SOME SANDWICH RESULTS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT FUNCTIONS INVOLVING A GENERALIZED DIFFERENTIAL OPERATOR

M. K. AOUF, R. M. EL-ASHWAH, AHMED M. ABD-ELTAWAB

Abstract

In this paper, we obtain some applications of first order differential subordination, superordination and sandwich results for higher-order derivatives of p-valent functions involving a generalized differential operator. Some of our results improve and generalize previously known results.

1. Introduction

Let $H(U)$ be the class of analytic functions in the open unit disk $U=\{z \in \mathbb{C}$: $|z|<1\}$ and let $H[a, p]$ be the subclass of $H(U)$ consisting of functions of the form:

$$
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1} \ldots(a \in \mathbb{C} ; p \in \mathbb{N}=\{1,2, \ldots\})
$$

For simplicity $H[a]=H[a, 1]$. Also, let $\mathcal{A}(p)$ be the subclass of $H(U)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}) \tag{1}
\end{equation*}
$$

which are p-valent in U. We write $\mathcal{A}(1)=\mathcal{A}$.
If $f, g \in H(U)$, we say that f is subordinate to g or g is superordinate to f, written $f(z) \prec g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=$ $g(w(z)), z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence, (cf., e.g., [10], [17] and [18]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

Let $\phi: \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and h be univalent function in U. If β is analytic function in U and satisfies the first order differential subordination:

$$
\begin{equation*}
\phi\left(\beta(z), z \beta^{\prime}(z) ; z\right) \prec h(z) \tag{2}
\end{equation*}
$$

[^0]then β is a solution of the differential subordination (2). The univalent function q is called a dominant of the solutions of the differential subordination (2) if $\beta(z) \prec q(z)$ for all β satisfying (2). A univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants of (2) is called the best dominant. If β and ϕ are univalent functions in U and if satisfies first order differential superordination:
\[

$$
\begin{equation*}
h(z) \prec \phi\left(\beta(z), z \beta^{\prime}(z) ; z\right), \tag{3}
\end{equation*}
$$

\]

then β is a solution of the differential superordination (3). An analytic function q is called a subordinant of the solutions of the differential superordination (3) if $q(z) \prec \beta(z)$ for all β satisfying (3). A univalent subordinant \tilde{q} that satisfies $q(z) \prec \tilde{q}(z)$ for all subordinants of (3) is called the best subordinant.

Using the results of Miller and Mocanu [18], Bulboaca [9] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [10]. Ali et al. [1], have used the results of Bulboaca [9] to obtain sufficient conditions for normalized analytic functions $f \in \mathcal{A}$ to satisfy:

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent functions in U with $q_{1}(0)=q_{2}(0)=1$. Also, Tuneski [23] obtained a sufficient condition for starlikeness of $f \in \mathcal{A}$ in terms of the quantity $\frac{f^{\prime \prime}(z) f(z)}{\left(f^{\prime}(z)\right)^{2}}$. Recently, Shanmugam et al. [22] obtained sufficient conditions for the normalized analytic function $f \in \mathcal{A}$ to satisfy

$$
q_{1}(z) \prec \frac{f(z)}{z f^{\prime}(z)} \prec q_{2}(z)
$$

and

$$
q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{\{f(z)\}^{2}} \prec q_{2}(z)
$$

For functions $f \in \mathcal{A}(p)$ given by (1) and $g \in \mathcal{A}(p)$ given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k} \quad(p \in \mathbb{N}) \tag{4}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is given by

$$
\begin{equation*}
(f * g)(z)=z^{p}+_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{5}
\end{equation*}
$$

Upon differentiating both sides of (5) j-times with respect to z, we have

$$
\begin{equation*}
(f * g)^{(j)}(z)=\delta(p ; j) z^{p-j}+\sum_{k=p+1}^{\infty} \delta(k ; j) a_{k} b_{k} z^{k-j} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(p ; j)=\frac{p!}{(p-j)!} \quad\left(p>j ; p \in \mathbb{N} ; j \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{7}
\end{equation*}
$$

