Journal of Fractional Calculus and Applications Vol. 4(3S)(5th. Symposium of Fractional Calculus and Applications group) July 3, 2013, No. 1, pp. 1-7. ISSN: 2090-5858. http://www.fcaj.webs.com/

CONVOLUTION PROPERTIES FOR SUBCLASSES OF UNIVALENT FUNCTIONS USING SALAGEAN INTEGRAL OPERATOR

R. M. EL-ASHWAH

ABSTRACT. Making use of the Salagean integral operator I^n , we defined subclasses of univalent functions and investigated some convolution properties for these subclasses.

1. INTRODUCTION

Let \mathcal{A} denote the class of analytic functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
 (1.1)

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, and S is the subclass of A which are univalent.

Let Ω be the class of functions w analytic in U, satisfying w(0) = 0 and |w(z)| < 1 for all $z \in U$.

If f(z) and g(z) are analytic in \mathbb{U} , we say that f(z) is subordinate to g(z), written $f(z) \prec g(z)$ if there exists a Schwarz function $w \in \Omega$, such that $f(z) = g(w(z)), z \in \mathbb{U}$. Furthermore, if the function g(z) is univalent in \mathbb{U} , then we have the following equivalence, (cf., e.g., [8]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For functions f(z) given by (1.1) and g(z) given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k,$$
 (1.2)

the Hadamard product or convolution of f(z) and g(z) is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
(1.3)

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Salagean integral operator, convolution. Submitted Sept. 23, 2012. Published Jan. 1, 2013.

For $f(z) \in A$, Salagean [11] introduced the following differential operator:

$$D^0 f(z) = f(z), \ D^1 f(z) = z f'(z), ..., \ D^n f(z) = D(D^{n-1} f(z)) \ (n \in \mathbb{N} = \{1, 2, ...\}).$$

We note that

$$D^{n}f(z) = z + \sum_{k=2}^{\infty} k^{n}a_{k}z^{k} = (h_{n} * f)(z) \quad (f \in A; n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}), \quad (1.4)$$

where

$$h_n(z) = z + \sum_{k=2}^{\infty} k^n z^k \quad (n \in \mathbb{N}_0, z \in U).$$
 (1.5)

Also, Salagean [11] introduced the following integral operator:

$$I^{0}f(z) = f(z), \ I^{1}f(z) = \int_{0}^{z} \frac{f(t)}{t} dt, \dots, \ I^{n}f(z) = I(I^{n-1}f(z)) \ (n \in \mathbb{N}).$$

We note that

$$I^{n}f(z) = z + \sum_{k=2}^{\infty} k^{-n} a_{k} z^{k} = (\lambda_{n} * f)(z) \quad (n \in \mathbb{N}_{0}),$$
(1.6)

where

$$\lambda_n(z) = z + \sum_{k=2}^{\infty} k^{-n} z^k \quad (n \in \mathbb{N}_0, z \in U).$$

$$(1.7)$$

We note that

(i) $I^{-n}f(z) = D^n f(z)$ $(n \in \mathbb{N}_0)$ (see [11]) and $I^{-1}f(z) = Df(z)$; (ii) $((h_n * \lambda_n)(z)) * f(z) = f(z)$ $(n \in \mathbb{N}_0)$; (iii) $z(I^{n+1}f(z))' = I^n f(z)$ $(n \in \mathbb{N}_0)$.

With the help of the Salagean integral operator I^n , we say that a function $f \in A$ is in the class $S^n(A, B)$ $(-1 \leq B < A \leq 1)$ if it satisfying the subordination condition:

$$\frac{I^n f(z)}{I^{n+1} f(z)} \prec \frac{1+Az}{1+Bz} \quad (n \in \mathbb{N}_0).$$

$$(1.8)$$

Let $C^n(A, B)$ denote the class of the functions $f \in A$ satisfying $zf'(z) \in S^n(A, B)$. We note that $S^{-1}(A, B) = S^*(A, B)$ and $C^{-1}(A, B) = C(A, B)$ (see [4], [6], [7] and [12]).

