Journal of Fractional Calculus and Applications,
Vol. 3(S). July, 11, 2012 (Proc. of the 4th. Symb. of Fractional Calculus and Applications)
No. 18, pp. 1-9.
ISSN: 2090-5858.
http://www.fcaj.webs.com/

GENERALIZED COMPOSITION OPERATORS ON $Q_{K}(p, q)$ SPACES

A. EL-SAYED AHMED AND A. KAMAL

Abstract

In this paper, we study generalized composition operators on α Bloch and $Q_{K}(p, q)$ spaces. Moreover, we study boundedness and compactness of the generalized composition operator C_{ϕ}^{g} acting between two different Möbius invariant spaces $Q_{K_{1}}(p, q)$ and $Q_{K_{2}}(p, q)$.

1. Introduction

Let ϕ be an analytic self-map of the unit disk $\Delta=\{z:|z|<1\}$ in the complex plane \mathbb{C} and let $d \sigma(z)$ be the Euclidean area element on Δ. Associated with ϕ, the composition operator C_{ϕ} is defined by

$$
C_{\phi}=f \circ \phi,
$$

for f analytic on Δ. It maps analytic functions f to analytic functions. The problem of boundedness and compactness of C_{ϕ} has been studied in many function spaces. The first setting was in the Hardy space H^{2}, the space of functions analytic on Δ (see [10]). Madigan and Matheson (see [8]) gave a characterization of the compact composition operators on the Bloch space \mathcal{B}. Tjani (see [14]) gave a Carleson measure characterization of compact operators C_{ϕ} on Besov spaces $B_{p}(1<p<\infty)$. Bourdon, Cima and Matheson in [4] and Smith in [11] investigated the same problem on $B M O A$. Li and Wulan in [6] gave a characterization of compact operators C_{ϕ} on Q_{K} and $F(p, q, s)$ spaces. Also, very recently in $[1,2]$, there are some characterizations for the composition operators C_{ϕ} in holomorphic $F(p, q, s)$ spaces. For $a \in \Delta$ the Möbius transformations $\varphi_{a}(z)$ is defined by

$$
\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}, \text { for } z \in \Delta
$$

The following identity is easily verified:

$$
\begin{equation*}
1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}}=\left(1-|z|^{2}\right)\left|\varphi_{a}^{\prime}(z)\right| \tag{1}
\end{equation*}
$$

[^0]Note that $\varphi_{a}\left(\varphi_{a}(z)\right)=z$ and thus $\varphi_{a}^{-1}(z)=\varphi_{a}(z)$. For $a, z \in \Delta$ and $0<r<1$, the pseudo-hyperbolic disc $\Delta(a, r)$ is defined by $\Delta(a, r)=\left\{z \in \Delta:\left|\varphi_{a}(z)\right|<r\right\}$. Denote by

$$
g(z, a)=\log \left|\frac{1-\bar{a} z}{z-a}\right|=\log \frac{1}{\left|\varphi_{a}(z)\right|}
$$

the Green's function of Δ with logarithmic singularity at $a \in \Delta$.
Definition 1.1. [17] Let f be an analytic function in Δ and let $0<\alpha<\infty$. If

$$
\|f\|_{\mathcal{B}^{\alpha}}=\sup _{z \in \Delta}\left(1-|z|^{2}\right)^{\alpha}\left|f^{\prime}(z)\right|<\infty
$$

then f belongs to the α-Bloch space \mathcal{B}^{α}. The space \mathcal{B}^{1} is called the Bloch space \mathcal{B}.
Definition 1.2. [12, 13] Let f be an analytic function in Δ and let $1<p<\infty$. If

$$
\|f\|_{B_{p}}^{p}=\sup _{z \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A(z)<\infty
$$

then f belongs to the Besov space B_{p}.
In [16] Zhao gave the following definition:
Definition 1.3. Let f be an analytic function in Δ and let $0<p<\infty,-2<$ $q<\infty$ and $0<s<\infty$. If

$$
\|f\|_{F(p, q, s)}^{p}=\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} g^{s}(z, a) d A(z)<\infty
$$