For functions $f, g \in \mathcal{A}(p)$, we define the linear operator $D_{\lambda, p}^{n}(f * g)^{(j)}: \mathcal{A}(p) \rightarrow$ $\mathcal{A}(p)$ by:

$$
D_{\lambda, p}^{0}(f * g)^{(j)}(z)=(f * g)^{(j)}(z)
$$

$$
\begin{aligned}
D_{\lambda, p}^{1}(f * g)^{(j)}(z) & =D_{\lambda, p}(f * g)^{(j)}(z) \\
& =(1-\lambda)(f * g)^{(j)}(z)+\frac{\lambda}{p-j} z\left((f * g)^{(j)}\right)^{\prime}(z) \\
& =\delta(p ; j) z^{p-j}+\sum_{k=p+1}^{\infty}\left(\frac{p-j+\lambda(k-p)}{p-j}\right) \delta(k ; j) a_{k} b_{k} z^{k-j} \\
D_{\lambda, p}^{2}(f * g)^{(j)}(z) & =D\left(D_{p}^{1}(f * g)^{(j)}(z)\right) \\
& =\delta(p ; j) z^{p-j}+\sum_{k=p+1}^{\infty}\left(\frac{p-j+\lambda(k-p)}{p-j}\right)^{2} \delta(k ; j) a_{k} b_{k} z^{k-j}
\end{aligned}
$$

and (in general)

$$
\begin{align*}
D_{\lambda, p}^{n}(f * g)^{(j)}(z)= & D\left(D_{p}^{n-1}(f * g)^{(j)}(z)\right) \\
= & \delta(p ; j) z^{p-j}+\sum_{k=p+1}^{\infty}\left(\frac{p-j+\lambda(k-p)}{p-j}\right)^{n} \delta(k ; j) a_{k} b_{k} z^{k-j} \\
& \left(\lambda \geq 0 ; p>j ; p \in \mathbb{N} ; j, n \in \mathbb{N}_{0} ; z \in U\right) \tag{8}
\end{align*}
$$

From (8), we can easily deduce that

$$
\begin{align*}
\frac{\lambda z}{p-j}\left(D_{\lambda, p}^{n}(f * g)^{(j)}(z)\right)^{\prime}= & D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)-(1-\lambda) D_{\lambda, p}^{n}(f * g)^{(j)}(z) \\
& \left(\lambda>0 ; p>j ; p \in \mathbb{N} ; n, j \in \mathbb{N}_{0} ; z \in U\right) \tag{9}
\end{align*}
$$

We observe that the linear operator $D_{\lambda, p}^{n}(f * g)^{(j)}(z)$ reduces to several interesting many other linear operators considered earlier for different choices of j, n, λ and the function g :
(i) For $j=0, D_{\lambda, p}^{n}(f * g)^{(0)}(z)=D_{\lambda, p}^{n}(f * g)(z)$, where the operator $D_{\lambda, p}^{n}(f * g)$ $\left(\lambda \geq 0, p \in \mathbb{N}, n \in \mathbb{N}_{0}\right.$) was introduced and studied by Selvaraj et al. [21] (see also [8]) and $D_{\lambda, 1}^{n}(f * g)(z)=D_{\lambda}^{n}(f * g)(z)$, where the operator $D_{\lambda}^{n}(f * g)$ was introduced by Aouf and Mostafa [6];
(ii) For

$$
\begin{equation*}
g(z)=\frac{z^{p}}{1-z}(p \in \mathbb{N} ; z \in U) \tag{10}
\end{equation*}
$$