Denote by $S_{\lambda}^n(A, B)$ the class of functions $f \in A$ satisfying the subordination condition:

$$\frac{1}{\cos\lambda} \left\{ e^{i\lambda} \frac{I^n f(z)}{I^{n+1} f(z)} - i \sin\lambda \right\} \prec \frac{1+Az}{1+Bz} \quad (|\lambda| < \frac{\pi}{2}; n \in \mathbb{N}_0), \tag{1.9}$$

and let $C_{\lambda}^{n}(A, B)$ be the class of functions $f \in A$ satisfying $zf' \in S_{\lambda}^{n}(A, B)$. We note that $S_{\lambda}^{-1}(A, B) = S^{\lambda}(A, B)$ (see Nikitin [9] and Aouf [1] with $\alpha = 0$) and $C_{\lambda}^{-1}(A, B) = C^{\lambda}(A, B)$ (see Bhoosnurmath and Devadas [2]).

Further, let $M^n(A, B)$ be the class of functions $f \in A$ satisfying the subordination condition:

$$\frac{I^n f(z)}{z} \prec \frac{1+Az}{1+Bz} \quad (n \in \mathbb{N}_0), \tag{1.10}$$

JFCA-2013/4

and $M_{\sigma}^{n}(A, B)$ ($\sigma \geq 0$) be the class of functions $f \in A$ satisfying the subordination condition:

$$(1-\sigma)\frac{I^n f(z)}{z} + \sigma \frac{I^{n-1} f(z)}{z} \prec \frac{1+Az}{1+Bz} \quad (n \in \mathbb{N}_0).$$
(1.11)

Evidently, $M_0^0(A, B) = M(A, B)$ (see Goel and Mehrok [5]).

Also, we note that

(i) $M_{\sigma}^{n}(1-2\beta,-1) = M_{\sigma}^{n}(\beta)(0 \le \beta < 1)$ the class of functions $f \in A$ satisfying the condition:

$$Re\left\{(1-\sigma)\frac{I^n f(z)}{z} + \sigma \frac{I^{n-1} f(z)}{z}\right\} > \beta;$$

(ii) $M^0_{\sigma}(1-2\beta,-1) = M_{\sigma}(\beta)(0 \le \beta < 1)$ the class of functions $f \in A$ satisfying the condition:

$$Re\left\{(1-\sigma)\frac{f(z)}{z}+\sigma f'(z)\right\} > \beta.$$

Convolution properties for various subclasses of analytic functions have been obtained by several researchers (see [2], [3], [10], [12], [13]). In this paper, we investigate convolution properties of the classes $S^n(A, B)$, $C^n(A, B)$, $S^n_{\lambda}(A, B)$, $C^n_{\lambda}(A, B)$, $M^n(A, B)$ and $M^n_{\sigma}(A, B)$, respectively, associated with the Salagean integral operator.

2. Main Results

Unless otherwise mentioned, we assume throughout this section that $0 \le \theta < 2\pi, n \in \mathbb{N}_0, \sigma \ge 0, -1 \le B < A \le 1$ and $\lambda_n(z)$ given by (1.7). Theorem 1. The function f(x) defined by (1.1) is in the close $S^n(A, B)$ if and

Theorem 1. The function f(z) defined by (1.1) is in the class $S^n(A, B)$ if and only if

$$\frac{1}{z}\left[\left(f*\lambda_{n+1}\right)(z)*\frac{z+Cz^2}{\left(1-z\right)^2}\right]\neq 0 \quad (z\in\mathbb{U})$$
(2.1)

for all $C = C_{\theta} = \frac{e^{-i\theta} + A}{(B - A)}, \ \theta \in [0, 2\pi)$, and also for C = -1.