then $f \in F(p, q, s)$. Moreover, if

$$
\lim _{|a| \rightarrow 1} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} g^{s}(z, a) d A(z)=0
$$

then $f \in F_{0}(p, q, s)$.
The spaces $F(p, q, s)$ were intensively studied by Zhao in [16] and Rättyä in [9]. It is known from ([16], Theorem 2.10) that, for $p \geq 1$, the spaces $F(p, q, s)$ are Banach spaces under the norm

$$
\|f\|=\|f\|_{F(p, q, s)}+|f(0)|
$$

Li and Stević in [7] defined the generalized composition operator C_{ϕ}^{g} as the follows:

$$
\left(C_{\phi}^{g}\right)(z)=\int_{0}^{z} f^{\prime}(\phi(\xi)) g(\xi) d \xi
$$

When $g=\phi^{\prime}$, we see that this operator is essentially the composition operator C_{ϕ}. Therefore, C_{ϕ}^{g} is a generalization of the composition operator C_{ϕ}.
In this paper we study generalized compact composition operator on the spaces $Q_{K}(p, q)$, we will define and discuss properties of these spaces. A particular class of Möbius-invariant function spaces, the so-called Q_{K} spaces, has attracted a lot of attention in recent years.
Definition 1.4. Let $K:[0, \infty) \rightarrow[0, \infty)$ be a right continuous and nondecreasing function in Δ. A function f in Δ is said to belong to the space Q_{K} if

$$
\|f\|_{Q_{K}}^{2}=\left\{f: f \text { analytic in } \Delta \text { and } \sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d \sigma(z)<\infty\right\}
$$

Through this paper, we assume that $K:[0, \infty) \rightarrow[0, \infty)$ is a right continuous and nondecreasing function. For $0<p<\infty,-2<q<\infty$, we say that a function f analytic in Δ belongs to the space $Q_{K}(p, q)$ if

$$
\begin{equation*}
\|f\|_{K, p, q}^{p}=\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma(z)<\infty \tag{2}
\end{equation*}
$$

where $d \sigma(z)$ is the Euclidean area element on Δ. It is clear that $Q_{K}(p, q)$ is a Banach space with the norm $\|f\|=|f(0)|+\|f\|_{K, p, q}$ where $p \geq 1$. If $q+2=p, Q_{K}(p, q)$ is Möbius invariant, i.e., $\left\|f \circ \varphi_{a}\right\|=\|f\|_{K, p, q}$ for all $a \in \Delta$. Since every Möbius map φ can be written as $\varphi(z)=e^{i \theta} \varphi_{a}(z)$, where θ is real.
We assume throughout the paper that

$$
\begin{equation*}
\int_{0}^{1}\left(1-r^{2}\right)^{q} K\left(\log \frac{1}{r}\right) r d r<\infty \tag{3}
\end{equation*}
$$

The author [15] collected the following immediate relations of $Q_{K}(p, q)$ and $Q_{K, 0}(p, q)$
(i) $Q_{K}(p, q) \subset \mathcal{B}^{\frac{q+2}{p}}$.
(ii) $Q_{K}(p, q)=\mathcal{B}^{\frac{q+2}{p}}$ if and only if

$$
\int_{0}^{1}\left(1-r^{2}\right)^{-2} K\left(\log \frac{1}{r}\right) r d r<\infty
$$

(iii) $F(p, q, 0)=Q_{K}(p, q)$, if $K(0)>0$.

The following lemma is useful for our study (see [15]).
Lemma 1.1. let $0<p<\infty,-2<q<\infty$, and $K:[0, \infty) \rightarrow[0, \infty)$. Then
(A) $f \in \mathcal{B}^{\frac{q+2}{p}}$ if and only if there exist $\rho \in(0,1)$ such that

$$
\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma(z)<\infty
$$

(B) $\quad f \in \mathcal{B}_{0}^{\frac{q+2}{p}}$ if and only if there exist $\rho \in(0,1)$ such that

$$
\lim _{|z| \rightarrow 1^{-}} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma(z)=0
$$

Recall that a linear operator $T: X \rightarrow Y$ is said to be compact if it takes bounded sets in X to sets in Y which have compact closure. For Banach spaces X and Y of the space of all analytic functions $H(\Delta)$, we call that T is compact from X to Y if and only if for each bounded sequence $\left\{x_{n}\right\}$ in X, the sequence $\left(T x_{n}\right) \in Y$ contains a subsequence converging to some limit in Y.

