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EXISTENCE OF CONTINUOUS SOLUTION FOR A QUADRATIC

INTEGRAL EQUATION OF CONVOLUTION TYPE

A. M. A. EL-SAYED, M. SH. MOHAMED, Y. M. Y. OMAR

Abstract. We are concerned here with the existence of at least one continu-

ous solution of the quadratic integral equation of convolution type

x(t) = a(t) +

∫ t

0
k1(t− s)f1(s, x(s))ds

∫ t

0
k2(t− s)f2(s, x(s))ds, t ∈ [0.T ].

The maximal and minimal solutions are also proved.

1. Introduction and preliminaries
Quadratic integral equations (QIES) are often applicable in the theory of ra-

diative transfer, kinetic theory of gases, in the theory of neutron transport and in
the traffic theory. The quadratic integral equations can be very often encountered
in many applications (see[1]-[14]).
Let I = [0, T ], C = C[0, T ] be the space of continuous functions on I, and
L1 = L1[0, T ] be the space of Lebesgue integrable functions on I.
The quadratic integral equation

x(t) = a(t) +

∫ t

0

f(s, x(s)) ds

∫ t

0

g(s, x(s)) ds (1)

has been studied in [10]. The authors proved that it has at least one continuous
solution, also they proved the existence of the maximal and minimal solutions.
The quadratic integral equation

x(t) = a(t) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s)) ds

∫ t

0

(t− s)β−1

Γ(β)
g(s, x(s)) ds, α, β ∈ (0, 1)

(2)
has been studied in [12]. The authors proved that it has at least one continuous
solution, also they proved the existence of the maximal and minimal solutions.
We are concerned here with the existence of at least one continuous solution of the
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quadratic integral equation of convolution type

x(t) = a(t) +

∫ t

0

k1(t− s)f1(s, x(s))ds

∫ t

0

k2(t− s)f2(s, x(s))ds, t ∈ [0, T ]. (3)

The existence of the maximal and minimal solutions of the quadratic integral equa-
tion(3) will be proved.
The main result will be based on the following theorems.

Theorem 1. Schauder fixed-point Theorem [15]
Let S be a convex subset of a Banach space B, let the mapping T : S → S be
compact, continuous. Then T has at least one fixed-point in S.

Theorem 2. Arzela-Ascoli Theorem [16]
Arzela-Ascoli Theorem Let E be a compact metric space and C(E) the Banach
space of real or complex valued continuous functions normed by

‖ f ‖ = max
t ∈ E

| f(t) |.

If A = {fn} is a sequence in C(E) such that fn is uniformly bounded and
equi-continuous. Then the closure of A is compact.

Theorem 3. (Lebesgue Dominated Convergence Theorem ) [16] Let {fn} be a
sequence of functions converging to a limit f on A, and suppose that

| fn(t)| ≤ φ(t), t ∈ A, n = 1, 2, 3, ...

Where φ is an integrable function on A.Then f is integrable on A and

lim
n→∞

∫
A

fn (t) dµ =

∫
A

f(t) dµ.

2. Existence of solutions

Consider the quadratic integral equation (3) under the following assumptions
(i) a :I = [0, T ]→ R is continuous, a = sup |a(t)|, t ∈ [0, T ].
(ii) fi : I ×R→ R are L1-Carathèodary functions.

i.e fi measurable in t for all x ∈ R and continuous in x for almost
all t ∈ [0, T ], and there exist two functions mi ∈ L1[0, T ] such that

| fi(t, x) | ≤ mi(t)∫ t

0

mi(s)ds ≤M, ∀ t ∈ [0, T ], i = 1, 2.

(iii) ki : [0, T ] → R are continuous, |ki(t)| ≤ K, ∀ t ∈ [0, T ], i=1,2.

Now for the existence of at least one continuous solution of the quadratic integral
equation (3) we have the following theorem.

Theorem 4. If the assumptions (i)-(iii) are satisfied, then the quadratic integral
equation (3) has at least one solution x ∈ C[0, T ].
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Proof. Let C = C[0, T ] and define the set S by

S = {x ∈ C : | x(t)| ≤ r} ⊂ C[0, T ],

where r = a+K2M2.
It is clear that S is nonempty, bounded, convex, and closed.
Define the operator F associated with the quadratic integral equation (3) by

