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CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING

PROBLEMS IN CALCULUS OF VARIATIONS COMPARING

WITH VARIATIONAL ITERATION METHOD

M. M. KHADER

Abstract. In this article, an accurate Chebyshev finite difference method
(ChFDM) for solving problems in calculus of variations is presented. The

main objective is to find the numerical solution of ODEs which arise from the

variational problems. The useful properties of the Chebyshev polynomials and
finite difference method are utilized to reduce the computation of the problem

to a set of linear or non-linear algebraic equations. Some examples are given
to verify and illustrate the efficiency and simplicity of the proposed method.

We compared our numerical results against the variational iteration method

(VIM). Special attention is given to study the convergence analysis of VIM.
The results indicate that the presented method yields more accurate results

than those obtained by other methods. Also, from the presented examples, we

found that the proposed method can be applied to wide class of problems in
calculus of variations.

1. Introduction

Chebyshev polynomials are examples of eigenfunctions of singular Sturm-Liouville
problems. Chebyshev polynomials have been used widely in the numerical solutions
of the boundary value problems [1] and in computational fluid dynamics ([11], [27]).
The existence of a fast Fourier transform for Chebyshev polynomials to efficiently
compute matrix-vector products has meant that they have been more widely used
than other sets of orthogonal polynomials. Chebyshev polynomials are well known
family of orthogonal polynomials on the interval [−1, 1] that have many applica-
tions ([14], [18]-[21]). They are widely used because of their good properties in the
approximation of functions. One of the advantages of using Chebyshev polynomials
Tn(x) as expansion functions is the good representation of smooth functions by finite
Chebyshev expansions, provided that the function u(x) is infinitely differentiable.
This method is used for solving second and fourth-order elliptic equations [20]. also
this method is adopted for solving fractional order integro-differential equations [22]
and for obtaining the numerical solution of ODEs with non-analytic solution [3].
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The finite difference methods have been used extensively for solving numerically
more of ODEs and PDEs ([2], [4], [10]).

The present work deals with application Chebyshev finite difference method to
compute the numerical solution of the resulted ODEs from problem in calculus of
variations. This approach requires the definition of a grid as the finite difference
and elements techniques also it is applied to satisfy the differential equation and
the boundary conditions at the grid points. It can be regarded as a non-uniform
finite difference scheme. The derivatives of the function u(x) at a point xk is
linear combination from the values of a function u(x) at the Gauss-Lobatto points
xk = −cos(kπN ), where k = 0, 1, 2, ..., N, and k is an integer, 0 ≤ k ≤ N . The
suggested method is more accurate in comparison to the finite difference and finite
elements methods because the approximation of the derivatives are defined over the
whole domain.

Over the last decades several analytical and approximate methods have been
developed to solve the nonlinear ODEs. Among them the variational iteration
method which is proposed by J. H. He [16] as a modification of the general La-
grange multiplier method. This method is based on the use of restricted variations
and correction functionals which has found a wide applications for the solution of
nonlinear differential equations ([17], [23]-[26]). This method does not require the
presence of small parameters in the differential equation, and does not require that
the nonlinearities be differentiable with respect to the dependent variable and its
derivatives. This technique provides a sequence of functions which converges to the
exact solution of the problem. This procedure is a powerful tool for solving various
kinds of problems, for example, VIM is used to solve the one dimensional system
of nonlinear equations in thermo-elasticity [23] and the two dimensional Maxwell
equations [26]. This technique solves the problem without any need to discretiza-
tion of the variables, therefore, in some problems, it is not affected by computation
round off errors and one is not faced with necessity of large computer memory and
time.
Although, these advantages for VIM, however, it has some drawbacks, for example,
this method invalid when we applied it to solve some problems or it is slowly con-
vergent, especially, in problems which is presented by differential equations with
non-homogeneous term is complicated function.

