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AN ACCELERATED HOMOTOPY PERTURBATION METHOD
FOR SOLVING NONLINEAR EQUATIONS

I. L. EL-KALLA

Abstract. Based on homotopy perturbation method (HPM), a new approach
for solving nonlinear equations is introduced. In this approach, a new formula
of the so-called He�s polynomials is used and this approach is called an ac-
celerated homotopy perturbation method (AHPM). Using this approach, the
rate of convergence is accelerated. Some numerical examples are introduced
to verify the e¢ ciency of this approach.

1. Introduction

Our life is nonlinear; so, mathematician always search for a better and easy meth-
ods for solving the nonlinear equations illuminating the nonlinear phenomena of our
life. Among these methods, the series solution methods such as Taylor method [1],
Adomian decomposition method (ADM) [2, 3], homotopy analysis method (HAM)
[4, 5] and homotopy perturbation method (HPM) [6, 7]. Using HPM, proposed by
Ji-Huan He in [8], the solution is considered as the summation of an in�nite series
which assumed to be convergent to the exact solution. Application of the HPM
to various kinds of nonlinear equations has become a hot topic see for example
[9, 10]. In recent years, HPM has been applied with a great success; so, relations
and algorithms have been deduced and continuously improved to obtain an accurate
solution for a large variety of linear and nonlinear problems for example [11, 12].
In this paper, based on HPM a new approach is introduced for solving functional
equations of various kinds in the form

y �N (y) = g (1)

where N is a nonlinear operator from Hilbert space H to H, y is an unknown
function, and g is a known function in H. To explain the HPM, we reconstitute (1)
as

L (u) = u (x)� g (x)�N(u) = 0; (2)
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with solution u(x) = y(x) and we de�ne the homotopy H(u; p) by

H(u; 0) = F (u); H(u; 1) = L(u); (3)

where F (u) is a functional operator with solution, say u0, which can be obtained
easily. We may choose a convex homotopy

H(u; p) = (1� p)F (u) + pL(u) = 0; (4)

which continuously trace an implicitly de�ned curve from a starting point H(u0; 0)
to a solution function H(y; 1). The embedding parameter p monotonically increases
from zero to one as the problem F (u) = 0 is continuously deformed to the original
problem L(u) = 0. The embedding parameter p 2 [0; 1] can be considered as an
expanding parameter such that

u =
1X
n=0

pnun; (5)

when p ! 1, equation (4) corresponds to equation (2) and equation (5) becomes
the approximate solution of equation (2); i.e.,

y(x) = lim
p!1

u =
1X
n=0

un(x): (6)

Taking F (u) = u(x)� g(x) and substituting (2) into (4), we have
H(u; p) = u� g � pN (u) = 0: (7)

The nonlinear term N (u) can be expressed in the so-called He�s polynomials [13]

N (u) =

1X
n=0

pnHn(u0; u1; :::; un); (8)

where, the traditional formula of Hn is

Hn(u0; u1; :::; un) =
1

n!

@n

@pn

"
N

 
nX
k=0

pkuk

!#
p=0

; n � 0: (9)

Substituting (5) and (8) into (7) and equate the terms with identical powers of p,
we obtain the recursive relation

p0 : u0(x) = g(x);

pn : un(x) = Hn�1; n � 1: (10)

Clearly, He�s polynomials (9) are exactly the same as the well known Adomian
polynomials [14]. In the next section, formula (9) will be replaced by another
accelerated simple formula to obtain the AHPM. In section three, some numerical
examples are introduced to verify the e¢ ciency of the AHPM.

2. The AHPM

By rearranging the terms of the Adomian polynomials, the author in [15] deduced
another mathematical formula to Hn called accelerated polynomials ( ~Hn) and the
author proved that: N (u) =

P1
n=0Hn =

P1
n=0

~Hn; in which ~Hn can be written in
the new mathematical form

~Hn(u0; u1; :::; un) = N (Sn)�
n�1X
k=0

~Hk; n � 1; (11)
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where the partial sum Sn =
Pn

i=0 ui(x) and ~H0 = N (u0). Substituting u (x) =P1
n=0 p

nun and N (u) =
P1

n=0 p
n ~Hn into (7) and equate the terms with identical

powers of p, we obtain the following accelerated recursive formula

p0 : u0(x) = g(x);

pn : un(x) = ~Hn�1; n � 1: (12)

The use of the accelerated formula (11) has the following main advantages:
i)- Absence of any derivative terms in the recursion, in contrast of formula (9),

thereby allowing for ease of computation.
ii)- Convenient for computer programming, because all old polynomials are saved

and used in the calculation of the current one, which saving in memory usage and
consequently execution time on the processor.
iii)- The solution using formula (11) converges faster than the solution using

formula (9). This is easily veri�ed if, for example, we take f(u) = u2 then the
polynomials using the traditional formula (9) are:
H0 = u

2
0;

H1 = 2u0u1;
H2 = u

2
1 + 2u0u2;

H3 = 2u1u2 + 2u0u3;
H4 = u

2
2 + 2u1u3 + 2u0u4;

H5 = 2u2u3 + 2u1u4 + 2u0u5;
...
while the polynomials using the accelerated formulas (11) are:
~H0 = u

2
0;

~H1 = 2u0u1 + u
2
1;

~H2 = 2u0u2 + 2u1u2 + u
2
2;

~H3 = 2u0u3 + 2u1u3 + 2u2u3 + u
2
3;

~H4 = 2u0u4 ++2u1u4 + 2u2u4 + 2u3u4 + u
2
4;

~H5 = 2u0u5 + 2u1u5 + 2u2u5 + 2u3u5 + 2u4u5 + u
2
5;

...
Clearly, the �rst �ve polynomials computed using the accelerated formulas (11)

include the �rst �ve polynomials computed using the traditional formula (9) in
addition to other terms which should appear in H6;H7;H8; :::using the traditional
formula (9). Thus, the solution using the accelerated formula (11) advances addi-
tional terms to be entered earlier in the calculation process, thus yielding a faster
rate of convergence.