Proof. First suppose f(z) defined by (1.1) is in the class $S^{n}(A, B)$, we have

$$\frac{I^n f(z)}{I^{n+1} f(z)} \prec \frac{1 + Az}{1 + Bz},$$
(2.2)

since the function from the left-hand side of the subordination is analytic in \mathbb{U} , it follows $I^{n+1}f(z) \neq 0, z \in \mathbb{U}^* = U \setminus \{0\}$, *i.e.* $\frac{1}{z}I^{n+1}f(z) \neq 0, z \in \mathbb{U}$, this is equivalent to the fact that (2.1) holds for C = -1.

From (2.2) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$\frac{I^n f(z)}{I^{n+1} f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)} \quad (z \in \mathbb{U}),$$

which is equivalent to

$$\frac{I^n f(z)}{I^{n+1} f(z)} \neq \frac{1 + A e^{i\theta}}{1 + B e^{i\theta}} \quad (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

or

$$\frac{1}{z} \{ I^n f(z)(1 + Be^{i\theta}) - I^{n+1} f(z)(1 + Ae^{i\theta}) \} \neq 0.$$
(2.3)

Since

$$I^{n+1}f(z) * \frac{z}{(1-z)} = I^{n+1}f(z)$$
(2.4)

and

$$I^{n+1}f(z) * \left[\frac{z}{(1-z)^2}\right] = I^n f(z)$$
 (2.5)

Now from (2.3), (2.4) and (2.5), we obtain

$$= \frac{1}{z} \left[(f * \lambda_{n+1}) (z) * \frac{z + Cz^2}{(1-z)^2} \right] \neq 0 \ (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

which leads to (2.1), which proves the necessary part of Theorem 1.

(ii) Reversely, because the assumption (2.1) holds for C = -1, it follows that $\frac{1}{z}I^{n+1}f(z) \neq 0$ for all $z \in \mathbb{U}$, hence the function $\varphi(z) = \frac{I^n f(z)}{I^{n+1}f(z)}$ is analytic in \mathbb{U} (i.e. it is regular at $z_0 = 0$, with $\varphi(0) = 1$).

Since it was shown in the first part of the proof that the assumption (2.1) is equivalent to (2.3), we obtain that

$$\frac{I^n f(z)}{I^{n+1} f(z)} \neq \frac{1 + Ae^{i\theta}}{1 + Be^{i\theta}} \quad (z \in \mathbb{U}; \theta \in [0, 2\pi)),$$

$$(2.6)$$

if we denote

$$\psi(z) = \frac{1+Az}{1+Bz},$$

the relation (2.6) shows that $\varphi(\mathbb{U}) \cap \psi(\partial \mathbb{U}) = \emptyset$. Thus, the simply-connected domain $\varphi(\mathbb{U})$ is included in a connected component of $\mathbb{C} \setminus \psi(\partial \mathbb{U})$. From here, using the fact that $\varphi(0) = \psi(0)$ together with the univalence of the function ψ , it follows that $\varphi(z) \prec \psi(z)$, which represents in fact the subordination (2.2), i.e. $f \in S^n(A, B)$. **Theorem 2.** The function f(z) defined by (1.1) is in the class $C^n(A, B)$ if and only if

$$\frac{1}{z} \left[\left(f * \lambda_{n+1} \right) (z) * \frac{z + (1+2C)z^2}{(1-z)^3} \right] \neq 0 \quad (z \in \mathbb{U})$$
(2.7)

for all $C = C_{\theta} = \frac{e^{-i\theta} + A}{(B - A)}, \ \theta \in [0, 2\pi)$, and also for C = -1. **Proof.** Set

$$g(z) = \frac{z + Cz^2}{(1-z)^2}$$

and we note that

$$zg'(z) = \frac{z + (1 + 2C)z^2}{(1 - z)^3}.$$
(2.8)

From the identity zf'(z) * g(z) = f(z) * zg'(z) $(f, g \in \mathcal{A})$ and the fact that

$$f(z) \in C^{n}(A, B) \iff zf'(z) \in S^{n}(A, B).$$

The result follows from Theorem 1.