In the large number of problems arising in analysis, mechanics, geometry, and so
forth, it is necessary to determine the maximal and minimal of a certain functional.
Because of the important role of this subject in science and engineering, considerable
attention has been received on this kind of problems. Such problems are called
variational problems.
There are more problems that have an important role in the development of the
calculus of variations ([8], [13]).
The most known of them is the problem of brachistochrone which proposed in
1696 by Johann Bernoulli to find the line connecting two certain points A and B
that do not lie on a vectorial line and possessing the property that a moving particle
slides down this line from A to B in the shortest time. This problem was solved by
Johann Bernoulli, Jacob Bernoulli, Leibnitz, Newton, and L’Hospital. It is shown
that the solution of this problem is a cycloid [8].

For more details about the historical comments for the variational problems, see
([13], [15]).
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The simplest form of a variational problem can be considered as:

v[u(t)] =

∫ t1

t0

F (t, u(t), u′(t))dt, (1)

where v is the functional that its extremum must be found. To find the extreme
value of v, the boundary points of the admissible curves are known in the following
form:

u(t0) = ε0, u(t1) = ε1. (2)

One of the popular methods for solving variational problems are direct methods.
In these methods the variational problem is regarded as a limiting case of a finite
number of variables. This extremum problem of a function of a finite number of
variables is solved by ordinary methods, then a passage of limit yields the solution
of the appropriate variational problem [13]. The direct method of Ritz and Galerkin
has been investigated for solving variational problems in ([13], [15]). Using Walsh
series method, a piecewise constant solution is obtained for variational methods [6].
Some orthogonal polynomials are applied on variational problems to find continuous
solutions for these problems ([5], [18]). Also Fourier series and Taylor series are
applied to variational problems in [21], to find a continuous solution for this kind
of problems.
The necessary condition for the solution of the problem (1) is to satisfy the Euler-
Lagrange equation [8]:

Fu −
d

dt
Fu′ = 0, (3)

with the boundary conditions given in (2). The boundary value problem (3) does
not always has a solution and if the solution exists, it may not be unique. Note
that in many variational problems the existence of a solution is obvious from the
physical or geometrical meaning of the problem, and if the solution of Euler’s
equation satisfies the boundary conditions, it is unique, then this unique extremal
will be the solution of the given variational problem [13]. Thus another approach
for solving variational problem (1) is finding the solution of the ordinary differential
equation (3) which satisfies boundary conditions (2).
The general form of the variational problem (1) is:

v[u1, u2, ..., un] =

∫ t1

t0

F (t, u1, u2, ..., un, u
′
1, u
′
2, ..., u

′
n)dt, (4)

with the given boundary conditions for all functions:

u1(t0) = ε10, u2(t0) = ε20, ..., un(t0) = εn0,

u1(t1) = ε11, u2(t1) = ε21, ..., un(t1) = εn1.
(5)

Here the necessary condition for the extremum of the functional (4) is to satisfy
the following system of second-order differential equations:

Fui
− d

dt
Fu′

i
= 0, i = 1, 2, ..., n, (6)

with boundary conditions given in (5). In the present work, we find the solution
of variational problem by applying the ChFDM and VIM on the Euler-Lagrange
equations.
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Also it is possible to define the variational problem for functionals dependent on
higher-order derivatives in the following form [13]:

v[u(t)] =

∫ t1

t0

F (t, u(t), u′(t), ..., u(n)(t))dt, (7)

with the given boundary conditions:

u(t0) = ε0, u′(t0) = ε1, ..., u(n−1)(t0) = εn−1,

u(t1) = θ0, u′(t1) = θ1, ..., u(n−1)(t1) = θn−1.
(8)

The function u(t) which extermizes the functional (7) must satisfy the Euler-Poisson
equation:

Fu −
d

dt
Fu′ +

d2

dt2
Fu′′ + ...+ (−1)n

dn

dtn
Fu(n) = 0, (9)

which is an ordinary differential equation of order 2n, with boundary conditions
given in (8).

The rest of this paper is organized as follows: Section 2 is assigned to the analysis
of the standard VIM. In section 3, the convergence study of VIM is given. In section
4, some test problems have been solved by the Chebyshev finite difference method
and variational iteration method, to illustrate the efficiency of the proposed method.
And the conclusions will appear in section 5.