we have $D_{\lambda, p}^{n}(f * g)^{(j)}(z)=D_{\lambda, p}^{n} f^{(j)}(z), D_{\lambda, p}^{n} f^{(0)}(z)=D_{\lambda, p}^{n} f(z)$, where the operator $D_{\lambda, p}^{n}$ is the p-valent Al-Oboudi operator which was introduced by El-Ashwah and Aouf [13], $D_{1, p}^{n} f^{(j)}(z)=D_{p}^{n} f^{(j)}(z)$, where the operator $D_{p}^{n} f^{(j)}\left(p>j, p \in \mathbb{N}, n, j \in \mathbb{N}_{0}\right)$ was introduced and studied by Aouf [[3], [4]] (see also [7]) and $D_{1, p}^{n} f^{(0)}(z)=D_{p}^{n} f(z)$, where the operator D_{p}^{n} is the p-valent Sălăgean operator which was introduced and studied by Kamali and Orhan [14] (see also [5]);
(iii) For

$$
\begin{equation*}
g(z)=z^{p}+{ }_{k=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{k-p} \ldots\left(\alpha_{q}\right)_{k-p}}{\left(\beta_{1}\right)_{k-p} \cdots\left(\beta_{s}\right)_{k-p}} \frac{z^{k}}{(1)_{k-p}} \quad(z \in U) \tag{11}
\end{equation*}
$$

(for complex parameters $\alpha_{1}, \ldots, \alpha_{q}$ and $\beta_{1}, \ldots, \beta_{s}\left(\beta_{j} \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}, j=\right.$ $\left.1, \ldots, s) ; q \leq s+1 ; p \in \mathbb{N} ; q, s \in \mathbb{N}_{0}\right)$ where $(\nu)_{k}$ is the Pochhammer symbol defined in terms to the Gamma function Γ, by

$$
(\nu)_{k}=\frac{\Gamma(\nu+k)}{\Gamma(\nu)}= \begin{cases}1, & (k=0) \\ \nu(\nu+1)(\nu+2) \ldots(\nu+k-1), & (k \in \mathbb{N})\end{cases}
$$

we have $D_{\lambda, p}^{n}(f * g)^{(j)}(z)=D_{\lambda, p}^{n}\left(H_{p, q, s}\left(\alpha_{1}\right) f\right)^{(j)}(z)$ and $D_{\lambda, p}^{0}(f * g)^{(0)}(z)=H_{p, q, s}\left(\alpha_{1}\right) f(z)$, where the operator $H_{p, q, s}\left(\alpha_{1}\right)=H_{p, q, s}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)$ is the Dziok-Srivastava operator which was introduced and studied by Dziok and Srivastava [12] and which contains in turn many interesting operators;
(iv) For

$$
\begin{align*}
g(z)= & z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{p+l+\alpha(k-p)}{p+l}\right)^{m} z^{k} \tag{12}\\
& \left(\alpha \geq 0 ; l \geq 0 ; p \in \mathbb{N} ; m \in \mathbb{N}_{0} ; z \in U\right)
\end{align*}
$$

we have $D_{\lambda, p}^{n}(f * g)^{(j)}(z)=D_{\lambda, p}^{n}\left(I_{p}(m, \alpha, l) f\right)^{(j)}(z)$ and $D_{\lambda, p}^{0}(f * g)^{(0)}(z)=I_{p}(m, \alpha, l) f(z)$, where the operator $I_{p}(m, \alpha, l)$ was introduced and studied by Cătas [11] and which contains in turn many interesting operators such as, $I_{p}(m, 1, l)=I_{p}(m, l)$, where the operator $I_{p}(m, l)$ was investigated by Kumar et al. [15];
(v) For

$$
\begin{align*}
g(z)= & z^{p}+\frac{\Gamma(p+\alpha+\beta)}{\Gamma(p+\beta)}_{k=p+1}^{\infty} \frac{\Gamma(k+\beta)}{\Gamma(k+\alpha+\beta)} z^{k} \tag{13}\\
& (\alpha \geq 0 ; p \in \mathbb{N} ; \beta>-1 ; z \in U)
\end{align*}
$$

