# CONVOLUTION PROPERTIES FOR SUBCLASSES OF UNIVALENT FUNCTIONS USING SALAGEAN INTEGRAL OPERATOR 

## R. M. EL-ASHWAH


#### Abstract

Making use of the Salagean integral operator $I^{n}$, we defined subclasses of univalent functions and investigated some convolution properties for these subclasses.


## 1. Introduction

Let $\mathcal{A}$ denote the class of analytic functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, and $S$ is the subclass of $A$ which are univalent.

Let $\Omega$ be the class of functions $w$ analytic in $U$, satisfying $w(0)=0$ and $|w(z)|<$ 1 for all $z \in U$.

If $f(z)$ and $g(z)$ are analytic in $\mathbb{U}$, we say that $f(z)$ is subordinate to $g(z)$, written $f(z) \prec g(z)$ if there exists a Schwarz function $w \in \Omega$, such that $f(z)=$ $g(w(z)), z \in \mathbb{U}$. Furthermore, if the function $g(z)$ is univalent in $\mathbb{U}$, then we have the following equivalence, (cf., e.g., [8]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

For functions $f(z)$ given by (1.1) and $g(z)$ given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

the Hadamard product or convolution of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

[^0]For $f(z) \in A$, Salagean [11] introduced the following differential operator:
$D^{0} f(z)=f(z), D^{1} f(z)=z f^{\prime}(z), \ldots, D^{n} f(z)=D\left(D^{n-1} f(z)\right)(n \in \mathbb{N}=\{1,2, \ldots\})$.
We note that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}=\left(h_{n} * f\right)(z) \quad\left(f \in A ; n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{n}(z)=z+\sum_{k=2}^{\infty} k^{n} z^{k} \quad\left(n \in \mathbb{N}_{0 ;} z \in U\right) \tag{1.5}
\end{equation*}
$$

Also, Salagean [11] introduced the following integral operator:

$$
I^{0} f(z)=f(z), I^{1} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t, \ldots, I^{n} f(z)=I\left(I^{n-1} f(z)\right)(n \in \mathbb{N})
$$

We note that

$$
\begin{equation*}
I^{n} f(z)=z+\sum_{k=2}^{\infty} k^{-n} a_{k} z^{k}=\left(\lambda_{n} * f\right)(z) \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}(z)=z+\sum_{k=2}^{\infty} k^{-n} z^{k} \quad\left(n \in \mathbb{N}_{0 ;} z \in U\right) \tag{1.7}
\end{equation*}
$$

We note that
(i) $I^{-n} f(z)=D^{n} f(z)\left(n \in \mathbb{N}_{0}\right)$ (see [11]) and $I^{-1} f(z)=D f(z)$;
(ii) $\left(\left(h_{n} * \lambda_{n}\right)(z)\right) * f(z)=f(z)\left(n \in \mathbb{N}_{0}\right)$;
(iii) $z\left(I^{n+1} f(z)\right)^{\prime}=I^{n} f(z)\left(n \in \mathbb{N}_{0}\right)$.

With the help of the Salagean integral operator $I^{n}$, we say that a function $f \in A$ is in the class $S^{n}(A, B)(-1 \leq B<A \leq 1)$ if it satisfying the subordination condition:

$$
\begin{equation*}
\frac{I^{n} f(z)}{I^{n+1} f(z)} \prec \frac{1+A z}{1+B z} \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.8}
\end{equation*}
$$

Let $C^{n}(A, B)$ denote the class of the functions $f \in A$ satisfying $z f^{\prime}(z) \in$ $S^{n}(A, B)$. We note that $S^{-1}(A, B)=S^{*}(A, B)$ and $C^{-1}(A, B)=C(A, B)$ (see [4], [6], [7] and [12]).

Denote by $S_{\lambda}^{n}(A, B)$ the class of functions $f \in A$ satisfying the subordination condition:

$$
\begin{equation*}
\frac{1}{\cos \lambda}\left\{e^{i \lambda} \frac{I^{n} f(z)}{I^{n+1} f(z)}-i \sin \lambda\right\} \prec \frac{1+A z}{1+B z} \quad\left(|\lambda|<\frac{\pi}{2} ; n \in \mathbb{N}_{0}\right) \tag{1.9}
\end{equation*}
$$

and let $C_{\lambda}^{n}(A, B)$ be the class of functions $f \in A$ satisfying $z f^{\prime} \in S_{\lambda}^{n}(A, B)$. We note that $S_{\lambda}^{-1}(A, B)=S^{\lambda}(A, B)$ (see Nikitin [9] and Aouf [1] with $\alpha=0$ ) and $C_{\lambda}^{-1}(A, B)=C^{\lambda}(A, B)$ (see Bhoosnurmath and Devadas [2]).

