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A NEW TECHNIQUE FOR THE CALCULATION OF
EFFECTIVE MESONIC POTENTIAL AT FINITE

TEMPERATURE IN THE LOGARITHMIC QUARK-SIGMA
MODEL

M. ABU-SHADY

Abstract. The logarithmic sigma model describes the interactions between
quarks via sigma and pion exchanges. The e¤ective mesonic potential is ex-
tended to the �nite temperature and it is numerically calculated using n-
midpoint rule. Meson properties such as the phase transition, the sigma and
pion masses, and the critical point temperature are examined as functions of
temperature. The obtained results are compared with other approaches. We
conclude that the calculated e¤ective potential is successfully to predict the
meson properties.

1. Introduction

The study of matter at very high temperature and densities is of interest because
of its relevance to particle physics and astrophysics. According to the standard
big bang model, it is believed that a series of phase transitions happened at the
early stages of the evolution of universe. The QCD phase transition being one
of them. The lattice QCD and e¤ective �eld theories are two main approaches
to calculate the phase transition and meson properties at �nite temperature [1].
This subject has been under intense theoretical study using various e¤ective �eld
theory models, such as the Namu-Jona-Lasinio Model [2-4], a linear sigma model [5-
8]. One of the e¤ective models in describing baryon properties is the linear sigma
model, which was suggested earlier by Gell-Mann and Levy [9] to describe the
nucleons interacting via sigma (�) and pion (�) exchanges. At �nite temperature,
the model gives a good description of the phase transition by using the Hartree
approximation [1, 10-12] within the Cornwall�Jackiw�Tomboulis (CJT) formalism
[13]. However, there exists serious di¢ culty concerning the renormalization of the
CJT e¤ective action in the Hartree approximation. Baacke and Michalski [14]
indicated that the phase transition can be obtained beyond the large N and Hartree
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approximation through the systematic expansions are bases on the resummation
scheme by Cornwall-Jackiw-Tombonlis and 2PI scheme.
The aim of this work is to calculate the e¤ective logarithmic mesonic potential,

the phase transition, and meson masses at �nite temperature. The logarithmic
mesonic potential at zero temperature was suggested in Ref. [15] to provide a good
description of hadron properties. The used method is di¤erent as a new technique
in comparison with other works as in Refs. [5-8]. In addition, the pressure is
investigated as a function temperature.
This paper is organized as follows: In Sec. 2, the linear sigma model at zero tem-

perature and �nite temperature are explained brie�y. The numerical calculations
and discussion of the results are presented in Sec. 3. Summary and conclusion is
presented in Sec. 4.

2. The Logarithmic Quark-Sigma Model

2.1. The Logarithmic Potential at zero Temperature. The Lagrangian den-
sity of quark sigma model that describes the interactions between quarks via the
��and ��meson exchange [15]. The Lagrangian density is,

L (r) = i	@�

�	+

1

2
(@��@

�� + @��:@
��)+g	(� + i
5� :�)	�UT (0)(�;�); (1)

with
UT (0) (�;�) = �21(�

2 + �2)� �22 log(�2 + �2) +m2
�f��; (2)

UT (0) (�;�) is the meson-meson interaction potential where 	; � and � are the
quark, sigma, and pion �elds, respectively. In the mean-�eld approximation the
meson �elds are treated as time-independent classical �elds. This means that we
replace power and products of the meson �elds by corresponding powers and prod-
ucts of their expectation values. The meson-meson interactions in Eq. (2) lead to
hidden chiral SU(2)�SU(2) symmetry with � (r) taking on a vacuum expectation
value

h�i = �f�; (3)
where f� = 93 MeV is the pion decay constant. The �nal term in Eq. (2) is
included to break the chiral symmetry. It leads to partial conservation of axial-
vector isospin current (PCAC). The parameters �2; �2 can be expressed in terms
of f�, the masses of mesons as, �
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2.2. The E¤ective Mesonic Potential at Finite-Temperature
. In Eq. (2), The e¤ective potential is extended to calculate the chiral interacting
mesons with quarks at �nite temperature. The quarks are considered a heat bath
in local thermal equilibrium