we have $D_{\lambda, p}^{n}(f * g)^{(j)}(z)=D_{\lambda, p}^{n}\left(Q_{\beta, p}^{\alpha} f\right)^{(j)}(z)$ and $D_{\lambda, p}^{0}(f * g)^{(0)}(z)=Q_{\beta, p}^{\alpha} f(z)$, where the operator $Q_{\beta, p}^{\alpha}$ was introduced and studied by Liu and Owa [16];
(vi) For $j=0$ and g of the form (11) with $p=1$, we have $D_{\lambda, 1}^{n}(f * g)(z)=$ $D_{\lambda}^{n}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)(z)$, where the operator $D_{\lambda}^{n}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{s}\right)$ was introduced and studied by Selvaraj and Karthikeyan [20];
(vii) For $j=0, p=1$ and

$$
\begin{align*}
g(z)= & z+_{k=2}^{\infty}\left[\frac{\Gamma(k+1) \Gamma(2-m)}{\Gamma(k+1-m)}\right]^{n} z^{k} \tag{14}\\
& \left(n \in \mathbb{N}_{0} ; 0 \leq m<1 ; z \in U\right)
\end{align*}
$$

we have $D_{\lambda, 1}^{n}(f * g)(z)=D_{\lambda}^{n, m} f(z)$, where the operator $D_{\lambda}^{n, m}$ was introduced and studied by Al-Oboudi and Al-Amoudi [2].

In this paper, we will derive several subordination, superordination and sandwich results involving the operator $D_{\lambda, p}^{n}(f * g)^{(j)}$.

2. Definitions and preliminaries

In order to prove our results, we need the following definition and lemmas.

Definition 2.1 [18]. Denote by Q, the set of all functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Lemma 2.1 [22]. Let q be univalent function in U with $q(0)=1$. Let $\gamma_{i} \in$ $\mathbb{C}(i=1,2), \gamma_{2} \neq 0$, further assume that

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\Re\left(\frac{\gamma_{1}}{\gamma_{2}}\right)\right\} \tag{15}
\end{equation*}
$$

If β is analytic function in U, and

$$
\gamma_{1} \beta(z)+\gamma_{2} z \beta^{\prime}(z) \prec \gamma_{1} q(z)+\gamma_{2} z q^{\prime}(z)
$$

then $\beta \prec q$ and q is the best dominant.
Lemma 2.2 [22]. Let q be convex univalent function in $U, q(0)=1$. Let $\gamma_{i} \in \mathbb{C}(i=1,2), \gamma_{2} \neq 0$ and $\Re\left(\frac{\gamma_{1}}{\gamma_{2}}\right)>0$. If $\beta \in H[q(0), 1] \cap Q, \gamma_{1} \beta(z)+\gamma_{2} z \beta^{\prime}(z)$ is univalent in U and

$$
\begin{equation*}
\gamma_{1} q(z)+\gamma_{2} z q^{\prime}(z) \prec \gamma_{1} \beta(z)+\gamma_{2} z \beta^{\prime}(z) \tag{16}
\end{equation*}
$$

then $q \prec \beta$ and q is the best subordinant.

3. Subordination Resuts

Unless otherwise mentioned, we assume throughout this paper that $\gamma \in \mathbb{C}^{*}=$ $\mathbb{C} \backslash\{0\}, \lambda \geq 0, p>j, p \in \mathbb{N}, n, j \in \mathbb{N}_{0}$ and $\delta(p ; j)$ is given by (7).

Theorem 3.1. Let q be univalent in U with $q(0)=1$ and assume that

$$
\begin{equation*}
\Re\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\Re\left(\frac{1}{\gamma}\right)\right\} . \tag{17}
\end{equation*}
$$

If $f \in \mathcal{A}(p)$ satisfy the following subordination condition:

$$
\begin{align*}
& \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\} \\
\prec & q(z)+\gamma z q^{\prime}(z), \tag{18}
\end{align*}
$$

then

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \prec q(z)
$$

and q is the best dominant.
Proof. Define a function β by

$$
\begin{equation*}
\beta(z)=\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \quad(z \in U) \tag{19}
\end{equation*}
$$