2. Analysis of the Variational Iteration Method

To illustrate the analysis of VIM, we limit ourselves to consider the following
nonlinear differential equation in the type:

Lu+Ru+N(u) = 0, (10)

with suitable conditions, where L and R are linear bounded operators, i.e., it is
possible to find numbers m1, m2 > 0 such that ||Lu|| ≤ m1||u||, ||Ru|| ≤ m2||u||.
The nonlinear term N(u) is Lipschitz continuous with |N(u) − N(v)| ≤ m |u −
v|,∀ t ∈ J = [0, T ], for constant m > 0.
The VIM gives the possibility to write the solution of Eq.(10) with the aid of the
correction functional:

up = up−1 +

∫ t

0

λ(τ)[Lup−1 +R ũp−1 +N(ũp−1) ]dτ, p ≥ 1. (11)

It is obvious that the successive approximations up, p ≥ 0 can be established by
determining, the general Lagrange multiplier, λ, which can be identified optimally
via the variational theory. The function ũp is a restricted variation, which means
that δũp = 0 [13]. Therefore, we first determine the Lagrange multiplier λ that
will be identified optimally via integration by parts. The successive approxima-
tions up, p ≥ 1, of the solution u will be readily obtained upon using the Lagrange
multiplier obtained and by using any selective function u0. The initial values of the
solution are usually used for selecting the zeroth approximation u0. With λ deter-
mined, then several approximations up, p ≥ 1, follow immediately. Consequently,
the exact solution may be obtained by using:

u(t) = lim
p→∞

up. (12)

Now, to illustrate how to find the value of the Lagrange multiplier λ, we will consider
the following case, which depends on the order of the operator L in Eq.(10), we
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study the case of the operator L = ∂
∂t (without lose of generality).

Making the above correction functional stationary, and noticing that δũp = 0, we
obtain:

δup = δup−1 + δ

∫ t

0

λ(τ)[
∂up−1
∂τ

+R ũp−1 +N(ũp−1) ]dτ

= δup−1 + [λ(τ) δup−1]τ=t −
∫ t

0

λ̇(τ)[ δup−1 ]dτ = 0,

where δũp is considered as a restricted variation i.e., δũp = 0, yields the following
stationary conditions:

λ̇(τ) = 0, 1 + λ(τ)|τ=t = 0 (13)

Eq.(13) is called Lagrange-Euler equation with its boundary condition. The La-
grange multiplier can be identified by solving this equation as: λ(τ) = −1.
Now, the following variational iteration formula can be obtained:

up(t) = up−1(t)−
∫ t

0

[Lup−1 +Rup−1 +N(up−1) ]dτ. (14)

We start with an initial approximation, and by using the above iteration formula
(14), we can obtain directly the other components of the solution.

3. Convergence Analysis of VIM

In this section, the sufficient conditions are presented to guarantee the conver-
gence of VIM, when applied to solve the differential equations, where the main point
is that we prove the convergence of the recurrence sequence, which is generated by
using VIM.

Lemma 1. Let A : U → V be a bounded linear operator and let {up} be a con-
vergent sequence in U with limit u, then up → u in U implies that A(up) → A(u)
in V .

Now, to prove the convergence of the variational iteration method, we rewrite
Eq.(14) in the operator form as follows [13]:

up = A[up−1], (15)

where the operator A takes the following form:

A [u] = u−
∫ t

0

[Lu+Ru+N(u) ] dτ. (16)

Theorem 1. Assume that X be a Banach space and A : X → X is a nonlinear
mapping, and suppose that

||A[u]−A[v] || ≤ γ ||u− v||, ∀ u, v ∈ X, (17)

for some constant 0 < γ < 1 where γ = (1 +m+m1 +m2)T . Then A has a unique
fixed point. Furthermore, the sequence (15) using VIM with an arbitrary choice of
u0 ∈ X, converges to the fixed point of A and

||up − uq|| ≤
γq

1− γ
||u1 − u0||. (18)

Proof. See [24].
In the following theorem we introduce an estimation of the absolute error of the
approximate solution of problem (10).
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Theorem 2. The maximum absolute error of the approximate solution up to
problem (10) is estimated to be:

max
t∈J
|uexact − up| ≤ β, (19)

where β =
γq T [ (1 +m1 +m2) ||u0||+ k ]

1− γ
, k = max

t∈J
|N(u0)|.