Fx(t) = a(t) +

∫ t

0

k1 (t− s) f1(s, x(s)) ds

∫ t

0

k2 (t− s)f2(s, x(s)) ds

to show that F : S → S, let x ∈ S, then

|Fx(t) | = | a(t) +

∫ t

0

k1(t− s) f1(s, x(s)) ds

∫ t

0

k2(t− s)f2(s, x(s)) ds |

≤ | a(t) |+
∫ t

0

|k1(t− s)| |f1(s, x(s))|ds
∫ t

0

|k2(t− s)| |f2(s, x(s))| ds

≤ | a(t) |+
∫ t

0

|k1(t− s)| m1(s)ds

∫ t

0

|k2(t− s)| m2(s) ds

= |a(t)| +

∫ t

0

|k1 (s) | m1(t− s)ds
∫ t

0

|k2 (s)| m2(t− s) ds

≤ |a(t)| +K2

∫ t

0

m1(t− s)ds
∫ t

0

m2(t− s) ds

set t− s = θ, we get

≤ |a(t)| +K2

∫ t

0

m1(θ)dθ

∫ t

0

m2(θ) dθ

≤ a +K2M2

and Fx(t) ∈ S ; which proves that F : S → S.
This prove that the class of functions {F (x)} is uniformly bounded.
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Let t1, t2 ∈ [0, T ], t1 < t2 and |t2 − t1| ≤ δ, then

|Fx(t2)− Fx(t1)| = |a(t2)− a(t1)

+

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds

∫ t2

0

k2(t2 − s)f2(s, x(s)) ds

−
∫ t1

0

k1(t1 − s) f1(s, x(s)) ds

∫ t1

0

k2(t1 − s)f2(s, x(s)) ds|

= | a(t2)− a(t1)

+

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds

∫ t2

0

k2(t2 − s) f2(s, x(s)) ds

−
∫ t1

0

k1(t1 − s) f1(s, x(s)) ds

∫ t1

0

k2(t1 − s) f2(s, x(s)) ds

+

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds

∫ t1

0

k2(t1 − s) f2(s, x(s)) ds

−
∫ t2

0

k1(t2 − s) f1(s, x(s)) ds

∫ t1

0

k2(t1 − s) f2(s, x(s)) ds|

≤ |a(t2)− a(t1)|

+ |
∫ t1

0

k2(t1 − s) f2(s, x(s))ds[

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds

−
∫ t1

0

k1(t1 − s) f1(s, x(s)) ds]

+

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds[

∫ t2

0

k2(t2 − s) f2(s, x(s)) ds

−
∫ t1

0

k2(t1 − s) f2(s, x(s)) ds]|

≤ |a(t2)− a(t1)|

+ |
∫ t1

0

k2(t1 − s) f2(s, x(s)) ds[

∫ t1

0

k1(t2 − s) f1(s, x(s)) ds

+

∫ t2

t1

k1(t2 − s) f1(s, x(s)) ds−
∫ t1

0

k1(t1 − s) f1(s, x(s)) ds]

+

∫ t2

0

k1(t2 − s) f1(s, x(s)) ds[

∫ t1

0

k2(t2 − s) f2(s, x(s)) ds

+

∫ t2

t1

k2(t2 − s) f2(s, x(s)) ds−
∫ t1

0

k2(t1 − s) f2(s, x(s)) ds]|

≤ |a(t2)− a(t1)|

+

∫ t1

0

|k2(t1 − s)| |f2(s, x(s))| ds
∫ t1

0

|k1(t2 − s)− k1(t1 − s)| |f1(s, x(s))| ds

+

∫ t1

0

|k2(t1 − s)| |f2(s, x(s))| ds
∫ t2

t1

|k1(t2 − s)| |f1(s, x(s))| ds

+

∫ t2

0

|k1(t2 − s)| |f1(s, x(s))| ds
∫ t1

0

|k2(t2 − s)− k2(t1 − s)| |f2(s, x(s))| ds

+

∫ t2

0

|k1(t2 − s)| |f1(s, x(s))| ds
∫ t2

t1

|k2(t2 − s)| |f2(s, x(s))| ds
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≤ |a(t2)− a(t1)|

+

∫ t1

0

|k2(t1 − s)| m2(s)ds

∫ t1

0

|k1(t2 − s)− k1 (t1 − s)| m1(s) ds

+

∫ t1

0

|k2(t1 − s)| m2(s)ds

∫ t2

t1

|k1(t2 − s)| m1(s)ds

+

∫ t2

0

|k1(t2 − s)| m1(s)ds

∫ t1

0

|k2(t2 − s)− k2 (t1 − s)| m2(s)ds

+

∫ t2

0

|k1(t2 − s)| m1(s)ds

∫ t2

t1

|k2(t2 − s)| m2(s)ds.

This means that the class of functions F{x} is equi-continuous on [0, T ]. Using
Arzela-Ascoli Theorem [16], we fined that F is compact.
Now we prove that F : S → S is continuous. Let {xn} ⊂ S, and xn → x,
then

Fxn(t) = a(t) +

∫ t

0

k1 (t− s) f1(s, xn(s)) ds

∫ t

0

k2 (t− s) f2(s, xn(s)) ds

lim
nk→∞

Fxn(t) = lim
n→∞

a(t)+ lim
n→∞

{
∫ t

0

k1(t−s)f1(s, xn(s))ds

∫ t

0

k2(t−s)f2(s, xn(s))ds}

Now

fi(s, xnk
)→ fi(s, x) ⇒ ki(t− s)fi(s, xnk

)→ ki(t− s)fi(s, x), i = 1, 2.