Then the function β is analytic in U and $\beta(0)=1$. Therefore, differentiating (19) logarithmically with respect to z and using the identity (9) in the resulting equation, we have

$$
\begin{aligned}
& \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\} \\
= & \beta(z)+\gamma z \beta^{\prime}(z),
\end{aligned}
$$

that is,

$$
\beta(z)+\gamma z \beta^{\prime}(z) \prec q(z)+\gamma z q^{\prime}(z) .
$$

Therefore, Theorem 3.1 now follows by applying Lemma 2.1.
Putting $q(z)=\frac{1+A z}{1+B z}$ in Theorem 3.1, it easy to check that the assumption (17) holds whenever $-1 \leq B<A \leq 1$, hence we obtain the following corollary.

Corollary 3.1. Let $-1 \leq B<A \leq 1$ and assume that

$$
\Re\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0,-\Re\left(\frac{1}{\gamma}\right)\right\}
$$

If $f \in \mathcal{A}(p)$ satisfy the following subordination condition:

$$
\begin{aligned}
& \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\} \\
\prec & \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}}
\end{aligned}
$$

then

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \prec \frac{1+A z}{1+B z}
$$

and the function $\frac{1+A z}{1+B z}$ is the best dominant.
Taking $g=\frac{z^{p}}{1-z}$ in Theorem 3.1, we obtain the following corollary.
Corollary 3.2. Let q be univalent in U with $q(0)=1$ and assume that (17) holds. If $f \in \mathcal{A}(p)$ satisfies the following subordination condition:

$$
\begin{aligned}
& \frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n} f^{(j)}(z) D_{\lambda, p}^{n+2} f^{(j)}(z)}{\left[D_{\lambda, p}^{n+1} f^{(j)}(z)\right]^{2}}\right\} \\
\prec & q(z)+\gamma z q^{\prime}(z),
\end{aligned}
$$

then

$$
\frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)} \prec q(z)
$$

and q is the best dominant.
Remark 3.1. Taking $\lambda=1$ in Corollary 3.2, we obtain the result obtained by Aouf and Seoudy [[7], Theorem 1].

Taking $p=\lambda=1, j=0$ and $g=\frac{z}{1-z}$ in Theorem 3.1, we obtain the following corollary which improves the result obtained by Shanmugam et al. [[22], Theorem 5.1] and also obtained by Nechita [[19], Corollary 7].

Corollary 3.3. Let q be univalent in U with $q(0)=1$ and assume that (17) holds. If $f \in \mathcal{A}$ satisfies the following subordination condition:

$$
\frac{D^{n} f(z)}{D^{n+1} f(z)}+\gamma\left\{1-\frac{D^{n} f(z) D^{n+2} f(z)}{\left[D^{n+1} f(z)\right]^{2}}\right\} \prec q(z)+\gamma z q^{\prime}(z)
$$

then

$$
\frac{D^{n} f(z)}{D^{n+1} f(z)} \prec q(z)
$$

and q is the best dominant.
Remark 3.2. Taking $n=0$ in Corollary 3.3 , we obtain the result obtained by Shanmugam et al. [[22], Theorem 3.1].

4. SUPERORDINATION RESULTS

Now, by appealing to Lemma 2.2 it can be easily prove the following theorem.
Theorem 4.1. Let q be convex univalent in U with $q(0)=1$ and $\Re\left(\frac{1}{\gamma}\right)>0$. If $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \in H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and the following superordination condition

$$
\begin{aligned}
& q(z)+\gamma z q^{\prime}(z) \\
\prec & \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
\end{aligned}
$$

holds, then

$$
q(z) \prec \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}
$$

and q is the best subordinant.
Taking $q(z)=\frac{1+A z}{1+B z}(-1 \leq B<A \leq 1)$ in Theorem 4.1, we have the following corollary.