Further, let $M^{n}(A, B)$ be the class of functions $f \in A$ satisfying the subordination condition:

$$
\begin{equation*}
\frac{I^{n} f(z)}{z} \prec \frac{1+A z}{1+B z} \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.10}
\end{equation*}
$$

and $M_{\sigma}^{n}(A, B)(\sigma \geq 0)$ be the class of functions $f \in A$ satisfying the subordination condition:

$$
\begin{equation*}
(1-\sigma) \frac{I^{n} f(z)}{z}+\sigma \frac{I^{n-1} f(z)}{z} \prec \frac{1+A z}{1+B z} \quad\left(n \in \mathbb{N}_{0}\right) \tag{1.11}
\end{equation*}
$$

Evidently, $M_{0}^{0}(A, B)=M(A, B)$ (see Goel and Mehrok [5]).
Also, we note that
(i) $M_{\sigma}^{n}(1-2 \beta,-1)=M_{\sigma}^{n}(\beta)(0 \leq \beta<1)$ the class of functions $f \in A$ satisfying the condition:

$$
\operatorname{Re}\left\{(1-\sigma) \frac{I^{n} f(z)}{z}+\sigma \frac{I^{n-1} f(z)}{z}\right\}>\beta ;
$$

(ii) $M_{\sigma}^{0}(1-2 \beta,-1)=M_{\sigma}(\beta)(0 \leq \beta<1)$ the class of functions $f \in A$ satisfying the condition:

$$
\operatorname{Re}\left\{(1-\sigma) \frac{f(z)}{z}+\sigma f^{\prime}(z)\right\}>\beta
$$

Convolution properties for various subclasses of analytic functions have been obtained by several researchers (see [2], [3], [10], [12], [13]). In this paper, we investigate convolution properties of the classes $S^{n}(A, B), C^{n}(A, B), S_{\lambda}^{n}(A, B), C_{\lambda}^{n}(A, B)$, $M^{n}(A, B)$ and $M_{\sigma}^{n}(A, B)$, respectively, associated with the Salagean integral operator.

## 2. Main Results

Unless otherwise mentioned, we assume throughout this section that $0 \leq \theta<$ $2 \pi, n \in \mathbb{N}_{0}, \sigma \geq 0,-1 \leq B<A \leq 1$ and $\lambda_{n}(z)$ given by (1.7).
Theorem 1. The function $f(z)$ defined by (1.1) is in the class $S^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+C z^{2}}{(1-z)^{2}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

for all $C=C_{\theta}=\frac{e^{-i \theta}+A}{(B-A)}, \theta \in[0,2 \pi)$, and also for $C=-1$.
Proof. First suppose $f(z)$ defined by (1.1) is in the class $S^{n}(A, B)$, we have

$$
\begin{equation*}
\frac{I^{n} f(z)}{I^{n+1} f(z)} \prec \frac{1+A z}{1+B z} \tag{2.2}
\end{equation*}
$$

since the function from the left-hand side of the subordination is analytic in $\mathbb{U}$, it follows $I^{n+1} f(z) \neq 0, z \in \mathbb{U}^{*}=U \backslash\{0\}$, i.e. $\frac{1}{z} I^{n+1} f(z) \neq 0, z \in \mathbb{U}$, this is equivalent to the fact that $(2.1)$ holds for $C=-1$.
From (2.2) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$
\frac{I^{n} f(z)}{I^{n+1} f(z)}=\frac{1+A w(z)}{1+B w(z)} \quad(z \in \mathbb{U})
$$

which is equivalent to

$$
\frac{I^{n} f(z)}{I^{n+1} f(z)} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}} \quad(z \in \mathbb{U} ; 0 \leq \theta<2 \pi)
$$

or

$$
\begin{equation*}
\frac{1}{z}\left\{I^{n} f(z)\left(1+B e^{i \theta}\right)-I^{n+1} f(z)\left(1+A e^{i \theta}\right)\right\} \neq 0 \tag{2.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
I^{n+1} f(z) * \frac{z}{(1-z)}=I^{n+1} f(z) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
I^{n+1} f(z) *\left[\frac{z}{(1-z)^{2}}\right]=I^{n} f(z) \tag{2.5}
\end{equation*}
$$

Now from (2.3),(2.4) and (2.5), we obtain

$$
=\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+C z^{2}}{(1-z)^{2}}\right] \neq 0(z \in \mathbb{U} ; 0 \leq \theta<2 \pi),
$$

which leads to (2.1), which proves the necessary part of Theorem 1.
(ii) Reversely, because the assumption (2.1) holds for $C=-1$, it follows that $\frac{1}{z} I^{n+1} f(z) \neq 0$ for all $z \in \mathbb{U}$, hence the function $\varphi(z)=\frac{I^{n} f(z)}{I^{n+1} f(z)}$ is analytic in $\mathbb{U}$ (i.e. it is regular at $z_{0}=0$, with $\varphi(0)=1$ ).

