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THE AMPLITUDE EQUATION FOR THE STOCHASTIC
KURAMOTO-SHIVASHINSKY EQUATION

WAEL W. MOHAMMED

Abstract. In this paper we derive rigorously amplitude equation of the sto-
chastic Kuramoto-Shivashinsky equation near a change of stability. We discuss
the impact of degenerate noise on the dominant behaviour, and see that addi-
tive noise has the potential to stabilize the dynamics of the dominant modes.

1. Introduction

In this article we consider the Kuramoto-Sivashinsky (KS) equation with additive
noise forcing near change of stability, where the order of the noise strength is less
than the order of the distance from the change of stability. The KS equation dates
to the mid-1970s. The �rst derivation was by Kuramoto in the study of reaction-
di¤usion equations modelling the Belousov-Zabotinskii reaction. The equation was
also developed by Sivashinsky in higher space dimensions in modelling small thermal
di¤usive instabilities in laminar �amence Poiseuille �ow of a �lm layer on an inclined
plane. In one space dimension it is also used as a model for the problem of Benard
convection in an elongated box, and it may be used to describe long waves on the
interface between two viscous �uids and unstable drift waves in plasmas. The KS
equation has some application for instance in the control of surface roughness in
the growth of thin solid �lms by sputtering, step dynamics in epitaxy, the growth
of amorphous �lms, and models in population dynamics [5, 6, 11, 12, 13, 16, 17].
The stochastic Kuramoto-Sivashinsky equation takes the form

@tu = �(@4x + @2x)u+ �"2@4xu� u@xu+ "@tW (t); (1)

where "2@4xu represents a linear instability term that can destabilize the dominant
modes of the equation, and W is �nite dimensional noise. The initial condition for
(1) is usually taken to satisfyZ L

0

u(x; 0)dx = 0 for some L > 0: (2)
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We will work in some Hilbert space H equipped with scalar product h�; �i and
corresponding norm k�k. For short, let A = �(@4x + @2x), L = @4x and B(u; u) =
�u@xu. So, we can rewrite the Equation (1) as follows

@tu = Au+ �"2Lu+B(u; u) + "@tW (t): (3)

First aim of this paper is to derive rigorously an amplitude equation of (3) in
this form

@T b(T ) = Lcb(T ) + F(b) +
2�2k
�2k

Bc(Bc(b; ek); ek)�
�2k
�k
Bc(b;A�1s Bs(ek; ek))

+
X
` 6=k

�2k
�k(�k + �`)

Bc(B`(b; ek)e`; ek) +
2�k
�k

Bc(b; ek)@T ~�k; (4)

where
F(b) = �2Bc(b;A�1s Bs(b; b)); (5)

and show that near a change of stability on a time-scale of order "�2 the solution
of (3) is of the type

u(t) ' "b("2t) + "Zk("2t)ek +O("2�) ; (6)

where b is the solution of the amplitude equation (4) and Zk(T ) is a fast real-valued
Ornstein-Uhlenbeck process (OU, for short) de�ned by

Zk(T ) := �k"
�1
Z T

0

e�"
�2�k(T�s)d ~�k(s); (7)

Second aim of this paper is to investigate whether additive degenerate noise (i.e.
noise that does not act directly to the dominant mode) can lead to stabilization of
the solution of (3).
Near a change of stability, we can depend on the natural separation of time-

scales, in order to derive simpler equations for the evolution of the dominant mode.
As these equations describe the amplitudes of dominant pattern, they are referred
to as amplitude equations. When the order of the noise strength is comparable
to the order of the distance from the change of stability, the degenerate additive
noise is transported via nonlinear interaction to the dominant pattern. Examples
are [2, 3, 7, 8, 9, 14, 15].
The rest of this paper is organized as follows. In Section 2 we state the assump-

tions that we make, while in section 3 give the formal derivation of the amplitude
equation and we state the main theorem. In Section 4 we give bounds for high
modes. In Section 5 we give averaging over the fast OU-process. In Section 6 we
give the proof of the main results for the �rst order estimate. Finally, we study the
Kuramoto-Sivashinsky equation in one dimension with either Dirichlet or periodic
boundary conditions.