2. Composition operators $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$

In this section, we characterize boundedness and compactness of the generalized composition operator C_{ϕ}^{g} from $Q_{K_{1}}(p, q)$ spaces to $Q_{K_{2}}(p, q)$ spaces. Now we are ready to state and prove the main results in this section.

Theorem 2.1. Let $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ. If $C_{\phi}^{g}\left(Q_{K_{1}}(p, q)\right) \subset$ $Q_{K_{2}}(p, q)$. Then
$C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$ is compact if and only if
$\lim _{t \rightarrow 1^{-}} \sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|f^{\prime}(\phi(z)) \phi^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma(z)=0$, where $f \in \mathcal{B}_{Q_{K_{1}}(p, q)}$.

Proof. First assume that (4) holds. To show that C_{ϕ}^{g} is compact we consider $\left\{f_{n}\right\} \subset$ $\mathcal{B}_{Q_{K_{1}}(p, q)}$. It suffices to prove that $\left\{C_{\phi}^{g} f_{n}\right\}$ has a subsequence which converges in $Q_{K_{2}}(p, q)$. Since $f_{n} \subset Q_{K_{1}}(p, q) \subset \mathcal{B}^{\frac{q+2}{p}}(c f$. [15]), for $z \in \Delta$

$$
\begin{aligned}
\left|f_{n}(z)-f_{n}(0)\right|= & \left|\int_{0}^{1} f^{\prime}(z t) z d t\right| \leq \int_{0}^{1}\left|f^{\prime}(z t)\right||z| d t \\
& \leq\left\|f_{n}\right\|_{\mathcal{B}^{\frac{q+2}{p}}} \int_{0}^{1} \frac{|z| d t}{\left(1-t^{2}|z|^{2}\right)^{\frac{q+2}{p}}} \\
& \leq C\left\|f_{n}\right\|_{\mathcal{B}^{\frac{q+2}{p}}} \\
& \leq \frac{C}{\pi r^{2} K\left(\log \frac{1}{r}\right)}\|f\|_{Q_{K_{1}}(p, q)}
\end{aligned}
$$

We know that $\left\{f_{n}\right\}$ is a normal family. By passing to a subsequence, we may assume, without loss of generality, that $\left\{f_{n}\right\}$ converges to 0 uniformly on compact subsets of Δ. We must show that $\left\{C_{\phi}^{g} f_{n}\right\}$ converges to 0 in the norm $\|\cdot\|_{Q_{K_{2}}(p, q)}$. Given $\epsilon \in(0,1)$, by (4), there is a $t \in(0,1)$ such that for all functions f_{n} and for all $a \in \Delta$,

$$
\begin{equation*}
\int_{|\phi(z)|>t}\left|f_{n}^{\prime}(\phi(z)) \phi^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{5}
\end{equation*}
$$

By (4) and the fact that $\Delta_{t}=\{z \in \Delta:|z| \leq t\}$ is a compact subset of Δ, we see that $\phi \in Q_{K_{2}}(p, q)$, since $z \in Q_{K_{1}}(p, q)$, and also that $\left\{f_{n}^{\prime}\right\}$ converges to 0 uniformly on Δ_{t}. Therefore, there exists an integer $N>1$ such that for $n \geq N$,

$$
\begin{equation*}
\int_{|\phi(z)| \leq t}\left|f_{n}^{\prime}(\phi(z)) \phi^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon\|\phi\|_{Q_{K_{2}}(p, q)}^{p} \tag{6}
\end{equation*}
$$