Since it was shown in the first part of the proof that the assumption (2.1) is equivalent to (2.3), we obtain that

$$
\begin{equation*}
\frac{I^{n} f(z)}{I^{n+1} f(z)} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}} \quad(z \in \mathbb{U} ; \theta \in[0,2 \pi)) \tag{2.6}
\end{equation*}
$$

if we denote

$$
\psi(z)=\frac{1+A z}{1+B z}
$$

the relation (2.6) shows that $\varphi(\mathbb{U}) \cap \psi(\partial \mathbb{U})=\emptyset$. Thus, the simply-connected domain $\varphi(\mathbb{U})$ is included in a connected component of $\mathbb{C} \backslash \psi(\partial \mathbb{U})$. From here, using the fact that $\varphi(0)=\psi(0)$ together with the univalence of the function $\psi$, it follows that $\varphi(z) \prec \psi(z)$, which represents in fact the subordination (2.2), i.e. $f \in S^{n}(A, B)$. Theorem 2. The function $f(z)$ defined by (1.1) is in the class $C^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+(1+2 C) z^{2}}{(1-z)^{3}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{2.7}
\end{equation*}
$$

for all $C=C_{\theta}=\frac{e^{-i \theta}+A}{(B-A)}, \theta \in[0,2 \pi)$, and also for $C=-1$.
Proof. Set

$$
g(z)=\frac{z+C z^{2}}{(1-z)^{2}}
$$

and we note that

$$
\begin{equation*}
z g^{\prime}(z)=\frac{z+(1+2 C) z^{2}}{(1-z)^{3}} \tag{2.8}
\end{equation*}
$$

From the identity $z f^{\prime}(z) * g(z)=f(z) * z g^{\prime}(z)(f, g \in \mathcal{A})$ and the fact that

$$
f(z) \in C^{n}(A, B) \Leftrightarrow z f^{\prime}(z) \in S^{n}(A, B)
$$

The result follows from Theorem 1.
Remark 1. (i) Putting $n=-1$ and $\mathrm{e}^{i \theta}=\varkappa(0 \leq \theta<2 \pi)$ in Theorem 1 , we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 2];
(ii) Putting $n=-1, A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $\mathrm{e}^{-i \theta}=-\varkappa(0 \leq \theta<2 \pi)$ in Theorem 1, we obtain the result obtained by Silverman et al. [13, Theorem 2];
(iii) Putting $n=-1$ and $\mathrm{e}^{i \theta}=\varkappa(0 \leq \theta<2 \pi)$ in Theorem 2, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 1;
(iv) Putting $n=-1, A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $\mathrm{e}^{-i \theta}=-\varkappa(0 \leq \theta<2 \pi)$ in Theorem 2, we obtain the result obtained by Silverman et al. [13, Theorem 1]. Theorem 3. The function $f(z)$ defined by (1.1) is in the class $S_{\lambda}^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+E z^{2}}{(1-z)^{2}}\right] \neq 0(z \in \mathbb{U}) \tag{2.9}
\end{equation*}
$$

for all $E=E_{\theta}=\frac{e^{-i \theta}+e^{-i \lambda}(A \cos \lambda+i B \sin \lambda)}{\left(B-e^{-i \lambda}(A \cos \lambda+i B \sin \lambda)\right.}, \theta \in[0,2 \pi)$, and also for $E=-1$.
Proof. First suppose $f(z)$ defined by (1.1) is in the class $S_{\lambda}^{n}(A, B)$, we have

$$
\begin{equation*}
\frac{1}{\cos \lambda}\left\{e^{i \lambda} \frac{I^{n} f(z)}{I^{n+1} f(z)}-i \sin \lambda\right\} \prec \frac{1+A z}{1+B z} \quad\left(|\lambda|<\frac{\pi}{2} ; n \in \mathbb{N}_{0}\right) \tag{2.10}
\end{equation*}
$$