2. Assumptions

This section summarizes all assumptions necessary for our results. For the linear
operator A in (3) we assume the following:

Assumption 1. (Linear operator A) Suppose A is a non-positive operator on H
with eigenvalues 0��1�::::��k�::::and �k � Ckm for all su¢ ciently large k, and
a complete orthonormal system of eigenvectors fekg1k=1 such that Aek = ��kek.
Suppose that N := kerA has �nite dimension n with basis (e1; ::::; en). De�ne S =
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N? the orthogonal complement of N in H; and Pc for the projection Pc : H ! N
and de�ne Ps := I � Pc where I is the identity operator on H

As the dimension of N is �nite, it is well known that both Pc and Ps are bounded
linear operators on H (cf. Weidmann[18]).

De�nition 2. For � 2 R, we de�ne the space H� as

H� =

( 1X
k=0


kek :
1X
k=1


2kk
2� <1

)
with norm




 1X
k=1


kek




2
�
=

1X
k=0


2kk
2�:

The operator A given by Assumption 1 generates an analytic semigroup fetAgt�0
de�ned by

eAt
� 1X
k=1


kek

�
=

1X
k=1

e��kt
kek 8 t � 0;

and has the following property for all t > 0, � � �; �n < ! � �n+1and all u 2 H�

etAPsu

� �Mt�
���
m e�!t kPsuk� ; (8)

where M depends only on �, � and !.
For the operator ~L; will be de�ned later in Lemma 9, we assume that:

Assumption 3. (Operator ~L) Let ~L : H� ! H��� for some � 2 [0;m) be a linear
continuous mapping that commutes with Pc and Ps:

Assumption 4. (Bilinear Operator B) With �; � from Assumption 3 let B
be a bounded bilinear mapping from H� � H� to H���. Suppose without loss of
generality that B is symmetric, i.e. B(u; v) = B(v; u); and satis�es PcB(u; u) = 0
for u 2 H:

For the noise we suppose:

Assumption 5. Let W be a cylindrical Wiener process on H. Suppose for t � 0,

W (t) = �k�k(t)ek for one k in fn+ 1; n+ 2:::::g,

where (�k)k are independent, standard Brownian motions in R and (�k)k are real
numbers.

For our result we rely on a cut o¤ argument. We consider only solutions (a;  )
that are not too large, as given by the next de�nition.

De�nition 6. For the N �S-valued stochastic process (a;  ) de�ned later in (11)
we de�ne, for some T0 > 0 and � 2 (0; 17 ); the stopping time �

� as

�� := T0 ^ inf
�
T > 0 : ka(T )k� > "�� or k (T )k� > "��

	
: (9)

De�nition 7. For a real-valued family of processes fX"(t)gt�0 we say X" = O(f"),
if for every p � 1 there exists a constant Cp such that

E sup
t2[0;��]

jX"(t)jp � Cpf
p
" : (10)

We use also the analogous notation for time-independent random variables.
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3. Formal Derivation and Main Result

In this section we present a short formal derivation of the main result We interest
here the studying behavior of solution to (3) on time-scales of order "�2. So, we
split the solution u into

u(t) = "a("2t) + " ("2t) (11)

where a 2 N and  2 S. After rescaling to the slow time-scale T = "2t; we obtain
the following system of equations:

da =
�
Lca+ 2"�1Bc(a;  ) + "�1Bc( ; )

�
dT; (12)

and

d =
�
"�2As + Ls + "�1Bs(a+  ; a+  )

�
dT + "�1�kd ~�k(T )ek ; (13)

where ~�k(T ) := "�k("
�2T ) is a rescaled version of the Brownian motion. Integrat-

ing (12) from 0 to T , yields

a(T ) = a(0) +

Z T

0

Lca(�)d� + 2"�1
Z T

0

Bc(a;  )d� + "
�1
Z T

0

Bc( ; )d�: (14)