3. Numerical Examples

In order to verify the high e¢ ciency of AHPM, consider the following simple
examples
Example 1 consider the following functional equation

y (x) = g (x) + y2 (x) : (13)

According to HPM we have:
y0 = g
y1 = H0 = y

2
0 = g

2;
y2 = H1 = 2y0y1 = 2g

3;
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...
and according to AHPM we have:
y0 = g
y1 = ~H0 = y

2
0 = g

2;

y2 = ~H1 = 2y0y1 + y
2
1 = 2g

3 + g4;
...
Using the MATHEMATICA package, S10 is computed by HPM to be:
S10 =

P10
n=0 yn = g +g

2 +2g3 +5g4 +14g5 +26g6 +44g7 + 69g8 +94g9 +114g10

+116g11 ,
while, only S4 is computed by the AHPM to be:
S4 =

P4
n=0 yn = g +g

2 +2g3 +5g4 +14g5 +26g6 +44g7 +69g8 +94g9 +114g10

+116g11 +94g12 +60g13 +28g14 +8g15 +g16:
Under the condition that the series solution converge, it is clear that S4 using

AHPM includes S10 using HPM in addition to other terms which should appear in
S11; S12; S13; S14; S15: So, we conclude that the AHPM converges faster than the
classical HPM.
Example 2 consider the nonlinear integral equation [16]

y (x) = sin (�x) +
1

5

Z 1

0

cos (�x) sin (�t) y3 (t) dt; 0 � x � 1 (14)

with exact solution y (x) = sin (�x) + 1
3

�
20�

p
391
�
cos (�x) : In this problem we

de�ne the homotopy

H(u; p) = u� g � p1
5

Z 1

0

cos (�x) sin (�t)u3 (t) dt = 0; (15)

where, g (x) = sin (�x) : This example is solved using HPM and AHPM expressing
the nonlinear term y3 in terms of H and ~H respectively. Using MATHEMATICA,
table 1 shows the relative absolute error (RAE) for the same partial sum S5 at
di¤erent values of x.

Table 1 RAE of example 2
x RAE using HPM RAE using AHPM
0:0 2:8020211� 10�5 1:0110403� 10�9
0:2 9:7020904� 10�5 7:3077101� 10�9
0:4 1:0052306� 10�4 1:0057214� 10�8
0:6 5:5270200� 10�4 4:0920200� 10�8
0:8 1:1057004� 10�4 2:0010984� 10�8
1:0 3:3051016� 10�5 5:2010900� 10�9

Example 3 consider the homogeneous nonlinear integral equation

y (x) =

Z 1

0

exp (x� 2t) y2 (t) dt (16)

with exact solution y (x) = exp (x) : It is di¢ cult to solve this example using classical
ADM; since, we have a problem in choosing the initial guess, but HPM or AHPM
still work if we construct the homotopy

H(u; p) = u (x)�
Z 1

0

exp (x� 2t) exp
�
p
�
ln
�
u2 (t)

���
dt = 0: (17)
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It is clear that, homotopy (17) still satisfy (3) and in this case the initial guess is

u0(x) =

Z 1

0

exp (x� 2t) dt. Using MATHEMATICA, table 2 shows the RAE for
the same partial sum S9 at di¤erent values of x.

Table 2 RAE of example 3
x RAE using HPM RAE using AHPM
0:0 9:0020421� 10�6 5:7000433� 10�11
0:2 7:0100004� 10�5 1:1012101� 10�10
0:4 5:5552306� 10�5 7:1000210� 10�10
0:6 9:5070220� 10�4 1:2029200� 10�9
0:8 3:8630503� 10�5 8:0110904� 10�10
1:0 6:2947565� 10�6 2:7030986� 10�11

Example 4 consider the fractional Riccati equation [17]

D�
x y (x) + y

2 (x) = 1; 0 < � � 1; x > 0 (18)

subjected to the initial condition y (0) = 0; where, D�
� is the well known Caputo

fractional derivative of order �: The exact solution, when � = 1; is y (x) = exp(2x)�1
exp(2x)+1 :

Applying the fractional integral operator of order �, (18) will be reduced to its
equivalent fractional integral equation

y (x) =
1

� (�)

Z x

0

(x� t)��1 dt� 1

� (�)

Z x

0

(x� t)��1 y2 (t) dt: (19)

In (19), de�ne the homotopy

H(u; p) = u� g + p

� (�)

Z x

0

(x� t)��1 y2 (t) dt = 0; (20)

where, g (x) = 1
�(�)

Z x

0

(x� t)��1 dt: This example is solved using HPM and AHPM

expressing the nonlinear term y2 in terms of H and ~H respectively. Using MATHE-
MATICA, table 3 shows the RAE for the same partial sum S4 at � = 1 for di¤erent
values of x.

Table 3 RAE of example 4
x RAE using HPM RAE using AHPM
0:0 8:6101322� 10�6 7:3110803� 10�9
0:2 2:7610157� 10�5 1:0110903� 10�8
0:4 9:8710110� 10�5 7:3119003� 10�8
0:6 3:3911034� 10�4 2:8110903� 10�7
0:8 8:6101550� 10�4 9:0191001� 10�7
1:0 5:7019823� 10�3 2:5310900� 10�6

Now we have the following theorem

4. Conclusion

The proposed AHPM converges faster than the classical HPM. This approach
can be generalized for solving di¤erent types of nonlinear equation. Using AHPM,
we can solve problems which can not be solved easily using the ADM.
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