Thus (5) and (6) give

$$
\int_{|\phi(z)| \leq t}\left|f_{n}^{\prime}(\phi(z)) \phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon\left(1+\|\phi\|_{Q_{K_{2}}(p, q)}^{p}\right)
$$

when $n \geq N$. That is, $\left\|C_{\phi}^{g} f_{n}\right\|_{Q_{K_{2}}(p, q)} \rightarrow 0$ as $n \rightarrow \infty$.
Now suppose that $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$ is compact. To verify (4) consider $f \in \mathcal{B}_{Q_{K_{1}}(p, q)}$ and let $f_{s}(z)=f(s z)$ for $s \in(0,1)$ and $z \in \Delta$. Note that $f_{s} \rightarrow f$ uniformly on compact subsets of Δ as $s \rightarrow 1$. By [3] we know that $\left\{f_{s}, 0<s<1\right\}$ is bounded in $Q_{K_{1}}(p, q)$. Since C_{ϕ} is compact, $\left\|C_{\phi}^{g} f_{s}-C_{\phi} f\right\|_{Q_{K_{2}}(p, q)} \rightarrow 0$ as $s \rightarrow 1$. That is, for given $\epsilon>0$ there exists $s_{0} \in(0,1)$ such that

$$
\sup _{a \in \Delta} \int_{\Delta}\left|f_{s_{0}}^{\prime}(\phi(z))-f^{\prime}(\phi(z))\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon
$$

For $t \in(0,1)$ and the above s_{0} the triangle inequality gives

$$
\begin{align*}
& \sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|f^{\prime}(\phi(z))\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \\
& \leq \epsilon+\left\|f_{s_{0}}^{\prime}\right\|_{\infty}^{p} \sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \tag{7}
\end{align*}
$$

We know that

$$
\sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \leq\|\phi\|_{Q_{K}(p, q)}^{p}<\infty
$$

since $C_{\phi}^{g}\left(Q_{K_{1}}(p, q)\right) \subset Q_{K_{2}}(p, q)$. It will be shown that for given $\epsilon>0$ and $\left\|f_{s_{0}}^{\prime}\right\|_{\infty}^{p}>$ 0 there exists a $\delta \in(0,1)$ such that for $\delta<t<1$

$$
\left\|f_{s_{0}}^{\prime}\right\|_{\infty}^{p} \sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon
$$

Let $n=2^{j}, j=1,2, \ldots$. Choose $h_{n}(z)=n^{\frac{-1}{2}} z^{n}$, and we know that $h_{n} \in \mathcal{B}^{\frac{q+2}{p}}$. It is easy to check that $\left\{h_{n}\right\}$ is a bounded family in $Q_{K_{1}}(p, q)$ since $\mathcal{B}^{\frac{q+2}{p}} \subseteq Q_{K_{1}}(p, q)$ (see [15]). Since C_{ϕ}^{g} is compact and h_{n} converges uniformly to 0 on compact subsets of Δ, we have

$$
\lim _{n \rightarrow \infty}\left\|h_{n} \circ \phi\right\|_{Q_{K_{2}}(p, q)}=0
$$

Thus, for any given $\epsilon>0$, there exists an integer $N>1$ such that for all $a \in \Delta$

$$
\begin{equation*}
n \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}|\phi(z)|^{p n-p}\left(1-|z|^{2}\right)^{q}|g(z)|^{p} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{8}
\end{equation*}
$$

whenever $n \geq N$. Given $t \in(0,1)$, (8) yields

$$
\begin{equation*}
N t^{p N-p} \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{9}
\end{equation*}
$$

Taking $t=e^{-\frac{\log N}{P(N-1)}}$, we get

$$
\left\|f_{s_{0}}^{\prime}\right\|_{\infty}^{p} \sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|\phi^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q}|g(z)|^{p} K_{2}(g(z, a)) d \sigma(z)<\epsilon
$$