Proof. From Theorem 1 inequality (18) we have:

||up − uq|| ≤
γq

1− γ
||u1 − u0||,

as p→∞ then up → uexact and:

||u1 − u0|| = max
t∈J

∣∣∣u0 − ∫ t

0

[Lu0 +Ru0 +N(u0) ] dτ
∣∣∣

≤ max
t∈J

(
|u0|+

∫ t

0

[ |Lu0|+ |Ru0|+ |N(u0)| ] dτ
)

≤ T [ (1 +m1 +m2) ||u0||+ k ],

so, the maximum absolute error in the interval J is:

||uexact − up|| = max
t∈J
|uexact − up| ≤ β.

This completes the proof.

4. Applications and Numerical Results

In this section, we introduce two variational problems. We find the numerical
solution of these problems using ChFDM and VIM and plot the curves of these
solutions. These examples are chosen such that there exist analytical solutions for
them to give an obvious overview and show the efficiency of the proposed method
and VIM. Note that we have computed the numerical results using Mathematica
programming.

Problem 4.1:

Consider the following variational problem:

min v =

∫ 1

0

(
u(t) + u′(t)− 4e3t

)2

dt, (20)

under the following boundary conditions:

u(0) = 1, u(1) = e3. (21)

The corresponding Euler-Lagrange equation is:

u′′(t)− u(t)− 8e3t = 0, (22)

with boundary conditions (21). The exact solution of this problem is u(t) = e3t.
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1.I: Procedure solution using Chebyshev finite difference method

To solve the linear ODE of the form (22) with the given boundary conditions (21)
by using Chebyshev finite difference method, we use the transformation t = 1

2 (η+1)
to reduce the interval [0, 1] to [−1, 1]. In this case Eq.(22) will take the following
form:

u′′(η)− 1

4
u(η)− 2e

3
2 (η+1) = 0, −1 < η < 1. (23)

The transformed boundary conditions are given by:

u(−1) = 1, u(1) = e3, (24)

where u(η) is an unknown function from Cm[−1, 1]. Where the differentiation in
Eq.(23) will be with respect to the new variable η. The procedure of the solution
will be as follows:
We approximate the unknown solution u(η), in the following form [7]:

u(η) =

N∑
n=0

′′anTn(η), (25)

where an = 2
N

∑N
j=0

′′u(ηj)Tn(ηj) and the summation symbol with double primes
denotes a sum with both the first and last terms halved.
The first and the second derivatives of the Chebyshev functions are formed as
following:

T ′n(η) =

n−1∑
k=0

(n+k) odd

2n

ck
Tk(η), T ′′n (η) =

n−2∑
k=0

(n+k) even

n

ck
(n2 − k2)Tk(η), (26)

where c0 = 2 and ci = 1 for i ≥ 1. From Eq.(26) and by differentiated the series in
Eq.(25) term by term, we get:

u′(η) =
4

N

N∑
n=0

′′
N∑
j=0

′′
n−1∑
k=0

(n+k) odd

n

ck
u(ηj)Tn(ηj)Tk(η), (27)

u′′(η) =
2

N

N∑
n=0

′′
N∑
j=0

′′
n−2∑
k=0

(n+k) even

n

ck
(n2 − k2)u(ηj)Tn(ηj)Tk(η). (28)

In [12] Elbarbary and El-Sayed proved the error estimate of the first and second
derivatives (27)-(28). From Eqs.(27)-(28), we can define the elements of the matri-
ces Dn, n = 1, 2 which are defined in the following relations:

[u(n)] = Dn[u], n = 1, 2,

where Dn = [d
(n)
i,j ] is a square matrix of order N + 1 and the elements of the

column matrix [u(n)] are given by u
(n)
i = u(n)(ηi), i = 0, 1, ..., N, n = 0, 1, 2. The

derivatives of the function u(η) at the points ηk are given by:

u(n)(ηk) =

N∑
j=0

d
(n)
k,ju(ηj), n = 1, 2, (29)
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where d
(n)
k,j , j = 0, 1, ..., N are the elements of the kth row of the matrix Dn. They

are given as follows:

d
(1)
k,j =

4θj
N

N∑
n=0

n−1∑
`=0

(n+`) odd

nθn
c`

Tn(ηj)T`(ηk), k, j = 0, 1, ..., N,

d
(2)
k,j =

2θj
N

N∑
n=0

N∑
n=0

n−2∑
`=0

(n+`) even

nθn
c`

(n2 − `2)Tn(ηj)T`(ηk), k, j = 0, 1, ..., N,

where θ0 = θN = 1
2 , θ1 = 1 for j = 1, 2, ..., N − 1.