In order to remove "�1 from the front of last two terms in the above equation,
we Apply Itô�s formula to Bc(a;A�1s  ) and Bc( kek;  `e`) to obtain, respectively,

"�1
Z T

0

Bc(a;  )d� = "Bc(a(T );A�1s  (T ))� "
Z T

0

Bc(Lca;A�1s  )d�

�"
Z T

0

Bc(a;A�1s Lc )d� �
Z T

0

Bc(a;A�1s Bs(a; a+ 2 ))d�

�
Z T

0

Bc(a;A�1s d ~Ws)�
Z T

0

Bc(a;A�1s Bs( ; ))d�

�
Z T

0

Bc(Bc(2a+  ; );A�1s  )d� (15)

and

"�1
Z T

0

Bc( ; )d� = "
X
`;k

1

(�k + �`)

Z T

0

Bc( kek;  `e`)d�

+"
X
`;k

k4 + `4

(�k + �`)

Z T

0

Bc( kek;  `e`)d�

+
X
`;k

2

(�k + �`)

Z T

0

Bc(B`(a+  ; a+  )e`;  kek)d�

+
X
`;k

2�k
(�k + �`)

Z T

0

Bc( `e`; ek)d
~�k: (16)
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Substituting from (15) and (16) into (14) we obtain

a(T ) = a(0) +

Z T

0

Lcad� +
Z T

0

F(a)d� � 2
Z T

0

Bc(Bc( ; );A�1s  )d�

�4
Z T

0

Bc(Bc(a;  );A�1s  )d� � 4
Z T

0

Bc(a;A�1s Bs(a;  ))d�

�2
Z T

0

Bc(a;A�1s Bs( ; ))d� � 2
Z T

0

Bc(a;A�1s d ~Ws)

+
X
`;k

2

(�k + �`)

Z T

0

Bc(B`(a+  ; a+  )e`;  kek)d�

+
X
`;k

2�k
(�k + �`)

Z T

0

Bc( `e`; ek)d
~�k +O("1�2�): (17)

where the cubic term F(a) is de�ned in (5).
To illustrate our approximation result of Theorem 8 here, we consider the sto-

chastic Kuramoto-Shivashinsky equation (1) with Dirichlet boundary condition on
[0; �] and forced by noise acting on second mode. In this case our main theorem
states that the solution (1) of is given by

u(t; x) = "b("2t) sin(x) + "Z2("2t) sin(2x) +O("2�) ,
where b is the solution of the amplitude equation of Stratonovic type

@T b = (� �
�2

2688
)b� 1

48b
3 +

�

24
b � @T ~�2 ,

with a rescaled standard Brownian motion ~�2.
The main result is:

Theorem 8. ( Approximation) Under Assumptions 1, 3, 4 and 5 let u be a solution
of (3) de�ned in (11) with the initial condition u(0) = "a(0)+ " (0) with a(0) 2 N
and  (0) 2 S where a(0) and  (0) are of order one, and b is a solution of (4) with
b(0) = a(0). Then for all p > 1 and T0 > 0 and all � 2 (0; 17 ), there exists C > 0
such that

P
�

sup
t2[0;"�2T0]




u(t)� "b("2t)� "Q("2t)



�
> "2�8�

�
� C"p; (18)

where
Q(T ) = e"

�2TAs (0) + Zk(T )ek; (19)
with Zk de�ned in (7). We see that the �rst part of (19) decays exponentially fast
on time-scale O("2) and the second part of (19) is small noise (see above).