Hence by (7) and (8) we have already proved that for any $\epsilon>0$ and for $f \in$ $\mathcal{B}_{Q_{K_{1}}}(p, q)$, there exists a $\delta=\delta(\epsilon, f)$ such that

$$
\sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon
$$

whenever $\delta<t<1$.
the above $\delta=\delta(\epsilon, f)$, in fact, is independent of $f \in \mathcal{B}_{Q_{K_{1}}(p, q)}$. Since $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow$ $Q_{K_{2}}(p, q)$ is compact, $C_{\phi}^{g}\left(\mathcal{B}_{Q_{K_{1}}(p, q)}\right)$ is a relatively compact subset of $Q_{K_{2}}(p, q)$. It means that there is a finite collection of functions $f_{1}, f_{2}, \ldots, f_{n}$ in $\mathcal{B}_{Q_{K_{1}}(p, q)}$ such that for any $\epsilon>0$ and $f \in \mathcal{B}_{Q_{K_{1}}(p, q)}$ there is a $k, 1 \leq k \leq n$, satisfying

$$
\begin{equation*}
\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(\phi(z))-f_{k}^{\prime}(\phi(z))\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{10}
\end{equation*}
$$

On the other hand, if $\rho=\max _{1 \leq k \leq n} \delta\left(\epsilon, f_{k}\right)<t<1$, we have from the previous observation that for all $k=1,2, \ldots, n$,

$$
\begin{equation*}
\sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|f_{k}^{\prime}(\phi(z))\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{11}
\end{equation*}
$$

The triangle inequality, together with (10) and (11), gives

$$
\sup _{a \in \Delta} \int_{|\phi(z)|>t}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<2 \epsilon
$$

whenever $\rho<t<1$. The proof is complete.
Although Theorem 2.1 can be viewed as a characterization of compact composition operators $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$, by condition (4) it is not easy to check compactness of C_{ϕ}^{g}. The following theorem gives a characterization of C_{ϕ}^{g} directly in terms of ϕ.

Theorem 2.2. Let $g \in H(\Delta), \phi$ be an analytic self-map of Δ and $C_{\phi}^{g}: Q_{K_{1}}(p, q) \subset$ $Q_{K_{2}}(p, q)$. Let two functions $K_{1}, K_{2}:[0, \infty) \rightarrow[0, \infty)$ be right-continuous and nondecreasing, satisfying

$$
\begin{equation*}
\int_{0}^{1}\left(1-r^{2}\right)^{-2} K_{1}\left(\log \frac{1}{r}\right) r d r<\infty \tag{12}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{t \rightarrow 1^{-}} \sup _{a \in \Delta} \int_{|\phi(z)|>t} \frac{\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}}{\left(1-|\phi(z)|^{2}\right)^{2 p}}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)=0 . \tag{13}
\end{equation*}
$$

Then, $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$ is compact. Conversely, if $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow$ $Q_{K_{2}}(p, q)$ is compact, then (13) holds.

Proof. Consider $\left\{f_{n}\right\} \in \mathcal{B}_{Q_{K_{1}}(p, q)}$ which converges to 0 uniformly on compact subsets of Δ. We must show that $\left\{C_{\phi}^{g} f_{n}\right\}$ converges to 0 in the norm $\|.\|_{Q_{K}(p, q)}$. Thus

$$
\begin{aligned}
\left\|C_{\phi}^{g} f_{n}\right\|_{Q_{K}(p, q)}^{p} & =\sup _{a \in \Delta} \int_{\Delta}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \\
& =\sup _{a \in \Delta}\left(\int_{|\phi(z)| \leq t}+\int_{|\phi(z)|>t}\right)\left|f_{n}^{\prime}(\phi)(z)\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \\
& \leq \sup \left\{\left|f_{n}^{\prime}(w) g(w)\right|^{p}:|w| \leq t\right\}\|\phi\|_{Q_{K_{2}}(p, q)}^{p} \\
& + \text { const. }\left\|f_{n}\right\|_{\mathcal{B}^{\frac{q+2}{p}}}^{p} \int_{|\phi(z)|>t} \left\lvert\, \frac{\left|\phi^{\prime}(z) g(z)\right|^{p}}{\left(1-|\phi(z)|^{2}\right)^{2 p}} K_{2}(g(z, a)) d \sigma(z)=I_{1}+I_{2} .\right.
\end{aligned}
$$