Ueff (�;�;T ) = U
T (0)(�;�)�24T

Z
d3p

(2�)
3 ln(1 + e

�
p
p2+g2(�2+�2)

T ); (6)

the �rst term is the potential in the tree level de�nes in Eq. (2) and the second
term is for the chiral meson �elds interacts with quarks at �nite temperature and
zero-chemical potential. Non-zero values of the chiral �elds in the chiral broken
phase dynamically generate a quark mass mq = gf�. The integration is taken over
momentum volume (for details, see Ref. [16]).
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3. Numerical Calculations and Discussion of Results

3.1. Numerical Calculations. The purpose of this section is to calculate the
e¤ective mesonic potential � and �- masses, and the pressure. We rewrite Eq. (6)
as follows

Ueff (�;�;T ) = U
T (0)(�;�)�12T

�2

Z 1

0

p2dp(ln(1 + e
�
p
p2+g2(�2+�2)

T ): (7)

Eq. (7) is written in the dimensionless form as follows
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where
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where �0;�0; T 0;m
0

�;and m
0

� are in unit of f�: Therefore U
T (0)(�0;�0) is the dimen-

sionless form of UT (0)(�;�). Substituting p0 = � ln y into Eq. (8), we obtain:
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hence we can write the dimensionless form of Ueff (�;�;T ) as follows:
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By using midpoint rule, we obtain the approximate integral as follows:

Ueff (�;�;T ) = f
4
� [U

T (0)(�0;�0)�12T
0

�2
A ln

�
exp

�
� 1

T 0

p
g2 (�02 + �02) +B

�
+ 1

�
];

(12)
where

A =
1

n

nX
i=0

1
1
n i+

1
2n

ln2
�
1

n
i+

1

2n

�
; B =

nX
i=0

ln2
�
1

n
i+

1

2n

�
: (13)

(for details, see Refs. [17, 18]). In Ref. [19], the authors applied the second
derivation of the e¤ective potential respect to �0 and �0 to obtain the e¤ective
meson masses. Then, the �rst derivative of the e¤ective potential Ueff (�0;�0;T 0)
is given by
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0;�0;T )
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where
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Then, we obtain the e¤ective sigma mass as follows
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Similarly, we obtain the e¤ective pion mass as follows
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In Ref. [16], the pressure is given in the dimensionless form as follow:

P 0(�0;�0; T ) = UT (0)(�0;�0)� Ueff (�0;�0;T0); (28)
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4. Results and Discussion

In Eq. (7), The integration is solved by the n-midpoint algorithm and the index
n is taken n = 1000 to get a good accuracy for a numerically integration. In
Ref. [20], the authors used a di¤erent method for calculating the integration in the
e¤ective potential and they obtained it as a series of M2 = m2 + �

2�
2 , where the

m; � are parameters of the model. The di¢ culty in this potential is to determine
a critical temperature Tc: The two terms were taken only in the expression of the
potential since the increase of terms more than two terms will be the critical point
is a complex value, leading Tc is not a physics quantity. In Refs. [1-4], authors used
double bubble graphs instead of summing in�nite set of daisy and superdaisy graphs
using the tree level propagators. Therefore, the Feynman diagrams are needed. In
the present work, The n-midpiont rule is used to avoid the di¢ culties in the above
approaches. Hence, we did not need to apply Feynman diagrams. The parameters
of the model such as m� = 140 MeV; m� = 600 MeV; f� = 93 MeV, and coupling
constant g at zero-temperature are used as the initial parameters at the �nite
temperature. In addition, the e¤ective pion and sigma masses are obtained as a
second derivative respect to meson �eld. This method is used extensively in other
works such as in the Ref. [19]. In this section, we examine the meson properties
and the phase transition which depend on the calculation of the e¤ective mesonic
potential at �nite temperature. We replaced the normal potential in the linear
sigma model [5] at zero temperature by logarithmic mesonic potential [15]. In our
previous work [15]. The logarithmic potential was successfully to predict hadron
properties at zero temperature.
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Fig. 1. The sigma and pion masses are
plotted as functions temperature in the
presence of explicit symmetry breaking
term for two values of sigma mass.
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Fig. 2. The sigma and pion masses are
plotted as functions temperature in the
chiral limit for two values of sigma mass.
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for two values of temperature.