4. Bounds for the high modes

In next lemma , we will approximate  by the fast Ornstein-Uhlenbeck process
Z as follows

Lemma 9. Under Assumption 1, 3 and 4, there is a constant C > 0 such that,
for � > 0 from the de�nition of �� and p � 1,

E sup
T2[0;��]




 (T )�Q(T )


p
�
� C"p�2p�; (20)

where Q(T ) is de�ned in (19).
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Proof. De�ne

Z(T ) := Zk(T )ek; (21)

where Zk(T ) is de�ned in (7). The mild solution of (13) is

 (T ) = e"
�2TAs (0) +

Z T

0

e"
�2(T��)As [Ls + "�1Bs(a+  ; a+  )] (�) d� + Z(T ):

Let ~A = "�2As and ~Ls = Ps(@
2
x) . So, we can rewrite the above equation as follows

 (T )�Q(T ) = �"2
Z T

0

e(T��)
~A ~A d� �

Z T

0

e(T��)
~A ~Ls d�

+

Z T

0

e(T��)
~ABs(a+  ; a+  )d�

= "2(eT
~A �  )�

Z T

0

e(T��)
~A ~Ls d�

+"�1
Z T

0

e(T��)
~ABs(a+  ; a+  )d� :

Taking the �-norm of both sides and using triangle inequality to obtain




 (T )�Q(T )



�

� "2



eT ~A 





�
+ "2




 



�


Z T

0

e(T��)
~A ~Ls d�





�

+"�1



Z T

0

e(T��)
~ABs(a+  ; a+  )d�





�

� "2�� + I1 + I2;

where we used



eT ~A 





�
�



 




�
and the de�nition of ��: To bound the second

term, we obtain by using (8) and Assumption 3

I1 � C"
2�
m

Z T

0

e�"
�2!(T��)(T � �)�

�
m




 ~Ls (�)



���

d�

� C"
2�
m

Z T

0

e�"
�2!(T��)(T � �)�

�
m k (�)k� d�

� C"2 sup
�2[0;��]

k (�)k�
Z "�2!T

0

e����
�
m d� � C"2��;
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where we used the de�nition of ��. For the third term, we obtain

I2 � C"
2�
m �1

Z T

0

e�"
�2!(T��)(T � �)�

�
m kBs(a (�) +  (�))k��� d�

� C"
2�
m �1

Z T

0

e�"
�2!(T��)(T � �)�

�
m ka (�) +  (�)k2� d�

� C" sup
�2[0;��]

ka (�) +  (�)k2�
Z "�2!T

0

e����
�
m d�

� C"
�
sup
[0;��]

kak2� + sup
[0;��]

k k2�
�

� C"1�2�;

where we used again the de�nition of ��. Combining all results, yields (20): �

Lemma 10. Under Assumption 1 and 5, for every �0 > 0 and p � 1, there is a
constant C; depending on p; �k; �k; �0 and T0; such that

E sup
T2[0;T0]

jZk(T )jp � C"��0 ;

where Zk(T ) is de�ned in (7).

Proof. See the �rst part of the proof of Lemma 14 in [3] with �k = 1: �

The following Corollary states that  (T ) is with high probability much smaller
than "�� as asserted by the De�nition 6 for T � ��. We will show later �� � T0
with high probability (cf. Proof of Theorem 8).

Corollary 11. Under the assumptions of Lemmas 9 and 10, if  (0) = O(1), then
for p > 0 and for all �0 > 0 there exist a constant C > 0 such that

E
�

sup
T2[0;��]

k (T )kp�
�
� C"��0 : (22)

Proof. From (20), by triangle inequality and Lemma 10, we obtain

E
�

sup
T2[0;��]

k (T )kp�
�
� C + C"��0 + C"p�2p�;

for � < 2
3 we obtain (22). �

Lemma 12. If Assumption 1 hold and  (0) = O(1), then for q � 1 there exist a
constant C > 0 such that Z T

0




e�"�2As (0)



q
�
d� � C"2:

Proof. Using (8) we obtainZ T

0




e"�2As� (0)



q
�
d� � c

Z T

0

e�q"
�2!� k (0)kq� d� �

"2

q!
k (0)kq� :