Since $\left\{f_{n}\right\}$ converges to 0 uniformly on compact sets and $\phi \in Q_{K_{2}}(p, q)$, we have $I_{1} \rightarrow 0$ as $n \rightarrow \infty$. In the second term I_{2} we know that

$$
\left\|f_{n}\right\|_{\mathcal{B}^{\frac{q+2}{p}}}^{p} \leq C\left\|f_{n}\right\|_{Q_{K_{1}}(p, q)}^{p}
$$

since every function in $Q_{K_{1}}(p, q)$ must be $\frac{q+2}{p}$-Bloch. Thus, I_{2} goes to 0 when $t \rightarrow 1$ by our assumption. Therefore, C_{ϕ}^{g} is compact.
Conversely, let $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}}(p, q)$ be compact. By [5] we know that (12) ensures

$$
f_{\theta}(z)=\log \frac{1}{1-e^{-i \theta} z} \in Q_{K_{1}}(p, q) \text { for all } \theta \in[0,2 \pi)
$$

By Theorem 2.1,

$$
\lim _{t \rightarrow 1^{-}} \int_{|\phi(z)|>t} \frac{\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}}{\left(1-|\phi(z)|^{2}\right)^{2 p}} K_{2}(g(z, a)) d \sigma(z)=0
$$

holds for all $a \in \Delta$ and $\theta \in[0,2 \pi)$. Thus, we obtain (13) by integrating with respect to θ, the Fubini theorem and the Poisson formula.
3. Composition operators $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$

In this section, we consider compactness of the generalized composition operators $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$, where $Q_{K, 0}(p, q)$ is a subspace of $Q_{K}(p, q)$ satisfying

$$
\lim _{|a| \rightarrow 1^{-}} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma(z)=0
$$

By [15], we know that $Q_{K, 0}(p, q) \subset \mathcal{B}_{0}^{\frac{q+2}{p}}$ and that $Q_{K, 0}(p, q)=\mathcal{B}_{0}^{\frac{q+2}{p}}$ if and only if

$$
\int_{0}^{1}\left(1-r^{2}\right)^{-2} K\left(\log \frac{1}{r}\right) r d r<\infty
$$

We should mention that the generalized composition operator C_{ϕ}^{g} is compact from $Q_{K_{1}}(p, q)$ to $Q_{K_{2}, 0}(p, q)$ if $\phi \in Q_{K_{2}, 0}(p, q)$ and C_{ϕ}^{g} is compact from $Q_{K_{1}}(p, q)$ to $Q_{K_{2}}(p, q)$.
Theorem 3.1. Let $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ such that

$$
C_{\phi}^{g}\left(Q_{K_{1}}(p, q)\right) \subset Q_{K_{2}, 0}(p, q) .
$$

Then $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$ is compact if and only if
$\lim _{|a| \rightarrow 1^{-}} \sup _{\|f\|_{Q_{K_{1}, p, q}}<1} \int_{\Delta}\left|f^{\prime}(\phi(z))\right|^{p}\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)=0$.
Proof. First suppose that $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$ is compact. Then $A=$ $\operatorname{cl}\left(\left\{(f \circ \phi) g \in Q_{K_{2}, 0}(p, q):\|f\|_{Q_{K_{1}, p, q}}<1\right\}\right)$, the $Q_{K_{2}, 0}(p, q)$ closure of the image under C_{ϕ}^{g} of the unit ball of $Q_{K_{1}}(p, q)$, is a compact subset of $Q_{K_{2}, 0}(p, q)$. For given $\epsilon>0$, since a compact set in a metric space is completely bounded, there exist $f_{1}, f_{2}, \ldots, f_{N} \in Q_{K_{1}}(p, q)$ such that each function f in A lies at most ϵ distant from

$$
B=\left\{\left(f_{1} \circ \phi\right) g,\left(f_{2} \circ \phi\right) g,\left(f_{3} \circ \phi\right) g, \ldots,\left(f_{N} \circ \phi\right) g\right\} .
$$

That is, there exists $j \in J=\{1,2, \ldots, N\}$ such that

$$
\begin{equation*}
\left\|(f \circ \phi) g-\left(f_{j} \circ \phi\right) g\right\|_{Q_{K_{2}}(p, q)}<\frac{\epsilon}{4} . \tag{15}
\end{equation*}
$$

