DIFFERENTIAL SUBORDINATION ASSOCIATED WITH AN EXTENDED FRACTIONAL DIFFERENTIAL OPERATOR

A.O.MOSTAFA

Abstract

In this paper we obtain certain sufficient conditions for multivalent functions defined by using an extended fractional differential operator.

1. Introduction

Let $A(p)$ denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in N=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z:|z|<1\}$. Let also that $A=A(1)$. Recently, several authors ([1], [3] and [4]) obtained suffecient conditions associated with starlikeness in terms of the expression

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}
$$

In fact, Ravichandran [8] obtained the following results:
Theorem A [8, Theorem 3]. Let q be convex univalent function and $0<\alpha \leq 1$,

$$
\operatorname{Re}\left\{\frac{1-\alpha}{\alpha}+2 q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0
$$

If $f \in A$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)} \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z)
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z)
$$

and q is the best dominant.

Key words and phrases. Multivalent functions, subordination, extended fractional differential operator, Hadamard products.

Theorem B [8, Theorem 4]. Let q be analytic in $U, q(0)=1$ and $h(z)=$ $z q^{\prime}(z) / q(z)$ be starlike univalent in U. If $f \in A$ satisfies

$$
\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-2 \frac{z f^{\prime}(z)}{f(z)} \prec h(z)
$$

then

$$
\frac{z^{2} f^{\prime}(z)}{\{f(z)\}^{2}} \prec q(z)
$$

and q is the best dominant.
For two functions f given by (1) and $g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k}$, the Hadamard product (or convolution) of f and g is given by

$$
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} a_{k} z^{k}=(g * f)(z)
$$

Various operators of the fractional calculus (that is, fractional derivative and fractional integral) has been studied, we find it convenient to restrict ourselves to the following definitions used recently by Owa [5] and Owa and Srivastava [6].

Definition 1. The fractional integral of order λ is defined for the function $f(z)$ by

$$
\begin{equation*}
D_{z}^{-\lambda} f(z)=\frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(t)}{(z-t)^{1-\lambda}} d t \quad(\lambda>0) \tag{it2}
\end{equation*}
$$

where $f(z)$ is analytic in a simply connected region containing the origin and multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

Definition 2. The fractional derivative of order λ is defined for the function $f(z)$ by

$$
\begin{equation*}
D_{z}^{\lambda} f(z)=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\lambda}} d t \tag{it3}
\end{equation*}
$$

where $0 \leq \lambda<1, f(z)$ is analytic in a simply connected region containing the origin and multiplicity of $(z-t)^{-\lambda}$ is removed as in Definition 1.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order $n+\lambda$ is defined for a function $f(z)$ by

$$
\begin{equation*}
D_{z}^{n+\lambda} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\lambda} f(z) \quad\left(0 \leq \lambda<1 ; n \in N_{0}=N \cup\{0\}\right) \tag{it4}
\end{equation*}
$$

For functions $f(z)$ in the form (1), Patel and Mishra [7] defined the extended fractional differintegral operator $\Omega_{z}^{(\lambda, p)}: A(p) \rightarrow A(p)$ by

$$
\begin{align*}
\Omega_{z}^{(\lambda, p)} f(z) & =\frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} D_{z}^{\lambda} f(z) \\
& =z^{p}+\sum_{k=p+1}^{\infty} \frac{\Gamma(k+1) \Gamma(p+1-\lambda)}{\Gamma(p+1) \Gamma(k+1-\lambda)} a_{k} z^{k} \\
& =z^{p}{ }_{2} F_{1}(1, p+1 ; p+1-\lambda ; z) * f(z) \quad(z \in U ;-\infty<\lambda<p+1) \tag{5}
\end{align*}
$$

where ${ }_{2} F_{1}$ is the Gaussian hypergeometric function defined by:

$$
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k} \quad\left(a, b, c \in C ; c \notin Z_{0}=\{0,-1,-2, \ldots\}\right),
$$

and $(d)_{k}$ is the Pochhammer symbol given in terms of the Gamma function by:

$$
(d)_{k}= \begin{cases}1 & (k=0 ; d \in C \backslash\{0\}) \\ d(d+1) \ldots(d+k-1) & (k \in N ; d \in C)\end{cases}
$$