Corollary 4.1. Let $\Re\left(\frac{1}{\gamma}\right)>0$ and $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \in$ $H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and the following superordination condition

$$
\begin{aligned}
& \frac{1+A z}{1+B z}+\gamma \frac{(A-B) z}{(1+B z)^{2}} \\
\prec & \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
\end{aligned}
$$

holds, then

$$
\frac{1+A z}{1+B z} \prec \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}
$$

and $\frac{1+A z}{1+B z}$ is the best subordinant.
Taking $g=\frac{z^{p}}{1-z}$ in Theorem 4.1, we obtain the following corollary.
Corollary 4.2.Let q be convex univalent in U with $q(0)=1$ and $\Re\left(\frac{1}{\gamma}\right)>0$. If $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)} \in H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n} f^{(j)}(z) D_{\lambda, p}^{n+2} f^{(j)}(z)}{\left[D_{\lambda, p}^{n+1} f^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and the following superordination condition

$$
\begin{aligned}
& q(z)+\gamma z q^{\prime}(z) \\
\prec & \frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n} f^{(j)}(z) D_{\lambda, p}^{n+2} f^{(j)}(z)}{\left[D_{\lambda, p}^{n+1} f^{(j)}(z)\right]^{2}}\right\}
\end{aligned}
$$

holds, then

$$
q(z) \prec \frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}
$$

and q is the best subordinant.
Remark 4.1. Taking $\lambda=1$ in Corollary 4.2, we obtain the result obtained by Aouf and Seoudy [[7], Theorem 2].

Taking $p=\lambda=1, j=0$ and $g=\frac{z}{1-z}$ in Theorem 4.1, we obtain the following result which improves the result obtained by Shanmugam et al. [[22], Theorem 5.2] and also obtained by Nechita [[19], Corollary 12].

Corollary 4.3. Let q be convex univalent in U with $q(0)=1$ and $\Re\left(\frac{1}{\gamma}\right)>0$. If $f \in \mathcal{A}$ such that $\frac{D^{n} f(z)}{D^{n+1} f(z)} \in H[q(0), 1] \cap Q$,

$$
\frac{D^{n} f(z)}{D^{n+1} f(z)}+\gamma\left\{1-\frac{D^{n} f(z) \cdot D^{n+2} f(z)}{\left[D^{n+1} f(z)\right]^{2}}\right\}
$$

is univalent in U and the following superordination condition

$$
q(z)+\gamma z q^{\prime}(z) \prec \frac{D^{n} f(z)}{D^{n+1} f(z)}+\gamma\left\{1-\frac{D^{n} f(z) \cdot D^{n+2} f(z)}{\left[D^{n+1} f(z)\right]^{2}}\right\}
$$

holds, then

$$
q(z) \prec \frac{D^{n} f(z)}{D^{n+1} f(z)}
$$

and q is the best subordinant.
Remark 4.2. Taking $n=0$ in Corollary 4.3, we obtain the result obtained by Shanmugam et al. [[22], Theorem 3.2].

5. SANDWICH RESUTS

Combining Theorem 3.1 and Theorem 4.1, we get the following sandwich theorem for the linear operator $D_{\lambda, p}^{n}(f * g)^{(j)}$.

Theorem 5.1. Let q_{1} be convex univalent in U with $q_{1}(0)=1, \Re\left(\frac{1}{\gamma}\right)>0$, q_{2} be univalent in U with $q_{2}(0)=1$ and satisfies (17). If $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \in H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and

$$
\begin{aligned}
& q_{1}(z)+\gamma z q_{1}^{\prime}(z) \\
\prec & \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\} \\
\prec & q_{2}(z)+\gamma z q_{2}^{\prime}(z)
\end{aligned}
$$

holds, then

$$
q_{1}(z) \prec \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \prec q_{2}(z)
$$

and q_{1} and q_{2} are, respectively, the best subordinant and the best dominant.
Taking $q_{i}(z)=\frac{1+A_{i} z}{1+B_{i} z}\left(i=1,2 ;-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1\right)$ in Theorem 5.1, we obtain the following corollary.