On the other hand, since $\left\{\left(f_{j} \circ \phi\right) g: j \in J\right\} \subset Q_{K, 0}(p, q)$, there exists a $\delta>0$ such that for all $j \in J$ and $|a|>1-\delta$,

$$
\begin{equation*}
\int_{\Delta}\left|\left(f_{j} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\frac{\epsilon}{4} \tag{16}
\end{equation*}
$$

Therefore by (15) and (16), we obtain that for each $|a|>1-\delta$ and $f \in Q_{K_{1}}(p, q)$ with $\|f\|_{Q_{K_{1}, p, q}}<1$ there exists $j \in J$ such that

$$
\begin{aligned}
& \int_{\Delta}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \\
& \leq 2 \int_{\Delta}\left|\left(f \circ \phi-f_{j} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) \\
& +\int_{\Delta}\left|\left(f_{j} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon .
\end{aligned}
$$

This proves (14).
Now let (14) hold and let $\left\{f_{n}\right\}$ be a sequence in the unit ball of $Q_{K_{1}}(p, q)$. By Montel's theorem, there exists a subsequence $\left\{f_{n_{k}}\right\}$ which converges to a function
f analytic in Δ and both $f_{n_{k}} \rightarrow f$ and $f_{n_{k}}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of Δ. By hypothesis and Fatou's lemma, we see that $C_{\phi}^{g} \in Q_{K_{2}, 0}(p, q)$. Since $z \in$ $Q_{K_{1}}(p, q), \phi \in Q_{K_{2}, 0}(p, q)$. Thus we remark that C_{ϕ}^{g} is a compact composition operator by showing that

$$
\left\|C_{\phi}^{g}\left(f_{n_{k}}-f\right)\right\|_{Q_{K_{2}}(p, q)} \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

In order to simplify the notation we additionally assume, without loss of generality, that $f=0$. Hence it remains to show that

$$
\lim _{|n| \rightarrow \infty}\left\|C_{\phi}^{g} f_{n}\right\|_{Q_{K_{2}}(p, q)}=0
$$

Let $\epsilon>0$. By (14), we can choose $r \in(0,1)$ for all n,

$$
\begin{equation*}
\sup _{r<|a|<1} \int_{\Delta}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{17}
\end{equation*}
$$

For $a \in \Delta$ and $t \in(0,1)$, define $t \Delta=\{z \in \Delta:|z| \leq t\}$ and set

$$
I_{t}(a)=\int_{\Delta \backslash t \Delta}\left|(f \circ \phi)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z) .
$$

By using the same way as in [6] we know that for each $t \in(0,1), I_{t}(a)$ is a continuous function of a. Since

$$
\int_{\Delta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\infty
$$

for each $a \in \Delta$, we can choose $t(a) \in(r, 1)$ such that $I_{t(a)}(a)<\frac{\epsilon}{2}$. Moreover, there is a neighborhood $U(a) \subset \Delta$ of a such that $I_{t(a)}(b)<\epsilon$ for every $b \in U(a)$, by the continuity of $I_{t}(a)$. Thus, using the compactness of $\{a:|a| \leq r\}$, there exists $t_{0} \in(0,1)$ such that $I_{t_{0}}(a)<\epsilon$ if $|a| \leq r$, and so

$$
\begin{equation*}
\sup _{|a| \leq r} \int_{\Delta \backslash t_{0} \Delta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon \tag{18}
\end{equation*}
$$

Also, by the uniform convergence of $\left\{\left(f_{n}^{\prime} \circ \phi\right) g\right\}$ to 0 on compact subsets of Δ, there exists N such that,

$$
\int_{t_{0} \Delta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<\epsilon,
$$

if $n \geq N$. Thus, for any such n, we have

$$
\begin{equation*}
\sup _{|a| \leq r} \int_{\Delta}\left|\left(f_{n} \circ \phi\right)^{\prime}(z) g(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)<2 \epsilon . \tag{19}
\end{equation*}
$$

