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SPLINE SOLUTION FOR FOURTH ORDER FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS

W. K. ZAHRA AND S. M. ELKHOLY

Abstract. Recently, a large number of applied problems have been formu-

lated on fractional differential equations. Analytical solution of many applica-
tions, where the fractional differential equations appear, cannot be established.

Therefore, quintic polynomial spline function is considered to find approximate
solution for a class of two point fourth order integro-differential equation of

fractional order. Convergence analysis of the method is considered. Some il-

lustrative examples are included to demonstrate the practical usefulness of the
proposed method.

1. Introduction

In the last few decades, it has been shown that many phenomena cannot be
described within the framework of the classical theory using integer order deriva-
tives and there has been a significant interest in fractional differential equations.
It is caused both by the intensive development of the theory of fractional calculus
and by the application of such constructions in various sciences[1,3,5,6,12] such as
electrical circuits , biology, control theory , viscoelasticity, fitting of experimental
data, electromagnetic acoustic and material science. For details refer to [1,2-3,13-
14,17-18,21]. Boundary value problems of fractional order occur in the descrip-
tion of many physical processes of stochastic transport and in the investigation
of liquid filtration in a strongly porous medium [20]. Also, boundary value prob-
lems with integral boundary conditions constitute a very interesting and important
class of problems. They occur also in the mathematical model which is developed
for a micro-electro-mechanical system (MEMS) instrument that has been designed
primarily to measure the viscosity of fluids that are encountered during oil well
exploration [6].

Analysis and design of many systems require solution of fractional differential
equations (FDEs). Several methods have recently been proposed to obtain the an-
alytical solution of these equations. These methods include Laplace and Fourier
transforms, eigenvector expansion, direct solution based on Grunewald Letnikov
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approximation, truncated Taylor series expansion and power series method [5,9-
10,12,14-16]. Also, several algorithms have been developed to solve FDEs nu-
merically such as fractional Adams–Moulton methods, explicit Adams multistep
methods, fractional difference method, decomposition method, variational itera-
tion method , least squares finite element solution and extrapolation method [4,7-
8,15,20]. In [25], the authors considered the numerical solution of the fractional
boundary value problem (FBVP) D−αy′′(x) + p(x) y = g(x), 0 ≤ α < 1 , x ∈ [a, b]
,with Dirichlet boundary conditions using quadratic polynomial spline.

In this paper, we consider the numerical solution of the following fractional
integro-differential boundary value problem (FIDBVP):

D−αy(4)(x) + ηy(x) + µ

∫ x

0

k(t)y(t)dt = g(x) , 0 ≤ α < 1 , ∀x ∈ [a, b], (1)

with the boundary conditions:

y(a) = A1 , y(b) = A2 , y′′(a) = B1 and y′′(b) = B2. (2)

where the functions k(x) and g(x) are continuous on the interval [a, b] , η and µ
are constants. The operator Dα represents the Caputo fractional derivative. The
analytical solution of (1.1-1.2) cannot be obtained for arbitrary choices of k(x)
and g(x). When α = 0 , Eq. (1) is reduced to the classical fourth order integro-
differential equation.

The main objective of this work is to use polynomial spline function for solv-
ing the FBVP (1.1-1.2). This approach has its own advantages. For example, once
the solution has been computed, the information needed for spline interpolation be-
tween mesh points is available. This is important when the solution of the boundary
value problem is required at different locations in the interval [a, b]. This approach
has added advantage that it not only provides continuous approximations to y(x),
but also for y(j)(x), j = 1, 2, 3, 4 at every point of the range of integration [22-25].

This paper is organized as follows: In section 2, we introduce some definitions
and theorems necessary to our work. Derivation of our method is established in
section 3. Convergence analysis of the new method is presented in section 4. In
section 5, numerical results are included to show the applications and advantages
of our method.

2. Preliminaries

In this section, definitions of fractional derivative and integral, used in our work,
will be presented. There are different definitions for fractional derivatives, the most
commonly used ones are the Riemann-Liouville and the Caputo derivatives.
Let f(x) be a function defined on(a, b), then
Definition 1 [12] The Riemann-Liouville fractional derivative:

RDαf(x) =
1

Γ(m− α)
dm

dxm

∫ x

0

(x− t)m−α−1f(t)dt , α > 0, m− 1 < α < m,

where Γ is the gamma function.
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Definition 2 [12] The Riemann-Liouville fractional integral:

D−α
a f(x) =

1
Γ(α)

∫ x

a

(x− t)α−1f(t)dt , α > 0.