Remark 1. (i) Putting n = -1 and $e^{i\theta} = \varkappa (0 \le \theta < 2\pi)$ in Theorem 1, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 2];

JFCA-2013/4

(ii) Putting $n = -1, A = 1 - 2\alpha$ ($0 \le \alpha < 1$), B = -1 and $e^{-i\theta} = -\varkappa (0 \le \theta < 2\pi)$ in Theorem 1, we obtain the result obtained by Silverman et al. [13, Theorem 2];

(iii) Putting n = -1 and $e^{i\theta} = \varkappa (0 \le \theta < 2\pi)$ in Theorem 2, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 1;

(iv) Putting $n = -1, A = 1 - 2\alpha$ ($0 \le \alpha < 1$), B = -1 and $e^{-i\theta} = -\varkappa (0 \le \theta < 2\pi)$ in Theorem 2, we obtain the result obtained by Silverman et al. [13, Theorem 1]. **Theorem 3.** The function f(z) defined by (1.1) is in the class $S^n_{\lambda}(A, B)$ if and only if

$$\frac{1}{z}\left[\left(f*\lambda_{n+1}\right)\left(z\right)*\frac{z+Ez^{2}}{\left(1-z\right)^{2}}\right]\neq0\ (z\in\mathbb{U})\,,\tag{2.9}$$

for all $E = E_{\theta} = \frac{e^{-i\theta} + e^{-i\lambda}(A\cos\lambda + iB\sin\lambda)}{(B - e^{-i\lambda}(A\cos\lambda + iB\sin\lambda))}, \ \theta \in [0, 2\pi)$, and also for E = -1. **Proof.** First suppose f(z) defined by (1.1) is in the class $S_{\lambda}^{n}(A, B)$, we have

1 ($I^n f(x)$) $1 \perp A$

$$\frac{1}{\cos\lambda} \left\{ e^{i\lambda} \frac{I^{*}f(z)}{I^{n+1}f(z)} - i\sin\lambda \right\} \prec \frac{1+Az}{1+Bz} \quad (|\lambda| < \frac{\pi}{2}; n \in \mathbb{N}_0),$$
(2.10)

since the function from the left-hand side of the subordination is analytic in \mathbb{U} , it follows $I^{n+1}f(z) \neq 0, z \in \mathbb{U}^* = U \setminus \{0\}, i.e. \frac{1}{z} I^{n+1}f(z) \neq 0, z \in \mathbb{U}$, this is equivalent to the fact that (2.9) holds for E = -1.

From (2.10) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$\frac{1}{\cos\lambda}\left\{e^{i\lambda}\frac{I^nf(z)}{I^{n+1}f(z)} - i\sin\lambda\right\} = \frac{1+Aw(z)}{1+Bw(z)} \quad (z \in \mathbb{U}),$$

which is equivalent to

$$\frac{1}{\cos\lambda} \left\{ e^{i\lambda} \frac{I^n f(z)}{I^{n+1} f(z)} - i \sin\lambda \right\} \neq \frac{1 + A e^{i\theta}}{1 + B e^{i\theta}} \quad (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

or

$$\frac{1}{z} \{ e^{i\lambda} I^n f(z) (1 + Be^{i\theta}) - I^{n+1} f(z) [(1 + Ae^{i\theta}) \cos \lambda + i \sin \lambda (1 + Be^{i\theta})] \} \neq 0.$$
(2.11)

