 

Table8: Comparison between estimation methods under publication bias problem. 

Method 𝜏̂2 SE 𝐼2 𝐻̂2 

Maximum Likelihood 0.5264 0.2347 62.23% 2.65 

Sidik-Jonkman 1.2351 0.3127 79.45% 4.8 

Hedges estimator 1.0631 0.2964 76.45% 4.33 

Hunter-Schmidt 0.4723 0.2270 59.65% 2.48 

Dersimonian and Laird 0.54 0.24 62.85% 2.69 

From table (8), the best estimation of risk ratio under publication bias problem 

is Hunter-Schmidt method because it has decreased the variation between 

studies (Variance between studies), standard error and ratio of variation. 
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Figure (4): Shows the funnel plot of log effect size. 

From figure (4) the effect size closes to the mean, and this means that the 

overall estimation decreases the publication bias problem. 

Conclusion  

 In this paper we proposed two models of meta-analysis to estimate the 

parameters of these models under methods of estimation. The data includes 

the patients of leukemia, and we estimate the odds ratio as an estimator of the 

effect size. We concluded that the best estimation of the risk ratio under 

publication bias is Hunter-Schmidt method because it decreased the variation 

between studies. 
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العشوائية في التحليل البعدي بالتطبيق علي  دراسة مقارنة لنماذج التأثيرات الثابتة ونماذج التأثيرات

 بيانات سرطان الدم الليمفاوي 

 

 تخلص:المس

هاما للدراسة، وفي هذه الدراسة تم استخدام  تمثل ظاهرة الإصابة بسرطان الدم الليمفاوي الحاد مجالً 

بسرطان الدم  الصابة عشوائية وذلك لفحص دللت محاولة تحكم 20البعدي لـ  منهجية التحليل

والتأثيرات العشوائية لدراسة نسب  الثابتة الليمفاوي الحاد. استخدمت الدراسة نماذج التأثيرات

المرتبطة بنسب الخطر. وقامت الدراسة بإجراء  وحدات التحكم وعدد وحدات الإصابة الأرجحية، عدد

الدراسات ذات  بعد مراجعة والتغير الناتج تحليلات المجموعات الفرعية بناءً على حالة مجتمع الدراسة

 الصلة.

 إحصائيين شائعين للتحليل البعدي، ذج التأثيرات العشوائية نموذجيننماذج التأثيرات الثابتة ونما وتمثل

بالتبادل نظرا لستخدامهم مجموعات  وقد يفهم بشكل خاطئ أن هذين النموذجين يمكن استخدامهم

 وفي بعض الحيان الحصول على تقديرات متطابقة الإحصاءات لستنتاج متشابهة من المعادلت

لقياس حجم الثر توصلت الدراسة أن أفضل تقدير لنسبة  نسبة الخطرللمعالم. وباستخدام تقدير 

 لأنها خفضت من التباين بين الدراسات.  Hunter-Schmidtالمخاطر في ظل تحيز النشر هو طريقة 

 الكلمات المفتاحية:

التحكم  التحليل البعدي، التأثيرات الثابتة، التأثيرات العشوائية، سرطان الدم الليمفاوي الحاد، محاولة

 العشوائية 

 