Hence,

E sup
T2[0;T0]

Z T

0




e"�2As� (0)



q
�
d� � C"2:

�
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5. Averaging over the fast OU-process

Lemma 13. Let X be a real valued stochastic process and kX(0)k1 = O("�r) for
r � 0. If dX = GdT , with kGk1 = O("�r), then, for �0 2 (0; 1);Z T

0

XZnk d� =
(n� 1)�2

2

Z T

0

XZn�2k d� +O("1�r�n�0); (23)

and we can write (23) with higher order correction asZ T

0

XZnk d� =
(n� 1)�2

2

Z T

0

XZn�2k d� + "�

Z T

0

XZn�1k d~� +O("2�r�n�0): (24)

Proof. We note �rst that

E sup
[0;T0]

jXjp � CE jX(0)jp + CE sup
[0;T0]

�����
Z T

0

Gd�

�����
p

� C"�pr;

Applying Itô formula to XZnk and integrating from 0 to T in order to obtainZ T

0

XZnk d� =
(n� 1)�2

2

Z T

0

XZn�2k d� + "�

Z T

0

XZn�1k d~�

�"
2

n
X(T )Znk (T ) +

"2

n

Z T

0

GZnk d� :

To prove the �rst part, taking the absolute value and using Burkholder-Davis-
Gundy theorem yields (23). For the second part, we leave the �rst and the second
terms on the right hand side and bound the other terms to obtain (24). �

Remark 14. The above Lemma is true, even if X is a stochastic process in N or
C.

6. Proof of the main result

This section is devoted to the proof of Theorem 8 for the approximation of the
solution (6) of the SPDE (3). Let us �rst derive the amplitude equation of the
Equation (3) with error.

Lemma 15. If Assumptions 1, 4 and 5 hold and  (0) = O(1), then

a(T ) = a(0) +

Z T

0

Lca(�)d� +
Z T

0

F(a(�))d� + 2�
2
k

�2k

Z T

0

Bc(Bc(a; ek); ek)d�

��
2
k

�k

Z T

0

Bc(a;A�1s Bs(ek; ek))d� +
X
` 6=k

�2k
�k(�k + �`)

Bc(B`(a; ek)e`; ek)

+
2�k
�k

Z T

0

Bc(a; ek)d~�k +R(T ); (25)

where

R = O("1�6�); (26)

for � > 0 from the de�nition of ��.
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Proof. From the mild solution of equation (13) and Lemma 9 we obtain

 (T ) = y"(T ) + Z(T ) +O("1�3�); (27)

where
y"(T ) = e"

�2TA�1
s  (0):

Substituting from (27) into (17) and using Assumption 4 to obtain

a(T ) = a(0) +

Z T

0

Lcad� +
Z T

0

F(a)d� � 4
Z T

0

Z2kBc(Bc(a; ek);A�1s ek)d�

�4
Z T

0

ZkBc(a;A�1s Bs(a; ek))d� � 2
Z T

0

Z2kBc(a;A�1s Bs(ek; ek))d�

�2
Z T

0

Bc(a;A�1s d ~Ws) +
X
`

2

(�k + �`)

Z T

0

ZkBc(B`(a; a)e`; ek)d�

+
X
`

4

(�k + �`)

Z T

0

Z2kBc(B`(a; ek)e`; ek)d�

+
X
`

2

(�k + �`)

Z T

0

Z3kBc(B`(ek; ek)e`; ek)d�

+
X
`

2�k
(�k + �`)