Definition 3 [2] The Caputo fractional derivative:

Dαf(x) =
1

Γ(m− α)

∫ x

0

(x− s)m−α−1f (m)(s)ds , α > 0, m− 1 < α < m.

The relation between the Riemann–Liouville operator and Caputo operator is given
by:

Dαf(x) = RDα[f(x)−
m−1∑
k=0

1
k!

(x− a)kf (k)(a)] , α > 0, m− 1 < α < m.

Lemma 1 [12] If f(x) is continuous and α, β > 0, then the following relationships
hold:

(1) RDα(D−βf(x)) = RDα−βf(x)
(2) D−αD−βf(x) = D−βD−αf(x) = D−α−βf(x)
(3) D−αxm = Γ(m+1)

Γ(m+α+1)x
m+α

(4) D−α exp(ax) = 1
Γ(α)

∫ x

0
(x− t)α−1 exp(at) dt = xα exp(ax)γ(α, ax),

where, γ(α, ax) = 1
xαΓ(α)

∫ x

0
tα−1 exp(−a t) dt, is called incomplete gamma func-

tion.
Theorem 1[17] Let f ∈ Cm [0, 1] and α ∈ (m − 1,m),m ∈ N and g ∈ C [0, 1].
Then forx ∈ [0, 1]:

(1) DαD−αg(x) = g(x)
(2) D−αDαf(x) = f(x)−

∑m−1
k=0

xk

k! f
(k)(0)

(3) lim
x→0

Dαf(x) = lim
x→0

D−αf(x) = 0

(4) If αi ∈ (0, 1], i = 1, 2, ..., n with α =
∑n

i=1 αiare such that, for each k =
1, 2, ...,m − 1, there exist ik < n with

∑ik

j=1 αj = k, then the following
composition rule holds: Dαf(x) = Dαn ...Dα2Dα1f(x).

3. Spline solution for fourth order fractional
integro-differential equations

In order to develop a spline approximation for the fourth order fractional integro-
differential equation (1) along with the boundary condition (2), we, firstly, use
theorem 1 [17] to convert the FIBVPs given by Eq.(1) into the following form:

y(4)(x) + ηDαy(x) + µDα

∫ x

0

k(t)y(t)dt = g̃(x) , ∀x ∈ [a, b], (3)

where g̃(x) = Dαg(x).
Now we introduce a finite set of grid points xi by dividing the interval [a, b] into

n-equal parts.

xi = a + ih , x0 = a , xn = b, h = b−a
n , i = 0, 1, 2, ..., n. (4)



4 W. K. ZAHRA AND S. M. ELKHOLY JFCA-2012/3(S)

Let y(x) be the exact solution of (1) and Si be an approximation to yi =
y(xi) obtained by the spline function Pi(x) passing through the points (xi, Si)
and (xi+1, Si+1).
Consider that each quintic polynomial spline segment Pi(x) has the form, see [22]:
Pi(x) = ai(x− xi)5 + bi(x− xi)4 + ci(x− xi)3 + di(x− xi)2 + ei(x− xi) + fi

i = 0, 1, 2, ..., n− 1 , (5)

where ai, bi, ci, di, ei and fi are constants to be determined. The quintic spline
Pi(x) satisfies the conditions:

(i)Pi(x) ∈ C4[a, b],

(ii) S(x) = Pi(x), x ∈ [xi, xi+1] , i = 0, 1, 2, ..., n− 1. (6)
We express the six coefficients in Eq.(5) in terms of Si, Si+1,Mi,Mi+1, Fi and Fi+1

where:

Pi(xi) = Si, Pi(xi+1) = Si+1, P
(2)
i (xi) = Mi, P

(2)
i (xi+1) = Mi+1,

P
(4)
i (xi) = Fi, P

(4)
i (xi+1) = Fi+1. (7)

Thus we obtain:

ai =
1

120h
(Fi+1−Fi), bi =

1
24

Fi, ci =
1
6h

(Mi+1−Mi)−
h

36
(Fi+1 +2Fi), di =

1
2
Mi,

ei =
1
h

(Si+1 − Si) +
h3

360
(7Fi+1 + 8Fi)−

h

6
(Mi+1 + 2Mi), fi = Si. (8)