since the function from the left-hand side of the subordination is analytic in $\mathbb{U}$, it follows $I^{n+1} f(z) \neq 0, z \in \mathbb{U}^{*}=U \backslash\{0\}$, i.e. $\frac{1}{z} I^{n+1} f(z) \neq 0, z \in \mathbb{U}$, this is equivalent to the fact that (2.9) holds for $E=-1$.
From (2.10) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$
\frac{1}{\cos \lambda}\left\{e^{i \lambda} \frac{I^{n} f(z)}{I^{n+1} f(z)}-i \sin \lambda\right\}=\frac{1+A w(z)}{1+B w(z)} \quad(z \in \mathbb{U})
$$

which is equivalent to

$$
\frac{1}{\cos \lambda}\left\{e^{i \lambda} \frac{I^{n} f(z)}{I^{n+1} f(z)}-i \sin \lambda\right\} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}} \quad(z \in \mathbb{U} ; 0 \leq \theta<2 \pi)
$$

or

$$
\begin{equation*}
\frac{1}{z}\left\{e^{i \lambda} I^{n} f(z)\left(1+B e^{i \theta}\right)-I^{n+1} f(z)\left[\left(1+A e^{i \theta}\right) \cos \lambda+i \sin \lambda\left(1+B e^{i \theta}\right)\right]\right\} \neq 0 \tag{2.11}
\end{equation*}
$$

By simplifying (2.11), we obtain (2.9). This completes the proof of Theorem3.
Theorem 4. The function $f(z)$ defined by (1.1) is in the class $C_{\lambda}^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+(1+2 E) z^{2}}{(1-z)^{3}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{2.12}
\end{equation*}
$$

for all $E=E_{\theta}=\frac{e^{-i \theta}+e^{-i \lambda}(A \cos \lambda+i B \sin \lambda)}{\left(B-e^{-i \lambda}(A \cos \lambda+i B \sin \lambda)\right.}, \theta \in[0,2 \pi)$, and also for $E=-1$.
Proof. Set

$$
g(z)=\frac{z+E z^{2}}{(1-z)^{2}}
$$

and we note that

$$
z g^{\prime}(z)=\frac{z+(1+2 E) z^{2}}{(1-z)^{3}}
$$

From the identity $z f \prime(z) * g(z)=f(z) * z g^{\prime}(z)(f, g \in \mathcal{A})$ and the fact that

$$
f(z) \in Q_{\lambda}^{n}(A, B) \Leftrightarrow z f^{\prime}(z) \in S_{\lambda}^{n}(A, B)
$$

The result follows from Theorem 3.
Remark 2. (i) Putting $n=-1$ and $\mathrm{e}^{i \theta}=\varkappa(0 \leq \theta<2 \pi)$ in Theorem 3, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 4];
(ii) Putting $n=-1, A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $\mathrm{e}^{-i \theta}=-\varkappa(0 \leq \theta<2 \pi)$ in Theorem 3, we obtain the result obtained by Silverman et al. [13, Theorem 4];
(iii) Putting $n=-1$ and $\mathrm{e}^{i \theta}=\varkappa(0 \leq \theta<2 \pi)$ in Theorem 4, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 3];
(iv) Putting $n=-1, A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $\mathrm{e}^{-i \theta}=-\varkappa(0 \leq \theta<2 \pi)$ in Theorem 4, we obtain the result obtained by Silverman et al. [13, Theorem 3].
Theorem 5. The function $f(z)$ defined by (1.1) is in the class $M^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z+C\left(2 z^{2}-z^{3}\right)}{(1-z)^{2}}\right] \neq 0 \quad(z \in \mathbb{U}) \tag{2.13}
\end{equation*}
$$

for all $C=C_{\theta}=\frac{e^{-i \theta}+A}{(B-A)}, \theta \in[0,2 \pi)$, and also for $C=-1$.
Proof. First suppose $f(z)$ defined by (1.1) is in the class $M^{n}(A, B)$, we have

$$
\begin{equation*}
\frac{I^{n} f(z)}{z} \prec \frac{1+A z}{1+B z} \tag{2.14}
\end{equation*}
$$

From (2.14) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$
\frac{I^{n} f(z)}{z}=\frac{1+A w(z)}{1+B w(z)} \quad(z \in \mathbb{U})
$$

which is equivalent to

$$
\frac{I^{n} f(z)}{z} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}} \quad(z \in \mathbb{U} ; 0 \leq \theta<2 \pi)
$$

or

$$
\frac{1}{z}\left\{I^{n} f(z)\left(1+B e^{i \theta}\right)-z\left(1+A e^{i \theta}\right)\right\} \neq 0
$$