Z T

0

Z`Bc(e`; ek)d~�k +R1; (28)

where

R1 = 2"Bc(a(T );A�1s  (T ))� 2"
Z T

0

Bc(Lca;A�1s  )d�

�2"
Z T

0

Bc(a;A�1s Ls )d� � 4
Z T

0

Bc(Bc(Z; y");A�1s Z)d�

�4
Z T

0

Bc(Bc(a; y");A�1s Z)d� � 4
Z T

0

Bc(Bc(a;Z);A�1s y")d�

�4
Z T

0

Bc(Bc(a; y");A�1s y")d� � 4
Z T

0

Bc(a;A�1s Bs(Z; y"))d�

�2
Z T

0

Bc(a;A�1s Bs(y"; y"))d� + "
�1
Z T

0

Bc(2Z + y"; y")d�

+
X
`;k

2�k
(�k + �`)

Z T

0

Bc(B`(hy"; e`i e`; ek)d~�k +O("1�6�): (29)

It is easy to prove that
R1 = O("1�6�): (30)

We note that X
`

2�k
(�k + �`)

Z T

0

Z`Bc(e`; ek)d~�k = 0,

because Z` = �`"
�1 R T

0
e�"

�2�`(T�s)d ~�`(s) contains on �`. So, the above term
contains �` and �k in the same time and one of them equal zero. Using Assumption
3, the de�nition of ��, Lemma 12 and the equivalence of H�-norms on N . Applying
�nally Lemma 13 to (28), we obtain (25). �
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Lemma 16. Let Assumptions 1 and 4, hold. De�ne b(t) in N as the solution of
(4). If the initial condition satis�es E jb(0)jp � C for some p > 1, then for all
T0 > 0 there exists another constant C such that

E sup
T2[0;T0]

jb(T )j2p � C: (31)

Proof. Applying Ito�s formula to jb(T )j2p to get

jb(T )j2p = jb(0)j2p + 2p
Z T

0

jb(T )j2(p�1) hb(s); db(s)i

+p

Z T

0

jb(T )j2(p�1) hdb(s); db(s)i

+2p(p� 1)
Z T

0

jb(T )j2(p�2) hb(s); db(s)i2 :

From (4) we have

jb(T )j2p = jb(0)j2p + 2p
Z T

0

jb(s)j2p�2 hb(s);Lcb(T ) + F(b(s))i ds

+C1

Z T

0

jb(s)j2p�2 hb; Bc(Bc(b; ek); ek)i ds

�C2
Z T

0

jb(s)j2p�2


b; Bc(b;A�1s Bs(ek; ek))

�
ds

+
X
` 6=k

2p�2k
�k(�k + �`)

Z T

0

jb(s)j2p�2 hb; Bc(B`(b; ek)e`; ek)i ds

+C3

Z T

0

jb(s)j2p�2 hb; Bc(b; ek)i d~�k

+C4

Z T

0

jb(s)j2p�2 hBc(b; ek); Bc(b; ek)i ds

+C5

Z T

0

jb(s)j2p�4 hb; Bc(b; ek)i2 ds:

Using Cauchy-Schwarz inequality and Assumption 4, we obtain

jb(T )j2p = jb(0)j2p + C
Z T

0

jb(s)j2p ds� 2p
Z T

0

jb(s)j2p+2 ds

+C

Z T

0

jb(s)j2p+1 ds+ C
Z T

0

jb(s)j2p�1 ds

+C5

Z T

0

jb(s)j2p�2 hb; Bc(b; ek)i d~�k:
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If we use the inequality jb(T )jq � � jb(T )j2p+2 + C�;q;p for q 2 (0; 2p+ 2) ; then

jb(T )j2p = jb(0)j2p + C�;q;pT + C
Z T

0

jb(s)j2p ds� ~C

Z T

0

jb(s)j2p+2 ds

+C6

Z T

0

jb(s)j2p�2 hb; Bc(b; ek)i d~�k

� jb(0)j2p + C�;q;pT + C
Z T

0

jb(s)j2p ds

+C5

Z T

0

jb(s)j2p�2 hb; Bc(b; ek)i d~�k: (32)

Taking the expectations on both sides, yields

E jb(T )j2p � C + C

Z T

0

E jb(s)j2p ds;

where we used E
R T
0
jb(s)j2p�2 hb; Bc(b; ek)i d~�k = 0. Applying now Gronwall�s

lemma to obtain

E jb(T )j2p � C: (33)