Now apply the continuity conditions and using Eq.(8), we get the following two
relation respectively, see [25]:

Mi+1 + 4Mi + Mi−1 =
6
h2

(Si+1 − 2Si + Si−1) +
h2

60
(7Fi+1 + 16Fi + 7Fi−1), (9)

and

Mi+1 − 2Mi + Mi−1 =
h2

6
(Fi+1 + 4Fi + Fi−1), (10)

From Eqs.(9) and (10) we can deduce that:

Mi =
1
h2

(Si+1−2Si+Si−1)−
h2

360
(3Fi+1+24Fi+3Fi−1), i = 1, 2, 3, ..., n−1. (11)

Then substituting from Eq.(11) into Eq.(10) we get:

Si+2−4Si+1 +6Si−4Si−1 +Si−2 =
h4

360
[3Fi+2 +78Fi+1 +198Fi +78Fi−1 +3Fi−2,

i = 2, 3, ..., n− 2 . (12)
Where Fiis determined as:

Fi = g̃i − ηDα S(x)| x=xi
− µDα

∫ xi

0

k(t)S(t)dt , i = 0, 1, 2, ..., n, (13)

where g̃i = g̃(xi), Eq.(12) gives n− 3 linear algebraic equations in n− 1 unknown.
We need two more equations one at each end. Following [36], the two end conditions
are:



JFCA-2012/3(S) SPLINE SOLUTION FOR FOURTH ORDER FRACTIONAL 5

S3 − 4S2 + 5S1 = 2S0 + h2M0 +
h4

360
[3F3 + 78F2 + 195F1 + 54F0], (14)

and

Sn−3−4Sn−2+5Sn−1 = 2Sn+h2Mn+
h4

360
[3Fn−3+78Fn−2+195Fn−1+54Fn]. (15)

Lemma 3 Let y ∈ C 6[a, b] then the local truncation errors ti, i = 1, 2, ..., n− 1
associated with the scheme (12), (14) and (15) are:

ti =


−28
360 h6y

(6)
0 + O(h8), i = 1

−24
360 h6y

(6)
i + O(h8), i = 2, 3, ..., n− 2

−28
360 h6y

(6)
n + O(h8), i = n− 1 .

(16)

Proof To obtain the local truncation errors ti, i = 1, 2, ..., n− 1 of Eqs.(12) , (14)
and (15), we may refer to[22].

Returning to Eq.(13), we use the Grunewald definition of the fractional deriva-
tive for discretizing the fractional terms Dα S(x)| x=xi

and Dα
∫ xi

0
k(t)S(t)dt , i =

0, 1, 2, ..., n, in order to obtain a numerical solution for Eq.(1). The Grunewald def-
inition for fractional derivative is:

GDαy(x) = lim
N→∞

1
hα

N∑
k=0

gα,k y(x− kh), (17)

Where the Grunewald weights are:

gα,k =
Γ(k − α)

Γ(−α) Γ(k + 1)
. (18)

These normalized weights depend only on the fractional order α and the index k.
We have that: gα,0 = 1, gα,1 = −α and

gα,k =
(−α)(−α + 1)...(−α + k − 1)

k!
, ∀k ≥ 2. (19)

It is well known that:

(1 + z)p =
∞∑

k=0

(
p
k

)
zk , ∀ |z| ≤ 1 , p > 0 , (20)

where (
p
k

)
=

(−1)kΓ(k − p)
Γ(−p) Γ(k + 1)

. (21)

Then for z = −1, we have
∞∑

k=0

Γ(k − α)
Γ(−α) Γ(k + 1)

= 0. (22)

Then from the above we can approximate the fractional term Dαy(xi) , i = 0, 1, 2, ..., n
by:

Dα S(x)| x=xi
=

1
hα

i∑
k=0

gα,k S(x− kh) , i = 0, 1, 2, ..., n. (23)
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Also, we use the Grunewald definition of the fractional derivative for discretizing
the fractional term Dα

∫ xi

0
k(t)S(t)dt , i = 0, 1, 2, ..., n as follows:

Let

DαI(x) = Dα

∫ x

0

k(t)S(t)dt, (24)

then:

DαI(xi) =
1
hα

i∑
k=0

gα,k I(x− kh) , i = 0, 1, 2, ..., n. (25)