By simplifying (2.11), we obtain (2.9). This completes the proof of Theorem 3. **Theorem 4.** The function f(z) defined by (1.1) is in the class $C^n_{\lambda}(A, B)$ if and only if

$$\frac{1}{z} \left[\left(f * \lambda_{n+1} \right) (z) * \frac{z + (1+2E)z^2}{(1-z)^3} \right] \neq 0 \quad (z \in \mathbb{U})$$

$$(2.12)$$

for all $E = E_{\theta} = \frac{e^{-i\theta} + e^{-i\lambda}(A\cos\lambda + iB\sin\lambda)}{(B - e^{-i\lambda}(A\cos\lambda + iB\sin\lambda))}, \ \theta \in [0, 2\pi)$, and also for E = -1. Proof. Set

$$g(z) = \frac{z + Ez^2}{(1-z)^2},$$

and we note that

$$zg'(z) = \frac{z + (1 + 2E)z^2}{(1 - z)^3}.$$

From the identity zf'(z) * q(z) = f(z) * zq'(z) $(f, q \in \mathcal{A})$ and the fact that $f(z) \in Q_{\lambda}^{n}(A, B) \Leftrightarrow zf'(z) \in S_{\lambda}^{n}(A, B)$.

The result follows from Theorem 3.

Remark 2. (i) Putting n = -1 and $e^{i\theta} = \varkappa (0 \le \theta < 2\pi)$ in Theorem 3, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 4];

(ii) Putting n = -1, $A = 1-2\alpha$ ($0 \le \alpha < 1$), B = -1 and $e^{-i\theta} = -\varkappa (0 \le \theta < 2\pi)$ in Theorem 3, we obtain the result obtained by Silverman et al. [13, Theorem 4];

(iii) Putting n = -1 and $e^{i\theta} = \varkappa (0 \le \theta < 2\pi)$ in Theorem 4, we obtain the result obtained by Padmanabhan and Ganesan [10, Theorem 3];

(iv) Putting n = -1, $A = 1-2\alpha$ ($0 \le \alpha < 1$), B = -1 and $e^{-i\theta} = -\varkappa (0 \le \theta < 2\pi)$ in Theorem 4, we obtain the result obtained by Silverman et al. [13, Theorem 3]. **Theorem 5**. The function f(z) defined by (1.1) is in the class $M^n(A, B)$ if and only if

$$\frac{1}{z} \left[(f * \lambda_{n+1}) (z) * \frac{z + C(2z^2 - z^3)}{(1-z)^2} \right] \neq 0 \ (z \in \mathbb{U}),$$
(2.13)

for all $C = C_{\theta} = \frac{e^{-i\theta} + A}{(B - A)}, \ \theta \in [0, 2\pi)$, and also for C = -1.

Proof. First suppose f(z) defined by (1.1) is in the class $M^{n}(A, B)$, we have

$$\frac{I^n f(z)}{z} \prec \frac{1+Az}{1+Bz}.$$
(2.14)

From (2.14) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$\frac{I^n f(z)}{z} = \frac{1 + Aw(z)}{1 + Bw(z)} \quad (z \in \mathbb{U}),$$

which is equivalent to

$$\frac{I^n f(z)}{z} \neq \frac{1 + A e^{i\theta}}{1 + B e^{i\theta}} \quad (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

or

$$\frac{1}{z} \{ I^n f(z)(1 + Be^{i\theta}) - z(1 + Ae^{i\theta}) \} \neq 0.$$

Since

$$\frac{1}{z}I^{n+1}f(z) * \left\{ (1 + Be^{i\theta})\frac{z}{(1-z)^2} - z(1 + Ae^{i\theta})\frac{(1-z)^2}{(1-z)^2} \right\} \neq 0$$

then

$$= \frac{1}{z} \left[I^{n+1} f(z) * \frac{z + C(2z^2 - z^3)}{(1-z)^2} \right] \neq 0 \ (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

which proves Theorem 5

Theorem 6. The function f(z) defined by (1.1) is in the class $M_{\sigma}^{n}(A, B)$ if and only if

$$\frac{1}{z} \left[\left(f * \lambda_{n+1} \right) (z) * \frac{z [1 - (1 - 2\sigma)z] (1 + Be^{i\theta}) - z(1 - z)^3 (1 + Ae^{i\theta})}{(1 - z)^3} \right] \neq 0 \ (z \in \mathbb{U}).$$
(2.15)