Corollary 5.1. Let $\Re\left(\frac{1}{\gamma}\right)>0$ and $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \in$ $H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and

$$
\begin{aligned}
& \frac{1+A_{1} z}{1+B_{1} z}+\gamma \frac{\left(A_{1}-B_{1}\right) z}{\left(1+B_{1} z\right)^{2}} \\
\prec & \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z) D_{\lambda, p}^{n+2}(f * g)^{(j)}(z)}{\left[D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)\right]^{2}}\right\} \\
\prec & \frac{1+A_{2} z}{1+B_{2} z}+\gamma \frac{\left(A_{2}-B_{2}\right) z}{\left(1+B_{2} z\right)^{2}}
\end{aligned}
$$

holds, then

$$
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{D_{\lambda, p}^{n}(f * g)^{(j)}(z)}{D_{\lambda, p}^{n+1}(f * g)^{(j)}(z)} \prec \frac{1+A_{2} z}{1+B_{2} z}
$$

$\frac{1+A_{1} z}{1+B_{1} z}$ and $\frac{1+A_{2} z}{1+B_{2} z}$ are, respectively, the best subordinant and the best dominant.
Taking $g=\frac{z^{p}}{1-z}$ in Theorem 5.1, we obtain the following corollary.
Corollary 5.2. Let q_{1} be convex univalent in U with $q_{1}(0)=1, \Re\left(\frac{1}{\gamma}\right)>0$, q_{2} be univalent in U with $q_{2}(0)=1$ and satisfies (17). If $f \in \mathcal{A}(p)$ such that $\frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)} \in H[q(0), 1] \cap Q$,

$$
\frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n} f^{(j)}(z) D_{\lambda, p}^{n+2} f^{(j)}(z)}{\left[D_{\lambda, p}^{n+1} f^{(j)}(z)\right]^{2}}\right\}
$$

is univalent in U and

$$
\begin{aligned}
& q_{1}(z)+\gamma z q_{1}^{\prime}(z) \\
\prec & \frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)}+\gamma \frac{(p-j)}{\lambda}\left\{1-\frac{D_{\lambda, p}^{n} f^{(j)}(z) D_{\lambda, p}^{n+2} f^{(j)}(z)}{\left[D_{\lambda, p}^{n+1} f^{(j)}(z)\right]^{2}}\right\} \\
\prec & q_{2}(z)+\gamma z q_{2}^{\prime}(z)
\end{aligned}
$$

holds, then

$$
q_{1}(z) \prec \frac{D_{\lambda, p}^{n} f^{(j)}(z)}{D_{\lambda, p}^{n+1} f^{(j)}(z)} \prec q_{2}(z),
$$

q_{1} and q_{2} are, respectively, the best subordinant and the best dominant.
Remark 5.1. Taking $\lambda=1$ in Corollary 5.2, we obtain the sandwich result obtained by Aouf and Seoudy [[7], Theorem 3].

Taking $p=\lambda=1, j=0$ and $g=\frac{z}{1-z}$ in Theorem 5.1, we obtain the following sandwich result which improves the result obtained by Shanmugam et al. [[22], Theorem 5.3].

Corollary 5.3. Let q_{1} be convex univalent in U with $q_{1}(0)=1$, $\Re\left(\frac{1}{\gamma}\right)>0, q_{2}$ be univalent in U with $q_{2}(0)=1$ and satisfies (17). If $f \in \mathcal{A}$ such that $\frac{D^{n} f(z)}{D^{n+1} f(z)} \in$ $H[q(0), 1] \cap Q$,

$$
\frac{D^{n} f(z)}{D^{n+1} f(z)}+\gamma\left\{1-\frac{D^{n} f(z) \cdot D^{n+2} f(z)}{\left[D^{n+1} f(z)\right]^{2}}\right\}
$$