By applying the ChFDM to solve Eq.(23), we obtain a system of linear algebraic
equations for the unknowns u(ξi), with, ξi = −cos( iπN ), i = 0, 1, 2, ..., N :

N∑
j=0

d
(2)
k,ju(ξj)−

1

4
u(ξj)− 2e

3
2 (ξj+1) = 0, k = 0, 1, 2, ..., N, (30)

which is given in the matrix form as follows

D2[u]− 1

4
[u]− 2I[f ] = 0, (31)

where [f ] = e
3
2 (ξj+1) and I is the identity matrix. The resulting linear system of

N + 1 of algebraic equations is solved by conjugate gradient method.

1.II: Procedure solution using VIM

The VIM gives the possibility to write the solution of Eq.(22) with the aid of
the correction functionals:

un+1(t) = un(t) +

∫ t

0

λ(τ)[u′′n − ũn(τ)− 8e3τ ]dτ, n ≥ 0, (32)

where λ is general Lagrange multiplier. Making the above correction functional
stationary:

δun+1(t) = δun(t) + δ

∫ t

0

λ(τ)[u′′n − ũn(τ)− 8e3τ ]dτ

= δun(t) + [λ(τ) δu′n − λ′ δun]τ=t +

∫ t

0

[λ′′(τ) δun]dτ = 0,

(33)

where δũn is considered as a restricted variation, i.e., δũn = 0, yields the following
stationary conditions (by comparison the two sides in the above equation):

λ′′(τ) = 0, λ(τ)|τ=t = 0, 1− λ′(τ)|τ=t = 0. (34)

The equations in (34) are called Lagrange-Euler equation and the natural boundary
conditions respectively, the Lagrange multiplier, therefore

λ(τ) = τ − t. (35)

Now, by substituting from (35) in (32), the following variational iteration formula
can be obtained:

un+1(t) = un(t) +

∫ t

0

(τ − t)[u′′n − un(τ)− 8e
3τ

]dτ, n ≥ 0. (36)
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We start with initial approximation u0(t) = 1 + at, for arbitrary constant a, and
by using the above iteration formula (36), we can directly obtain the components
of the solution.
Now, the first three components of the solution u(t) by using (36) of Eq.(22) are:

u0(t) = 1 + at,

u1(t) = 1 + at+
1

18
(−16 + 16e3t − 48t+ 9t2 + 3at3),

u2(t) = 1 + at+
1

18
(−16 + 16e3t − 48t+ 9t2 + 3at3) +

1

3240
(−320 + 320e3t

+3t(−320 + 3t(−160 + t(−160 + 3t(5 + at))))).

Now, to find the constant a, we impose the boundary condition u(1) = e3 on the
n-term approximation u3(t), we obtain a = 3.00028.

Figure 1: The behavior of numerical solution using ChFDM, uChFDM, the approximate

solution using VIM, uVIM and the exact solution, uexact.

The behavior of the numerical solutions using Chebyshev finite difference method,
uChFDM, with N = 12, compared with the approximate solution using VIM,
uVIM, with three components (n = 3) are presented in figure 1.