We note that ${ }_{2} F_{1}$ represents an analytic function in U (see for details $[11, \mathrm{Ch}$. 14]).
It is easily seen from (5) that

$$
\begin{equation*}
z\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\prime}=(p-\lambda) \Omega_{z}^{(\lambda+1), p} f(z)+\lambda \Omega_{z}^{(\lambda, p)} f(z) \quad(z \in U ;-\infty \leq \lambda<p) . \tag{6}
\end{equation*}
$$

We also note that:

$$
\Omega_{z}^{(0, p)} f(z)=f(z) \quad \text { and } \quad \Omega_{z}^{(1, p)} f(z)=\frac{z f^{\prime}(z)}{p}
$$

The fractional differential operator $\Omega_{z}^{(\lambda, p)} f(z)$ with $0 \leq \lambda<1$ was investigated by Srivastava and Aouf [10].

In this paper, we present extension of the results of Ravichandran [8] for functions defined through the extended fractional differential operator $\Omega_{z}^{(\lambda, p)} f(z)$.

2. Definitions and Preliminaries

In the present paper, we shall need the following Lemmas:
Lemma 1 [2]. Let q be univalent in the unit disc U. Let φ be analytic in a domain containing $q(U)$. If $z q^{\prime}(z) / \varphi(q(z))$ is starlike, then

$$
z \psi^{\prime}(z) \varphi(\psi(z)) \prec z q^{\prime}(z) \varphi(q(z)) \quad(z \in U)
$$

then $\psi(z) \prec q(z)$ and q is the best dominant.
Lemma 2 [9]. If p and q are analytic in U, q is convex univalent, α, β and γ are complex and $\gamma \neq 0$. Further assume that

$$
\operatorname{Re}\left\{\frac{\alpha}{\gamma}+\frac{2 \beta}{\gamma} q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0
$$

If $p(z)=1+c z+c_{2} z^{2}+\ldots$ is analytic in U and satisfies

$$
\alpha p(z)+\beta p^{2}(z)+\gamma z p^{\prime}(z) \prec \alpha q(z)+\beta q^{2}(z)+\gamma z q^{\prime}(z)
$$

then $p(z) \prec q(z)$ and q is the best dominant.

3. Main Results

Theorem 1. Let q be convex univalent, $\alpha \neq 0 ; 0 \leq \lambda<p-1 ; p>1$. Further assume that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(p-\lambda)(1-\alpha)-1}{\alpha}+2(p-\lambda) q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0 \tag{it7}
\end{equation*}
$$

If $f \in A(p)$ satisfies

$$
\begin{gather*}
\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)}\left\{1-\alpha+\frac{\Omega_{z}^{(\lambda+2, p)} f(z)}{\Omega_{z}^{(\lambda+1, p)} f(z)}\right\} \\
\prec\left[\frac{(p-\lambda)(1-\alpha)-1}{p-\lambda-1}\right] q(z)+\frac{\alpha(p-\lambda)}{p-\lambda-1} q^{2}(z)+\frac{\alpha}{p-\lambda-1} z q^{\prime}(z), \tag{it8}
\end{gather*}
$$

then

$$
\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)} \prec q(z)
$$

and q is the best dominant.
Proof. Define a function Φ by

$$
\begin{equation*}
\Phi(z)=\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)} \quad(z \in U) \tag{9}
\end{equation*}
$$

Then the function Φ is analytic in U and $\Phi(0)=1$. Therefore, differentiating (9) logarithmically with respect to z and using the identity (6) in the resulting equation, we have

$$
\begin{equation*}
\frac{\Omega_{z}^{(\lambda+2, p)} f(z)}{\Omega_{z}^{\lambda+1, p} f(z)}=\frac{1}{p-1-\lambda}\left\{\frac{z \Phi^{\prime}(z)}{\Phi(z)}+(p-\lambda) \Phi(z)-1\right\} \tag{10}
\end{equation*}
$$