Since

$$
\frac{1}{z} I^{n+1} f(z) *\left\{\left(1+B e^{i \theta}\right) \frac{z}{(1-z)^{2}}-z\left(1+A e^{i \theta}\right) \frac{(1-z)^{2}}{(1-z)^{2}}\right\} \neq 0
$$

then

$$
=\frac{1}{z}\left[I^{n+1} f(z) * \frac{z+C\left(2 z^{2}-z^{3}\right)}{(1-z)^{2}}\right] \neq 0(z \in \mathbb{U} ; 0 \leq \theta<2 \pi),
$$

which proves Theorem 5
Theorem 6. The function $f(z)$ defined by (1.1) is in the class $M_{\sigma}^{n}(A, B)$ if and only if

$$
\begin{equation*}
\frac{1}{z}\left[\left(f * \lambda_{n+1}\right)(z) * \frac{z[1-(1-2 \sigma) z]\left(1+B e^{i \theta}\right)-z(1-z)^{3}\left(1+A e^{i \theta}\right)}{(1-z)^{3}}\right] \neq 0(z \in \mathbb{U}) . \tag{2.15}
\end{equation*}
$$

Proof. First suppose $f(z)$ defined by (1.1) is in the class $M_{\sigma}^{n}(A, B)$, we have

$$
\begin{equation*}
(1-\sigma) \frac{I^{n} f(z)}{z}+\sigma \frac{I^{n-1} f(z)}{z} \prec \frac{1+A z}{1+B z} \quad\left(\sigma \geq 0 ; n \in \mathbb{N}_{0}\right) \tag{2.16}
\end{equation*}
$$

From (2.16) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$
(1-\sigma) \frac{I^{n} f(z)}{z}+\sigma \frac{I^{n-1} f(z)}{z}=\frac{1+A w(z)}{1+B w(z)} \quad(z \in \mathbb{U})
$$

which is equivalent to

$$
(1-\sigma) \frac{I^{n} f(z)}{z}+\sigma \frac{I^{n-1} f(z)}{z} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}} \quad(z \in \mathbb{U} ; 0 \leq \theta<2 \pi)
$$

or

$$
\frac{1}{z}\left\{\left[(1-\sigma) I^{n} f(z)+\sigma I^{n-1} f(z) f(z)\right]\left(1+B e^{i \theta}\right)-z\left(1+A e^{i \theta}\right)\right\} \neq 0 .
$$

Since

$$
\frac{1}{z}\left(I^{n+1} f(z) *\left\{\left(1+B e^{i \theta}\right)\left[\frac{(1-\sigma) z}{(1-z)^{2}}+\frac{\sigma z(1+z)}{(1-z)^{3}}\right]-z\left(1+A e^{i \theta}\right) \frac{(1-z)^{3}}{(1-z)^{3}}\right\}\right) \neq 0
$$

which proves Theorem 6 .

## Acknowledgments

The author thanks the referees for their comments and suggestions.

## References

[1] M.K. Aouf, Coefficient estimates for a class of spirallike mappings, Soochow J. Math., 16(1990), 231-239.
[2] M. K. Aouf and T.M. Seoudy, Classes of analytic functions related to the Dziok-Srivastava operator, Integral Transforms and Spec. Funct., 22(2011), no. 6, 423-430.
[3] S. S Bhoosunrmath and M. V. Devadas, Subclass of spirallike functions defined by subordination, J. of Analysis, Madras, 4(1996), 173-183.
[4] R.M. Goel and B.S Mehrok, On the coefficients of a subclass of starlike function, Indian J.Pure Appl. Math., 12(1981), 634-647.
[5] R. M. Goel and B. S. Mehrok, A subclass of univalent functions, J. Austral. Soc., Ser. A, 35(1983), 1-17.
[6] W. Janowski, Some extremal problems for certain families of analytic functions, Bull.Polish Acad. Sci., 21(1973), 17-25.
[7] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon Math., 28(1973), 297-226.
[8] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[9] S. V. Nikitin, A class of regular function, current problem in function theory (Russian), Rostov-Gos. Unvi. Rostov-on-Don, 188(1987), 143-147.
[10] K. S. Padmanabhanand M. S. Ganesan, Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math., 15(1984), no. 7, 777-780.
[11] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013(1983), 362-372.
[12] H. Silverman and E.M. Silvia, Subclasses of starlike functions subordinate to convex function, Canad. J. Math., 37(1985), 48-61.
[13] H. Silverman, E. M. Silvia and D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z, 162(1978), 125-130.

Faculty of Science, Damietta University, New Damietta 34517, Egypt
E-mail address: r_elashwah@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 30C45.
    Key words and phrases. Analytic functions, Salagean integral operator, convolution.
    Submitted Sept. 23, 2012. Published Jan. 1, 2013.