Combining (17) and (19), we obtain that

$$
\lim _{|n| \rightarrow \infty}\left\|C_{\phi}^{g} f_{n}\right\|_{Q_{K_{2}}(p, q)}=0
$$

The proof of Theorem 3.1 is complete.
Theorem 3.2. Let $g \in H(\Delta)$ and ϕ be an analytic self-map of Δ such that

$$
C_{\phi}^{g}\left(Q_{K_{1}}(p, q)\right) \subseteq Q_{K_{2}, 0}(p, q) .
$$

Assume that

$$
\begin{equation*}
\int_{0}^{1}\left(1-r^{2}\right)^{-2} K_{1}\left(\log \frac{1}{r}\right) r d r<\infty \tag{20}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{|a| \rightarrow 1^{-}} \int_{\Delta} \frac{\left|\phi^{\prime}(z)\right|^{p}|g(z)|^{p}}{\left(1-|\phi(z)|^{2}\right)^{2 p}}\left(1-|z|^{2}\right)^{q} K_{2}(g(z, a)) d \sigma(z)=0 \tag{21}
\end{equation*}
$$

then $C_{\phi}^{g}: Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$ is compact. Conversely assume that C_{ϕ}^{g} : $Q_{K_{1}}(p, q) \rightarrow Q_{K_{2}, 0}(p, q)$ is compact, (21) holds.

Proof. The proof is very similar as the proof of Theorem 2.2, so it will be omitted.

References

[1] A. El-Sayed Ahmed, and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Mathematica Scandinavica, 104(2)(2009), 275-295.
[2] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators acting between some weighted Möbius invariant spaces, Ann. Funct. Anal. AFA 2(2)(2011), 138-152.
[3] A. Aleman and A. M. Simbotin, Estimates in Möbius invariant spaces of analytic functions, Complex Var. Theory Appl. 49 (2004) 487-510.
[4] B. S. Bourdon, J. A. Cima and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999), 2183-2169.
[5] M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_{K}-type space, Illinois J. Math. 46 (2002), 1233-1258.
[6] S. Li and H. Wulan, Composition operators on Q_{K} spaces, J. Math. Anal. Appl. 327(2007), 948-958.
[7] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
[8] P. K. Madigan and A. Matheson, Compact composition operators on Bloch space, Trans. Amer. Math. Soc. 347 (1997), 2679-2687.
[9] J. Rättyä, On some Complex function spaces and classes, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 124. Helsinki: Suomalainen Tiedeakatemia, (2001), 1-73.
[10] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlay, New York, 1993.
[11] W. Smith and R. Zhao, Compact composition operators into Q_{p} spaces, Analysis, 17 (1997), 239-263.
[12] K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405-420.
[13] K. Stroethoff, The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1995), 211-219.
[14] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355(11)(2003), 4683-4698.
[15] H. Wulan and K. Zhu, Q_{K} type spaces of analytic functions, J. Funct. Spaces Appl. 4(2006), 73-84.
[16] R. Zhao, On a general family of function spaces, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1-56.
[17] R. Zhao, On α-Bloch functions and VMOA, Acta. Math. Sci., 3 (1996), 349-360.
A. El-Sayed Ahmed

Sohag University, Faculty of Science, Mathematics Department, 82524 Sohag, Egypt
Current Address: Taif University, Faculty of Science, Mathematics Department, Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia

E-mail address: ahsayed80@hotmail.com
A. Kamal

The High Institute of Computer Science, Al-Kawser city at Sohag Egypt
Current Address: Majmaah University Faculty of Science and Humanities in Ghaat, Majmath, Saudi Arabia

E-mail address: alaa_ mohamed1@yahoo.com, a.k.ahmed@mu.edu.sa

[^0]: 2000 Mathematics Subject Classification. 47 B 33, 46 E15.
 Key words and phrases. $Q_{K}(p, q)$ spaces, holomorphic functions and Bloch space.
 Proc. of the 4th. Symb. of Frac. Calcu. Appl. Faculty of Science Alexandria University, Alexandria, Egypt July, 11, 2012.