Proof. First suppose f(z) defined by (1.1) is in the class $M_{\sigma}^{n}(A, B)$, we have

$$(1-\sigma)\frac{I^n f(z)}{z} + \sigma \frac{I^{n-1} f(z)}{z} \prec \frac{1+Az}{1+Bz} \quad (\sigma \ge 0; n \in \mathbb{N}_0).$$
(2.16)

 $\mathbf{6}$

JFCA-2013/4

From (2.16) according to the subordination of two functions we say that there exists a function $w(z) \in \Omega$, such that

$$(1-\sigma)\frac{I^n f(z)}{z} + \sigma \frac{I^{n-1} f(z)}{z} = \frac{1+Aw(z)}{1+Bw(z)} \quad (z \in \mathbb{U})$$

which is equivalent to

$$(1-\sigma)\frac{I^n f(z)}{z} + \sigma \frac{I^{n-1} f(z)}{z} \neq \frac{1 + Ae^{i\theta}}{1 + Be^{i\theta}} \quad (z \in \mathbb{U}; 0 \le \theta < 2\pi),$$

or

$$\frac{1}{z}\{[(1-\sigma)I^n f(z) + \sigma I^{n-1} f(z)f(z)](1+Be^{i\theta}) - z(1+Ae^{i\theta})\} \neq 0.$$

Since

$$\frac{1}{z} \left(I^{n+1} f(z) * \left\{ (1 + Be^{i\theta}) \left[\frac{(1 - \sigma)z}{(1 - z)^2} + \frac{\sigma z(1 + z)}{(1 - z)^3} \right] - z(1 + Ae^{i\theta}) \frac{(1 - z)^3}{(1 - z)^3} \right\} \right) \neq 0$$

which proves Theorem 6.

Acknowledgments

The author thanks the referees for their comments and suggestions.

References

- M.K. Aouf, Coefficient estimates for a class of spirallike mappings, Soochow J. Math., 16(1990), 231-239.
- [2] M. K. Aouf and T.M. Seoudy, Classes of analytic functions related to the Dziok-Srivastava operator, Integral Transforms and Spec. Funct., 22(2011), no. 6, 423–430.
- [3] S. S. Bhoosunrmath and M. V. Devadas, Subclass of spirallike functions defined by subordination, J. of Analysis, Madras, 4(1996), 173-183.
- [4] R.M. Goel and B.S Mehrok, On the coefficients of a subclass of starlike function, Indian J.Pure Appl. Math., 12(1981), 634-647.
- [5] R. M. Goel and B. S. Mehrok , A subclass of univalent functions, J. Austral. Soc., Ser. A, 35(1983), 1-17.
- [6] W. Janowski, Some extremal problems for certain families of analytic functions, Bull.Polish Acad. Sci., 21(1973), 17-25.
- [7] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon Math., 28(1973), 297-226.
- [8] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [9] S. V. Nikitin, A class of regular function, current problem in function theory (Russian), Rostov-Gos. Unvi. Rostov-on-Don, 188(1987), 143-147.
- [10] K. S. Padmanabhanand M. S. Ganesan, Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math., 15(1984), no. 7, 777-780.
- [11] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag), 1013(1983), 362–372.
- [12] H. Silverman and E.M. Silvia, Subclasses of starlike functions subordinate to convex function, Canad. J. Math., 37(1985), 48-61.
- [13] H. Silverman, E. M. Silvia and D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z, 162(1978), 125-130.

FACULTY OF SCIENCE, DAMIETTA UNIVERSITY, NEW DAMIETTA 34517, EGYPT $E\text{-mail} address: r_elashwah@yahoo.com$