is univalent in U and

$$
q_{1}(z)+\gamma z q_{1}^{\prime}(z) \prec \frac{D^{n} f(z)}{D^{n+1} f(z)}+\gamma\left\{1-\frac{D^{n} f(z) \cdot D^{n+2} f(z)}{\left[D^{n+1} f(z)\right]^{2}}\right\} \prec q_{2}(z)+\gamma z q_{2}^{\prime}(z)
$$

holds, then

$$
q_{1}(z) \prec \frac{D^{n} f(z)}{D^{n+1} f(z)} \prec q_{2}(z),
$$

q_{1} and $q_{2}(z)$ are, respectively, the best subordinant and the best dominant.
Remark 5.2. Taking $n=0$ in Corollary 5.3, we obtain the sandwich result obtained by Shanmugam et al. [[22], Corollary 3.3].

References

[1] R. M. Ali, V. Ravichandran and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15 (2004), no. 1, 87-94.
[2] F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339 (2008), 655-667.
[3] M. K. Aouf, Generalization of certain subclasses of multivalent functions with negative coefficients defined by using a differential operator, Math. Comput. Modelling, 50(2009), no. 9-10, 1367-1378.
[4] M. K. Aouf, On certain multivalent functions with negative coefficients defined by using a differential operator, Indian J. Math., 51 (2009), no. 2, 433-451.
[5] M. K. Aouf and A. O. Mostafa, On a subclass of $n-p$-valent prestarlike functions, Comput. Math. Appl., 55 (2008), no. 4, 851-861.
[6] M. K. Aouf and A. O. Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, 21 (2010), 7-20.
[7] M. K. Aouf and T. M. Seoudy, Sandwich theorems for higher-order derivatives of p-valent functions defined by certain linear operator, Bull. Korean Math. Soc., 48 (2011), no. 3, 627636.
[8] M. K. Aouf, A. Shamandy, A. O. Mostafa and F. Z. El-Emam, On sandwich theorems for multivalent functions involving a generalized differential operator, Comput. Math. Appl., 61 (2011), 2578-2587.
[9] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35 (2002), no. 2, 287-292.
[10] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[11] A. Cãtaş, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the Internat. Symposium on Geomtric Function Theory and Appls., Istanbul, Turkey, August 2007, 241-250.
[12] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[13] R. M. El-Ashwah and M. K. Aouf, Inclusion and neighborhood properties of some analytic p-valent functions, General. Math., 18 (2010), no. 2, 183-194.
[14] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41 (2004), no. 1, 53-71.
[15] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation, Kyungpook Math. J., 46 (2006), 97-109.
[16] J.-L. Liu and S. Owa, Properties of certain integral operators, Internat. J. Math. Math. Sci., 3 (2004), no. 1, 69-75.
[17] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[18] S. S. Miller and P. T. Mocanu, Subordinates of differential superordinations, Complex Variables, 48 (2003), no. 10, 815-826.
[19] V. O. Nechita, Differential subordinations and superordinations for analytic functions defined by the generalized Sălăgean derivative, Acta Univ. Apulensis, 16(2008), 143-156.
[20] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci., 29 (2008), no. 2, 419-430.
[21] C. Selvaraj and K. A. Selvakumaran, On certain classes of multivalent functions involving a generalized differential operator, Bull. Korean Math. Soc., 46 (2009), no. 5, 905-915.
[22] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differantial sandwich theorems for some subclasses of analytic functions, J. Austr.Math. Anal. Appl., 3 (2006), no. 1, Art. 8, 1-11.
[23] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. Math. Sci., 23 (2000), no. 8, 521-527.
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

E-mail address: mkaouf127@yahoo.com
R. M. El-Ashwah, Department of Mathematics, Faculty of Science, Damietta UniverSity, New Damietta 34517, Egypt

E-mail address: r_elashwah@yahoo.com
Ahmed M. Abd-Eltawab, Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, EGypt

E-mail address: ams03@fayoum.edu.eg

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic function, Hadamard product, differential subordination, superordination, sandwich theorems, linear operator.