Taking expectation after supremum on both sides of (32)

E sup
T2[0;T0]

jb(T )j2p � E jb(0)j2p + C�;q;pT0 + CE sup
T2[0;T0]

Z T

0

jb(s)j2p ds

+C5E sup
T2[0;T0]

Z T

0

jb(s)j2p�2 hb; Bc(b; ek)i d~�k:

Using Burkholder-Davis-Gundy inequality (cf. Theorem A.7 in [1])

E sup
T2[0;T0]

jb(T )j2p � C + C

Z T0

0

E jb(s)j2p ds+ C5E
 Z T0

0

jb(s)j4p ds
!1=2

:

Using our �rst bound (33) on b, yields (31). �

Theorem 17. Assume that Assumptions 1, 4 and 5 hold and suppose a(0) = O(1)
and  (0) = O(1). Let b be a solution of (4) and a as de�ned in (25). If the initial
condition satis�es a(0) = b(0), then for � < 1

7

E sup
T2[0;��]

ja(T )� b(T )j � C"1�7� : (34)

Proof. Subtracting (4) from (25) and de�ning h(T ) := a(T )� b(T ), we obtain

h(T ) =

Z T

0

Lch(�)d� +
Z T

0

F(h)d� + 3
Z T

0

F(h; h; b)d� + 3
Z T

0

F(h; b; b)d�

+
2�2k
�2k

Z T

0

Bc(Bc(h; ek); ek)d� +
X
` 6=k

�2k
�k(�k + �`)

Z T

0

Bc(B`(h; ek)e`; ek)d�

��
2
k

�k

Z T

0

Bc(h;A�1s Bs(ek; ek))d� +
2�k
�k

Z T

0

Bc(h; ek)d~�k +R(T );
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Taking j�j2 on both sides

jh(T )j2 �
Z T

0

jLch(�)j2 d� +
Z T

0

jF(h)j2 d� + 3
Z T

0

jF(h; h; b)j2 d� + 3
Z T

0

jF(h; b; b)j2 d�

+C

Z T

0

jBc(Bc(h; ek); ek)j2 d� +
X
` 6=k

�2k
�k(�k + �`)

Z T

0

jBc(B`(h; ek)e`; ek)j2 d�

+C

Z T

0

��Bc(h;A�1s Bs(ek; ek))
��2 d� + C �����

Z T

0

Bc(h; ek)d~�k

�����
2

+ jR(T )j2 ;

Using Ito isometry and Assumptions 4 to obtain

jh(T )j2 �
Z T

0

jhj6 d� + 3
Z T

0

jbj2 jhj4 d�

+3

Z T

0

jbj4 jhj2 d� + C
Z T

0

jhj2 d� + jR(T )j2

� C

Z T

0

jhj2 d� +
Z T

0

jhj6 d� + C
Z T

0

jhj4 d� + jR(T )j2 ;

where we used (??). As long as jhj � 1, we obtain for T � ��

jh(T )j2 � C

Z T

0

jhj2 d� +
Z T

0

jhj6 d� + C
Z T

0

jhj4 d� :

Using Gronwall�s Lemma, we obtain for T � �� � T0

jh(T )j2 � "2�14�eCT0 � 1;
for " su¢ ciently small as � < 1

7 . Thus

E sup
[0;��]

ja� bj = E sup
[0;��]

jhj � C"1�7� :

�
Now, we can use the results previously obtained to prove the main result of

Theorem 8 for the approximation of the solution (6) of the SPDE (3).