For x ∈ [xi−1, xi], we can use the trapezoidal rule to approximate the integration
I(xi). Then we have:

I(xi) =
h

2
(k(xi)S(xi) + k(xi−1)S(xi−1)), i = 1, 2, ..., n. (26)

Note that I(x0) = 0.
Then from Eqs.(13) , (23) and (26) we can get the value of Fi , i = 0, 1, 2, ..., n.
Remark 1:

The above technique can be used to develop a spline approximation for the
following fourth order fractional differential equation:

y(4)(x) + (ηDα + µ)y(x) = g(x) ,m− 1 < α < m , ∀x ∈ [a, b]. (27)

with the boundary conditions given by Eq.(2), m = 1, 2 .
In this case, the value of Fi is determined from Eq.(27) and have :

Fi = gi − µSi − ηDα S(x)| x=xi , i = 0, 1, 2, ..., n. (28)

4. Convergence analysis of the method

In the following let Y = (yi), S = (Si), C = (Ci) , T = (ti) and E = (ei) =
Y − S be (n-1) dimensional column vectors, where Y, S, T and E are the exact,
approximate, truncation error and error column vectors respectively.

We can write the system given by (12) and the end formulas determined by (14)
and (15) as follows:

NS = h4BF + C, (29)

where the matrices N , B and the vector C are given below:

N =



5 −4 1
−4 6 −4 1

1 −4 6 −4 1
. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5


, (30)
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B =
1

360



195 78 3
78 198 78 3
3 78 198 78 3

. . .
3 78 198 78 3

3 78 198 78
3 78 195


, (31)

and

C =


2A1 + 54

360h4F0 − h2B1

−A1 + 3
360h4F0

...
−A2 + 3

360h4Fn

2A2 + 54
360h4Fn − h2B2

 . (32)

From Eq.(13) the vector F can be written as

F = G1 − ηh−α(GS + G0)− 1
2µh1−α(GLS −GL0), (33)

where the vectors G1, G0, L0 and the matrices G and L are given below respectively:

G1 =
[

g̃1 g̃2 · · · g̃n−2 g̃n−1

]t
, (34)

G0 = A1

[
gα,1 gα,2 · · · gα,n−2 gα,n−1

]t
, (35)

L0 =
[

A1k(a) 0 · · · 0
]t

, (36)

G =



gα,0

gα,1 gα,0

gα,2 gα,1 gα,0

...
...

. . .
gα,n−3 gα,n−4 · · · gα,1 gα,0

gα,n−2 gα,n−3 · · · gα,2 gα,1 gα,0


, (37)

and

L =



k1

k1 k2

k2 k3

. . .
kn−3 kn−2

kn−2 kn−1


. (38)

Substituting from Eq.(32) into Eq.(29) we get:

(N + 1
2µh5−αBGL + ηh4−αBG)S = h4B(G1 − h−αG0 − 1

2µh1−αGL0) + C. (39)

and

(N + 1
2µh5−αBGL+ηh4−αBG)Y = h4B(G1−h−αG0− 1

2µh1−αGL0)+C+T. (40)

Then the error equation can be written as:
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(N + 1
2µh5−αBGL + ηh4−αBG)E = T. (41)

Our aim is to drive a bound on ‖E‖ (the infinite norm ). In order to achieve
this, we need the following lemma.
Lemma 4 [11,19] If M is square matrix of order n and ‖M‖ < 1, then (I + M)−1

exists and
∥∥(I + M)−1

∥∥ < 1/(1− ‖M‖).
Rewrite the error equation Eq.(40), we get

E = (I + 1
2µh5−αN−1BGL + ηh4−αN−1BG)−1N−1T, (42)

Using Lemma 4, we get

‖E‖ ≤
∥∥N−1

∥∥ ‖T‖
1− ‖N−1‖ [µ̄h5−α ‖B‖ ‖G‖ ‖U‖+ ηh4−α ‖B‖ ‖G‖]

. (43)

Provided that
∥∥N−1

∥∥ [µ̄h5−α ‖G‖ ‖L‖+ ηh4−α ‖G‖] <1, where µ̄ = µ
2 and ‖B‖ = 1

and

‖G‖ =
n−2∑
i=0

|gα,i| . (44)

We have that:
(1) When 0 < α < 1, we have gα,0 = 1 and gα,i < 0 ∀i and i 6= 0. Then from

Eq.(18), we get that
∑∞

k=1
Γ(k−α)

Γ(−α) Γ(k+1) = −1 which leads to ‖G‖ ≤ 2.
(2) When 1 < α < 2, we have gα,1 = −α and gα,i > 0 ∀i and i 6= 1. Then from

Eq.(18), we get that
∑∞

k = 0
k 6= 1

Γ(k−α)
Γ(−α) Γ(k+1) = α which leads to ‖G‖ ≤ 2α.