Therefore from (10), we have
$\frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)}\left\{1-\alpha+\frac{\Omega_{z}^{(\lambda+2, p)} f(z)}{\Omega_{z}^{(\lambda+1, p)} f(z)}\right\}=\left[\frac{(p-\lambda)(1-\alpha)-1}{p-\lambda-1}\right] \Phi(z)+\frac{\alpha(p-\lambda)}{p-\lambda-1} \Phi^{2}(z)+\frac{\alpha}{p-\lambda-1} z \Phi^{\prime}(z)$.
Using (11) in (8), we have

$$
\begin{aligned}
& {\left[\frac{(p-\lambda)(1-\alpha)-1}{p-\lambda-1}\right] \Phi(z)+\frac{\alpha(p-\lambda)}{p-\lambda-1} \Phi^{2}(z)+\frac{\alpha}{p-\lambda-1} z \Phi^{\prime}(z)} \\
& \prec\left[\frac{(p-\lambda)(1-\alpha)-1}{p-\lambda-1}\right] q(z)+\frac{\alpha(p-\lambda)}{p-\lambda-1} q^{2}(z)+\frac{\alpha}{p-\lambda-1} z q^{\prime}(z) .
\end{aligned}
$$

Hence the result now follows by using Lemma 2.
Theorem 2. Let q be univalent in $U, q(0)=1$. Let $\frac{z q^{\prime}(z)}{q(z)}$ be starlike univalent in $U ; 0 \leq \lambda<p-1, p>1$. If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
(p-1-\lambda) \frac{\Omega_{z}^{(\lambda+2, p)} f(z)}{\Omega_{z}^{(\lambda+1, p)} f(z)}-\alpha(p-\lambda) \frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)} \prec \frac{z q^{\prime}(z)}{q(z)}+(1-\alpha)(1-\lambda)-1 \tag{it12}
\end{equation*}
$$

then

$$
\frac{z^{\alpha-1} \Omega_{z}^{(\lambda+1, p)} f(z)}{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\alpha}} \prec q(z)
$$

and q is the best dominant.
Proof. Define a function ϕ by

$$
\begin{equation*}
\phi(z)=\frac{z^{\alpha-1} \Omega_{z}^{(\lambda+1, p)} f(z)}{\left(\Omega_{z}^{(\lambda, p)} f(z)\right)^{\alpha}} \quad(z \in U) \tag{13}
\end{equation*}
$$

By a simple computation from (13), we have

$$
\begin{equation*}
(p-1-\lambda) \frac{\Omega_{z}^{(\lambda+2, p)} f(z)}{\Omega_{z}^{(\lambda+1, p)} f(z)}-\alpha(p-\lambda) \frac{\Omega_{z}^{(\lambda+1, p)} f(z)}{\Omega_{z}^{(\lambda, p)} f(z)}=\frac{z \phi^{\prime}(z)}{\phi(z)}+(1-\alpha)(1-\lambda)-1 \tag{14}
\end{equation*}
$$

By using (14) in (12), we have

$$
\frac{z \phi^{\prime}(z)}{\phi(z)} \prec \frac{z q^{\prime}(z)}{q(z)}
$$

and the result follows by an application of Lemma 1.

References

[1] J. -L. Li and S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math. 33 (2002), no. 3, 313-318.
[2] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[3] M. Nunokawa S. Owa, S. K. Lee, M. Obradovic, M. K. Aouf, H. Saitoh, A. Ikeda and N. Koike, Sufficient conditions for starlikeness, Chinese J. Math. 24 (1996), 265-271.
[4] M. Obradovic, S. B. Joshi and I. Jovanovic, On certain sufficient conditions for starlikeness and convexity, Indian J. Pure Appl. Math. 29 (1998), no. 3, 271-275.
[5] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18, (1978), 53-59.
[6] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
[7] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007), 109-122.
[8] V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci. 12 (2004), no., 1, 4l-51.
[9] V. Ravichandran, M. Darus, M. H. Khan and K. G. Subramanian, Differential subordination associated with linear operators defined for multivalent functions, Acta Math. Vietnamica, 30 (2005), no. 2, 113-121.
[10] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and applications to a new class of analytic and multivalent functions with negative coefficients, I, J. Math. Anal. Appl., 171 (1992), 1-13; II, J. Math. Anal. Appl., 192 (1995), 673-688.
[11] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principlal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge, 1927.
A.O.Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: adelaeg254@yahoo.com