Also

|ki(t− s)fi(s, xnk
)| ≤ |ki(t− s)|mi(t) ∈ L1[0, T ], i = 1, 2.

Then by using Lebesgue dominated convergence Theorem [16], we have

Fx(t) = lim
nk→∞

Fxnk
(t) = a(t) +

∫ t

0

k1 (t−s) lim
nk→∞

f1(s, xnk
(s)) ds

∫ t

0

k2 (t−s) lim
nk→∞

f2(s, xnk
(s)) ds

Fx(t) = a(t) +

∫ t

0

k1 (t− s) f1(s, x(s)) ds

∫ t

0

k2 (t− s) f2(s, x(s)) ds.

Then Fxn(t)→ Fx(t). Which means that the operator F is continuous.
Since all conditions of Schauder fixed point Theorem [15] are satisfied, then the
operator F has at least one fixed point x ∈ C[0, T ], which completes the proof.

Now let k1(t) = k2(t) = 1 in equation (3), then we have the following corollary;

Corollary 1. Let the assumptions (i)-(ii) of Theorem 4 be satisfied, then the qua-
dratic integral equation (1) has at least one continuous solution x ∈ C[0, T ].

Remark 1. Corollary 2.2 is the main result in [10]. This proves the generality of
our result.
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3. Existence of the maximal and minimal solutions

Definition 1. .Let q(t) be a solution of the quadratic integral equation (1). Then
q(t) is said to be a maximal solution of (1) if every solution x(t) of (1) satisfies the
inequality (see[17]).

x(t) < q(t), t ∈ [0, T ]. (4)

A minimal solution s(t) can be defined by similar way by reversing the above
inequality i.e

x(t) > s(t), t ∈ [0, T ]. (5)

Consider the following lemma

Lemma 1. Let f1(t, x), f2(t, x) are L1-Carathèodary and x(t), y(t) are two con-
tinuous functions on [0, T ] satisfying

x(t) ≤ a(t) +

∫ t

0

k1 (t− s) f1(s, x(s))ds

∫ t

0

k2 (t− s) f2(s, x(s))ds, t ∈ [0, T ]

y(t) ≥ a(t) +

∫ t

0

k1 (t− s) f1(s, y(s)) ds

∫ t

0

k2 (t− s) f2(s, y(s)) ds, t ∈ [0, T ]

and one of them is strict.
If fi, i = 1, 2 are monotonic nondecreasing in x, then

x(t) < y(t), t > 0 (6)

Proof. Let the conclusion (6) be false, then there exists t1 such that

x(t1) = y(t1), t1 > 0

and

x(t) < y(t), 0 < t < t1.

From the monotonicity of f1, f2 in x, we get

x(t1) ≤ a(t1) +

∫ t1

0

k1 (t1 − s) f1(s, x(s)) ds

∫ t1

0

k2 (t1 − s) f2(s, x(s)) ds, t ∈ [0, T ]

< a(t1) +

∫ t1

0

k1 (t1 − s) f1(s, y(s)) ds

∫ t1

0

k2 (t1 − s) f2(s, y(s)) ds, t ∈ [0, T ]

x(t1) < y(t1)

which contradicts the fact that x(t1) = y(t1).
Then

x(t) < y(t).

Now, for the existence of the continuous maximal and minimal solutions of the
quadratic integral equation (3) we have the following theorem.

Theorem 5. Let the assumptions (i)-(iii) of Theorem 4 are satisfied. If f1(t, x), f2(t, x)
are monotonic nondecreasing in x for each t ∈ [0, T ], then the quadratic integral
equation (3) has maximal and minimal solutions.
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Proof. Firstly we shall prove the existence of the maximal solution of (3) .
Let ε > 0 be given, and consider the quadratic integral equation

xε(t) ≤ a(t) +

∫ t

0

k1 (t−s) f1ε(s, xε(s)) ds
∫ t

0

k2 (t−s) f2ε(s, xε(s)) ds, t ∈ [0, T ]

(7)
where

fiε(t, xε(t)) = fi(t, xε(t)) + ε, i = 1, 2.