Then from the above we can conclude that:

‖G‖ ≤ 2m, ∀(m− 1) < α < m. (45)
According to [23], the matrix N is nonsingular and its inverse satisfies the inequality

∥∥N−1
∥∥ =

5(b− a)4 + 4(b− a)2h2

384h4
= λ h−4 = O(h−4), (46)

λ =
5(b− a)4 + 4(b− a)2h2

384
.

Also, from Eq.(16) we have: ‖T‖ = T0h
6M6 where

M6 = max
a≤x≤b

∣∣∣y(6)(x)
∣∣∣ . (47)

Then from Eqns.(44),(45),(46) and (47) , into Eq. (43), we obtain that:

‖E‖ ≤ O(h2). (48)
We summarize the above results in the next theorem.
Theorem 5

Let y(x) be the exact solution of the continuous boundary value problems (1)
and (2) and let y(xi), i = 1, 2, ..., n−1, satisfy the discrete boundary value problem
(29). Further, if ei = y(xi) − Si ,then ‖E‖ ∼= O (h2) second order convergent
method, which is given by Eq. (48).
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5. Numerical examples

We will consider some numerical examples illustrating the solution using quintic
spline methods. All calculations are implemented with MATLAB 7.0.1.

Example 5.1

Consider the fractional boundary value problem:

y(4)(x) + Dαy(x) + y(x) = g(x) , ∀x ∈ [0, 1],

y(0) = y(1) = y′′(0) = y′′(1) = 0 . (49)

where, g(x) = x(840x2 − 120) + x7(1 + 7!x−α

Γ(8−α) )− x5( 5!x−α

Γ(6−α) + 1).
The exact solution of Eq.(49) is:

y(x) = x5(x2 − 1). (50)

The numerical solution is represented in Table 5.1 for α = 0, 0.4 and 0.8 respectively.

Table 5.1, Observed maximum absolute errors for example 5.1 and order of
convergence

h α=0 α=0.4 α=0.8
Error O. C. Error O. C. Error O. C.

1/8 3.65E-2 3.65E-2 3.66E-2
1/16 1.02E-2 1.84 1.02E-2 1.84 1.02E-2 1.84
1/32 2.62E-3 1.96 2.61E-3 1.97 2.61E-3 1.97
1/64 6.61E-4 1.97 6.56E-4 1.99 6.57E-4 1.99
1/128 1.65E-4 2.002 1.63E-4 2.01 1.65E-4 1.99

Example 5.2

Consider the fractional boundary value problem:

y(4)(x) + Dαy(x) + y(x) = g(x) , ∀x ∈ [0, 1],

y(0) = y(1) = y′′(0) = 0 and y′′(1) = −4e. (51)

where, g(x) = (−8−6x−2x2) ex+
∑∞

k=0
k+1

Γ(k+2−α)x
k+1−α−

∑∞
k=0

(k+1)(k+2)
Γ(k+3−α) xk+2−α.

The exact solution of Eq.(51) is:

y(x) = x(1− x) ex. (52)

Note that in this example in order to find the fractional derivative of the exponential
term we approximated this term by Taylor series.

The numerical solution is represented in Table 5.2 represents the numerical ap-
proximation of example 5.2 for α = 0, 0.2 and 0.5 respectively.
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Table 5.2, Numerical solutions of example 5.2 for α = 0 , 0.2 andα = 0.5
x Exact solu-

tion
Approximate solution

α=0 α=0.2 α=0.5
0 0 0 0 0
0.125 0.123938 0.124053 0.123551 0.1234731
0.250 0.240755 0.240876 0.239818 0.239823
0.375 0.341014 0.341077 0.339701 0.339734
0.500 0.41218 0.412170 0.410686 0.410756
0.625 0.437870 0.437806 0.436438 0.436537
0.750 0.396938 0.396860 0.395812 0.395915
0.875 0.262377 0.262328 0.261758 0.261827
1 0 0 0 0

Example 5.3
Consider the fractional integro-differential BVP:

D−αy(4)(x) + y(x) +
∫ x

0

t y(t) dt = g(x) , ∀x ∈ [0, 1],

y(0) = y′′(0) = 0 , y(1) = 1 and y′′(1) = 20. (53)
where, g(x) = 5!