In Figs. (1, 2, 3), we investigate the behavior of the sigma and pion masses as
functions of temperature. Moreover, the e¤ect of the sigma mass and the coupling
constant g on a critical point temperature in the presence of the explicit symmetry
breaking (m� 6= 0) and the chiral limit( m� = 0) is investigated. In Fig. 1, the
sigma and pion masses are plotted as functions of temperature at the presence of
the explicit symmetry breaking term. The sigma mass decreases with increasing
temperature and the pion mass increases with increasing temperature. The two
curves crossed at a critical point temperature Tc where the sigma and pion masses
have the same massive value. At m� = 600 MeV; we �nd the critical point tem-
perature Tc =233 MeV. By increasing the sigma mass up to m� = 700 MeV leads
to Tc = 309 MeV. In comparison with lattice QCD results [19], the critical point
temperature is found in the range Tc = 100 to 300 MeV. Therefore the present
result is in agreement with lattice QCD results. Nemoto et al. [19] calculated the
critical point temperature equal 230 MeV using the original sigma model. Abu-
shady [5] calculated the critical point temperature equal 226 MeV in the original
sigma model. Therefore, the present result is in good agreement with Refs. [5, 19].
In Fig. 2, the sigma and pion masses are plotted as functions of temperature in the
chiral limit ( m� = 0). A similar behavior is obtained as in the case of the explicit
symmetry term expect the pion mass equal zero at zero temperature. In compar-
ison with original sigma model as in Refs. [1, 5, 19], we found that the behavior
of the sigma and pion masses are in good agreement with Refs. [1, 5, 19]. In Fig.
3, we examine the e¤ect of coupling constant g on the critical point temperature.
We �nd that an increase on the coupling constant g leads to decrease in the critical
point temperature g = 3.76 to g = 4.48 corresponding to Tc = 243 MeV to Tc = 191
MeV; respectively. In Fig. (4), the e¤ective potential is plotted as a function of
temperature. We note that the potential decreases with increasing temperature. In
order to get more insight into the nature of the phase transition and verify that the
order phase transition is a second-order phase transition. We calculate the e¤ec-
tive potential Ueff (�;T ) as a function of phase transition (� =

p
�2 + �2) as seen
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in Fig. (4). The shape of the potential con�rms that the phase transition is the
second-order. Since it exhibits can degenerate one minima at � 6= 0. The indication
of the second-order phase transition has been reported in many works [14, 21- 23].
Also, We note the strong increase in the temperature T which unchanged the shape
of the potential
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Fig. 5. The pressure is plotted as a function of temperature.

Next, we need to examine the e¤ect of �nite temperature on the behavior of
pressure where the quarks takes as a heat bath. In Fig. (5), the pressure is plotted
as a function of temperature. The pressure increases with increasing temperature.
Also, we note that the pressure value at lower-values of temperature is not sensitive
in comparison with the pressure value at the higher-values of temperature. Hence
the e¤ect of largest values of temperature is more a¤ected on the value of pressure.
Berger and Christov [24] found that the pressure increases with increasing temper-
ature in hot medium using the NJL model in the mean �eld approximation. The
present behavior is in agreement with Ref. [24].

5. Summary and Conclusion

In this work, the e¤ective mesonic potential is calculated by using n-midpoint
algorithm in the logarithmic quark model. The meson properties, the phase tran-
sition, and the pressure are calculated using the e¤ective mesonic potential. We
summarized the following points:The behavior of sigma and pion masses as func-
tions of temperature are investigated. A comparison with original sigma model is
presented. The increase of sigma mass (m�) leads to increase the critical point
temperature. The increase of the coupling constant (g) leads to decrease the crit-
ical point temperature. The phase transition is predicted as a second-order phase
transition which agrees with other works. The critical point temperature and the
pressure are calculated and are in agreement with other works. Therefore, the cal-
culated e¤ective logarithmic potential is successful to predict the meson masses,
the phase transition, and the pressure at �nite temperature.
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