Clearly the function fiε(t, xε(t)), i = 1, 2 are L1- Carathèodary functions, therefore
the equation (7) has a solution on C[0, T ].
Let ε1, ε2 be such that 0 < ε2 < ε1 < ε, then

xε2(t) = a(t) +

∫ t

0

k1 (t− s) f1ε2(s, xε2(s)) ds

∫ t

0

k2 (t− s) f2ε2(s, xε2(s)) ds

= a(t) +

∫ t

0

k1(t− s) (f1(s, xε2(s)) + ε2) ds

∫ t

0

k2(t− s) (f2(s, xε2(s)) + ε2) ds (8)

also

xε1(t) = a(t) +

∫ t

0

k1(t− s) f1ε1(s, xε1(s)) ds

∫ t

0

k2(t− s) f2ε1(s, xε1(s)) ds

= a(t) +

∫ t

0

k1(t− s) (f1(s, xε1(s)) + ε1) ds

∫ t

0

k2(t− s) (f2(s, xε1(s)) + ε1) ds

xε1(t) > a(t) +

∫ t

0

k1 (t− s) f1(s, xε1(s)) ds

∫ t

0

k2(t− s) f2(s, xε1(s)) ds (9)

Applying Lemma 1 on (8) and (9) we have

xε2(t) < xε1(t) for t ∈ [0, T ].

As shown before, the family of functions xε(t) is equi-continuous and uniformly
bounded. Hence, by Arzela-Ascoli Theorem (see[16]), there exists a decreasing se-
quence εn such that εn → 0 an n→∞, and limn→∞ xεn(t) exists uniformly in [0, T ]
and denote the limit by q(t). From the continuity of the functions fiε(t, xε(t)), i =
1, 2 in the second argument, we get

fiε(t, xε(t))→ fi(t, x(t)) as n→∞, i = 1, 2

and

q(t) = lim
n→∞

xεn(t) = a(t) +

∫ t

0

k1(t− s)f1(s, q(s))ds

∫ t

0

k2(t− s)f2(s, q(s))ds

which implies that q(t) is a solution of the quadratic integral equation (3).
Finally we shall show that q(t) is the maximal solution of (3).
To do this let x(t) be any solution of (3), then

x(t) = a(t) +

∫ t

0

k1(t− s)f1(s, x(s))ds

∫ t

0

k2(t− s)f2(s, x(s))ds (10)

also

xε(t) = a(t) +

∫ t

0

k1(t− s)f1ε(s, xε(s))ds
∫ t

0

k2(t− s)f2ε(s, xε(s)) ds
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xε(t) = a(t) +

∫ t

0

k1(t− s)(f1(s, xε(s)) + ε)ds

∫ t

0

k2(t− s)(f2(s, xε(s)) + ε) ds

xε(t) > a(t) +

∫ t

0

k1(t− s)f1(s, xε(s))ds

∫ t

0

k2(t− s)f2(s, xε(s)) ds (11)

Applying Lemma 1 on (10) and (11) we get

x(t) < xε(t), for t ∈ [0, T ].

From the uniqueness of the maximal solution (see[17]), it is clear that xε(t) tends
to q(t) uniformly in [0, T ] as ε→∞ .

By similar way we can prove the existence of the minimal solution. We set

fiε(t, xε(t)) = fi(t, xε(t))− ε, i = 1, 2

and prove the existence of minimal solution.

Now let k1(t) = k2(t) = 1 in equation (3) then we have the following corollary;

Corollary 2. Let the assumptions of Theorem 5 be satisfied, then the quadratic
integral equation

x(t) = a(t) +

∫ t

0

f(s, x(s)) ds

∫ t

0

g(s, x(s)) ds.

has a maximal and minimal solutions x ∈ C[0, T ], which is the same result obtained
in (see[10]).

4. Quadratic integral equation of fractional orders

The quadratic integral equation of fractional orders (2) has been studied in [12].
The author proved the existence of at least one positive solution x ∈ C[0, T ] of (2)
under the following assumptions;

(i) a :I = [0, T ]→ R+ is continuous function.
(ii) f, g : I × R+ → R+ such that f, g are measurable in t for all x ∈ R+

and continuous in x for each fixed t ∈ [0, T ], and there exist two functions
m1 , m2 ∈ L1(I) such that

| f(t, x) | ≤ m1(t) and | g(t, x) | ≤ m2(t)

Also they proved the existence of the maximal and minimal solutions when f(t, x) and g(t, x)
are monotonic nondecreasing in x for each t ∈ [0, T ] .
It must be noticed that the quadratic integral equation (2) is a spacial case of the
quadratic integral equation (3), where

k1(t) =
(t)α−1

Γ(α)
and k2(t) =

(t)β−1

Γ(β)
, α, β > 0.

But these functions k1(t) and k2(t) does not satisfy our assumptions (iii) of Theo-
rem 4 that is the two functions k1 and k2 are continuous.
This implies that the condition (iii) of continuity of the two functions k1 and k2 in
Theorem 4 is sufficient condition.
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