Γ(2+α)x
1+α + x5(1 + 1

7x2).
The exact solution of Eq.(53) is:

y(x) = x5. (54)
The numerical solution is represented in Table 5.3 for α = 0, 0.2 and 0.6.

Table 5.3, Numerical solutions of example 5.3 for α = 0.3 .0.5 and 0.7
x Exact solu-

tion
The corresponding error

α=0.3 α=0.5 α=0.7
0 0 0 0 0
0.125 3.05E-5 1.55E-3 2.19E-3 3.09E-3
0.250 9.77E-4 2.93E-3 4.15E-3 5.84E-3
0.375 7.42E-3 3.99E-3 5.63E-3 7.92E-3
0.500 0.03125 4.55E-3 6.42E-3 9.02E-3
0.625 0.09537 4.48E-3 6.31E-3 8.84E-3
0.750 0.23731 3.65E-3 5.14E-3 7.19E-3
0.875 0.51291 2.08E-3 2.93E-3 4.09E-3
1 1 0 0 0

Example 5.4
Consider the fractional integro-differential BVP:

D−αy(4)(x) + y(x) +
∫ x

0

y(t) dt = g(x) , ∀x ∈ [0, 1],

y(0) = 1 , y′′(0) = 2 , y(1) = 1 + e and y′′(1) = 3e. (55)
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where, g(x) = x(1 + ex) + 3 ex.
The exact solution of Eq.(54) when α = 0 is:

y(x) = 1 + x ex. (56)
This example was solved by Momani and Noor [14] using Adomian decomposition
method. Tables 5.4 represents a comparison between the solution of this example
using our method and Momani and Noor method for α = 0.25 , α = 0.5 andα = 0.75
while Table 5.5 represents the numerical results forα = 0.

Table 5.4, Approximate solutions of example 5.4 for
α = 0.25 , α = 0.5 andα = 0.75

x α=0.25 α=0.5 α=0.75
Our
method

Momani
and Noor
[14]

Our
method

Momani
and Noor
[14]

Our
method

Momani
and Noor
[14]

0 1 1 1 1 1 1
0.1 1.11456 1.110409 1.121805 1.119372 1.128759 1.120249
0.2 1.243597 1.244072 1.256704 1.260797 1.269653 1.262401
0.3 1.396721 1.404663 1.418272 1.427218 1.435697 1.429356
0.4 1.583766 1.596372 1.610648 1.622404 1.630746 1.624858
0.5 1.809867 1.823967 1.838554 1.850938 1.859381 1.853478
0.6 2.080538 2.092878 2.107362 2.118260 2.126972 2.120655
0.7 2.401769 2.409274 2.423204 2.430730 2.439782 2.432762
0.8 2.780138 2.780162 2.793091 2.795712 2.805094 2.797190
0.9 3.22293 3.213494 3.225055 3.221670 3.231355 3.222450
1 3.718282 3.718282 3.718282 3.718282 3.718282 3.718282

Table 5.5, Numerical solutions of example 5.4 for α = 0
x Exact solution Approximate so-

lution
Error

0 1 1 0
0.1 1.11000 1.11000 0
0.2 1.24000 1.25032 0.00605
0.3 1.40495 1.41342 0.00846
0.4 1.59673 1.60687 0.01014
0.5 1.82436 1.83525 0.01089
0.6 2.09327 2.10386 0.01059
0.7 2.40962 2.41883 0.00921
0.8 2.78043 2.78724 0.00681
0.9 3.21364 3.21726 0.00362
1 3.71828 3.71828 0

6. Conclusion

In this paper, we used quintic polynomial spline based method to present an
approximate solution for two point fourth order integro-differential equations of
fractional order. Our approach depends on approximating the fractional term using
the Grunewald definition of the fractional derivative. Convergence analysis of the
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method is presented. Some numerical examples were included to illustrate the
practical usefulness of the proposed methods.
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