Proof of Theorem 8. For the stopping time, we note that


 � f�� = T0g � f sup
T2[0;T0]

ka(T )k� < "��; sup
T2[0;T0]

k (T )k� < "��g:

Hence

Pf�� < T0g � f sup
[0;��]

kak� > "��; sup
[0;��]

k k� > "��g � C"q���0 ; (35)

where we used Chebychev�s inequality and (22). Now let us turn to the approxi-
mation result. Using (11) and triangle inequality, yields

E sup
T2[0;��]




u("�2T )� "b(T )� "Q(T )



�
� "E sup

[0;��]

ka� bk� + "E sup
[0;��]




 �Q



�
:

From (20) and (34); we obtain

E sup
t2[0;"�2T0]




u(t)� "b("2t)� "Q("2t)



�

= E sup
t2[0;"�2��]




u(t)� "b("2t)� "Q("2t)



�
� C"2�7� :
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Thus

P
�

sup
t2[0;"�2T0]




u(t)� "b("2t)� "Q("2t)



�
> "2�8�

�
� P

�
sup

t2[0;"�2��]




u(t)� "b("2t)� "Q("2t)



�
> "2�8�

�
+ Pf�� < T0g

� 1

"2q�8q�
E
�

sup
t2[0;"�2��]




u(t)� "b("2t)� "Q("2t)


q
�
+ Pf�� < T0g

� C"q� + C"q���0

� C"q���0 ;

where we used again Chebychev�s inequality and (35). Let p = q� � �0; yields
(18). �

7. Amplitude Equation for SK Equation

We consider the Kuramoto-Sivashinsky equation in one dimension with either
Dirichlet or periodic boundary conditions.
First case: Consider (1) with Dirichlet boundary condition on [0; �]. In this

case, we take

H = L2([0; �]); ek(x) =
q

2
� sin(kx) and N = spanfsin(x)g:

If we �x Pc to be theH-orthogonal projection ontoN , then both Pc and Ps commute
with A.
Moreover, all conditions of Assumption 4 are satis�ed with

B(u; v) = � 1
2@x(uv);

as follows:

PcB(u; u) = Pc
�

2 sin(x) cos(x)

�
= 0 for u = 
 sin 2 N ;

and for � = 1
4 and � =

5
4 < m, we obtain

2kB(u; v)kH�1 = k@x(uv)kH�1 � kuvkL2
� CkukL4kvkL4 � Ckuk

H
1
4
kvk

H
1
4
;

where we used Sobolev embedding from H1=4 into L4.
In this case we study two cases depend on the type of the noise:
First case: If the noise acts on the second mode, then our main theorem states

that
u(t; x) = "b("2t) sin(x) + "Z2("2t) sin(2x) +O("2�) ,

where b is the solution of the amplitude equation of Stratonovic type

@T b = (� �
�2

2688
)b� 1

48b
3 +

�

24
b � @T ~�2 ,

with a rescaled standard Brownian motion ~�2. If �
2 > 2688�, then (� � �2

2688 ) < 0,
in this case we can say the degenerate additive noise has the potential to stabilize
the domiant mode.
second case: If the noise takes this form W (t) = ��3(t) sin(3x), then the ampli-

tude equation b solves this deterministic equation

@T b = (� +
�2

104832
)b� 1

48b
3:
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Second case: Consider (1), which statis�es the initial condition (2), with periodic
boundary condition on [0; 2�]. In this case, we take

H = fu 2 L2([0; 2�]) :
Z 2�

0

udx = 0g;

N = spanfsin(x); cos(x)g;

ek(x) =

8<:
q

1
� sin(kx) if k � 0;q
1
� cos(kx) if k < 0;

and

W (t) = ��2(t) sin(2x):

In this case our main theorem states that

u(t; x) = "b1("
2t) sin(x) + "b2("

2t) cos(x) + "Z2("2t) sin(2x) +O("2�);
where b1 and b2 are solutions of the amplitude equation

@T b1 = (� � �2

2688
)b1 � 1

48b1(b
2
1 + b

2
2) +

�

24
b1 � @T ~�2,

@T b2 = (� � �2

2688
)b2 � 1

48b2(b
2
1 + b

2
2)�

�

24
b2 � @T ~�2:
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