Problem 4.2: Consider the following brachistochrone problem [9]:

min v =

∫ 1

0

[1 + u′2(t)

1− u(t)

]1/2
dt, (37)

with the given boundary conditions:

u(0) = 0, u(1) = −0.5. (38)
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The corresponding Euler-Lagrange equation of problem (37) takes the following
form:

u′′ = − 1 + u′2

2(u− 1)
. (39)

2.I: Procedure solution using Chebyshev finite difference method

To solve the non-linear ODE of the form (39) with the given boundary conditions
(38)by using Chebyshev finite difference method, we use the transformation t =
1
2 (η + 1) to reduce the interval [0, 1] to [−1, 1]. In this case Eq.(39) will take the
following form:

4u′′(η) +
1 + 4u′2

2(u− 1)
= 0, −1 < η < 1. (40)

The transformed boundary conditions are given by:

u(−1) = 0, u(1) = −0.5, (41)

where u(η) is an unknown function from Cm[−1, 1]. Where the differentiation in
Eq.(40) will be with respect to the new variable η.
By the same procedure follows in the previous example, we can apply the pro-
posed ChFDM to solve this example. The resulting system of non-linear algebraic
equations for the unknowns u(ξi), with, ξi = −cos( iπN ), i = 0, 1, 2, ..., N :

4

N∑
j=0

d
(2)
k,ju(ξj) + 0.5(u(ξj)− 1)−1

(
1 + 4(

N∑
j=0

d
(1)
k,ju(ξj))

2

)
= 0, k = 0, 1, 2, ..., N, (42)

The resulting non-linear system of N + 1 algebraic equations is solved by New-
ton’s method.

2.II: Procedure solution using VIM

The VIM gives the possibility to write the solution of (39) with the aid of the
correction functionals:

un+1(t) = un(t) +

∫ t

0

λ(τ)

[
u′′n +

1 + ũ′n
2

2(ũn − 1)

]
dτ, n ≥ 0, (43)

where λ is a general Lagrange multiplier. Making the above correction functional
stationary:

δun+1(t) = δun(t) + δ

∫ t

0

λ(τ)

[
u′′n +

1 + ũ′n
2

2(ũn − 1)

]
dτ

= δun(t) + [λ(τ) δu′n − λ′ δun]τ=t +

∫ t

0

[λ′′(τ) δun]dτ = 0.

(44)

By the same way we can obtain the Lagrange multiplier λ(τ) = τ − t.
Now, by substituting in (43), the following variational iteration formula can be

obtained:

un+1(t) = un(t) +

∫ t

0

(τ − t)
[
u′′n +

1 + u′n
2

2(un − 1)

]
dτ, n ≥ 0. (45)

We start with initial approximation u0(t) = at for arbitrary constant a, and by
using the above iteration formula (45), we can directly obtain the components of
the solution.
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Now, the first three components of the solution u(t) by using (45) of Eq.(39) are:

u0(t) = at,

u1(t) = at+
1

4
t2 +

1

4
a2t2,

u2(t) = at+
1

4
t2 +

1

4
a2t2 +

1

6
a3t3 + 0.0208333 t4 +

1

24
a2 t4 + 0.0208333 a4t4.

Figure 2: The behavior of numerical solution using ChFDM, uChFDM, the approximate

solution using VIM, uVIM and the exact solution, uexact.

Now, to find the constant a, we impose the boundary condition at t = 1 on the
n-term approximation u3(t), we obtain a = −0.8079390.
From the numerical results in figure 2, we can see that the proposed ChFDM is in
excellent agreement with the exact solution and better than VIM.

5. Conclusion and remarks

Since, as it is known that the problems in calculus of variations reduce to lin-
ear or non-linear ODEs and it is also known very difficult to find the analytical
solutions of higher-order non-linear ODEs, so, we interest in this article with using
high accuracy ChFD method to solve numerically such these equations. Since, we
know that the Chebyshev polynomial approximation method is valid in the interval
[−1, 1], so, we used the transformation t = a

2 (η+1) to change the interval [0, a]. The
proposed method reduces the considered non-linear differential equation to a non-
linear system of algebraic equations, which solved using the well known method,
namely, Newton iteration method. Also, by using VIM the solutions may take the
closed form of the exact solution. In general since the VIM solves the problems
on a few steps later of iteration satisfying the desired precision, it does not need
more calculation in order to solve the differential equation. Special attention is
given to study the convergence of VIM and satisfy this theoretical study in view
the introduced numerical examples. In the end, from our numerical results using
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the proposed method we can conclude that, the solutions are in excellent agree-
ment with the exact solution in most cases. Also, the obtained results demonstrate
reliability and efficiency of the proposed method.
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