MAJORIZATION PROPERTIES FOR CERTAIN CLASSES OF MEROMORPHIC P-VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATOR

E. E. ALI

Abstract

The object of the present paper is to investigate the majorization properties of certain classes of meromorphic p-valent functions defined by integral operator.

1. Introduction

Let $f(z)$ and $g(z)$ be analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. For analytic function $f(z)$ and $g(z)$ in U, we say that $f(z)$ is majorized by $g(z)$ in U (see [8]) and write

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in U), \tag{1}
\end{equation*}
$$

if there exists a function $\varphi(z)$, analytic in U such that

$$
\begin{equation*}
|\varphi(z)| \leq 1 \quad \text { and } \quad f(z)=\varphi(z) g(z) \quad(z \in U) . \tag{2}
\end{equation*}
$$

It may be noted that (1) is closely related to the concept of quasi-subordination between analytic functions.

If $f(z)$ and $g(z)$ are analytic functions in U, we say that $f(z)$ is subordinate to $g(z)$, written symbolically as $f(z) \prec g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in U$. Furthermore, if the function $g(z)$ is univalent in U, then we have the following equivalence, (see [9, p.4]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

Let $\Sigma_{p, n}$ denote the class of meromorphic multivalent functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} z^{k}, \quad(n>-p ; p, n \in \mathbb{N}=\{1,2, \ldots \ldots\}) \tag{3}
\end{equation*}
$$

[^0]which are analytic in the open punctured unit disc $U^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}=U \backslash\{0\}$. Let $g(z) \in \Sigma_{p, n}$, be given by
$$
g(z)=z^{-p}+\sum_{k=n}^{\infty} b_{k} z^{k}
$$
the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is given by
\[

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{4}
\end{equation*}
$$

\]

For $p \in \mathbb{N}, \alpha>0, \lambda \geq 0$ and $f \in \Sigma_{p, n}$ given by (1), El-Ashwah and Aouf [5] defined the integral operator $J_{p, \alpha}^{\lambda}$ as follows:

$$
\begin{equation*}
J_{p, \alpha}^{\lambda} f(z)=z^{-p}+\sum_{k=n}^{\infty}\left(\frac{\alpha}{k+p+\alpha}\right)^{\lambda} a_{k} z^{k} \quad(\alpha>0 ; \lambda \geq 0 ; p, n \in \mathbb{N}) \tag{5}
\end{equation*}
$$

From (5), it is easy to verify that (see [5]),

$$
\begin{equation*}
z\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}=\alpha J_{p, \alpha}^{\lambda-1} f(z)-(\alpha+p) J_{p, \alpha}^{\lambda} f(z) \quad(\lambda \geq 1) \tag{6}
\end{equation*}
$$

We note that
(i) For $n=0$ and $\alpha=1, J_{p, 1}^{\lambda} f(z)=P_{p}^{\lambda} f(z) \quad$ (Aqlan et al. [4]);
(ii) $J_{1,1}^{m} f(z)=J^{m} f(z) \quad$ (Uralagaddi and Somanatha [11]);
(iii) $J_{1, \alpha}^{\lambda} f(z)=P_{\alpha}^{\lambda} f(z)(\alpha>0, \lambda>0) \quad$ (Lashin [7]);
(iv) $J_{1, \alpha}^{1} f(z)=J_{\alpha} f(z)=\frac{1}{z}+\sum_{k=1}^{\infty}\left(\frac{\alpha}{k+1+\alpha}\right) a_{k} z^{k} \quad(\alpha>0)$.

A function $f(z) \in \Sigma_{p, n}$ is said to be in the class $\Sigma_{p, n}^{\lambda, j}(\gamma)$ of meromorphic multivalent functions of complex order $\gamma \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ in U, if and only if

$$
\begin{gather*}
\operatorname{Re}\left\{1-\frac{1}{\gamma}\left(\frac{z\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}}{\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}}+j+p\right)\right\}>0 \\
\left(p \in \mathbb{N} ; j \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; \alpha>0 ; \lambda \geq 0 ; \gamma \in \mathbb{C}^{*} ; z \in U\right) \tag{7}
\end{gather*}
$$

Clearly, we have the following relationships:

$$
\begin{aligned}
(i) \Sigma_{p, n}^{0,0}(\gamma) & =\Sigma_{p, n}(\gamma) \quad\left(\gamma \in \mathbb{C}^{*}\right) \\
(i i) \Sigma_{p, n}^{0,0}(p-\alpha) & =\Sigma_{p, n}^{*}(\alpha) \quad(0 \leq \alpha<p)
\end{aligned}
$$

Also we note that

$$
\Sigma_{p, n}^{*}(\alpha) \subseteq \Sigma_{p, n}^{*}(0)=\Sigma_{p, n}^{*} \quad(0 \leq \alpha<p)
$$

The classes $\Sigma_{p, n}(\gamma)$ and $\Sigma_{p, n}^{*}(\alpha)$ are said to be classes of meromorphic starlike p-valent functions of complex order γ and meromorphic convex p-valent functions of order $\alpha(0 \leq \alpha<p)$ in U^{*} see Aouf ([2] and [3]).

Definition 1. Let $-1 \leq B<A \leq 1, p \in \mathbb{N}, j \in \mathbb{N}_{0}, \gamma \in \mathbb{C}^{*},|\gamma(A-B)+(j+p) B|<$ $(j+p), f \in \Sigma_{p, n}$. Then $f \in \Sigma_{p, n}^{\lambda, j}(\gamma ; A, B)$, the class of meromorphic multivalent
functions of complex order γ in U^{*} if and only if

$$
\begin{equation*}
\left\{1-\frac{1}{\gamma}\left(\frac{z\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}}{\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}}+j+p\right)\right\} \prec \frac{1+A z}{1+B z} . \tag{8}
\end{equation*}
$$

We note that $\Sigma_{1,1}^{\lambda, j}(\gamma ; 1,-1)=\Sigma^{\lambda, j}(\gamma)($ see $[6])$.
A majorization problem for the subclasses of analytic function has recently been investigated by Altintas et al. [1] and MacGregor [8]. In this paper we investigate majorization problem for the class $\Sigma_{p, n}^{\lambda, j}(\gamma ; A, B)$ and some related subclasses.

2. Main Results

Unless otherwise mentioned we shall assume throughout the paper that, $-1 \leq$ $B<A \leq 1, \gamma \in \mathbb{C}^{*}, \alpha>0, \lambda \geq 0, p \in \mathbb{N}$ and $j \in \mathbb{N}_{0}$.
Theorem 1. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}^{\lambda, j}(\gamma ; A, B)$. If $\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}$ is majorized by $\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}$ in U^{*}, then

$$
\begin{equation*}
\left|\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}\right| \leq\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}\right| \quad\left(|z|<r_{0}\right) \tag{9}
\end{equation*}
$$

where $r_{0}=r_{0}(p, \gamma, j, A, B)$ is the smallest positive root of the equation

$$
\begin{gather*}
|\gamma(A-B)+(j+p) B| r^{3}-[2|B|+(j+p)] r^{2}- \\
\quad[2+|\gamma(A-B)+(j+p) B|] r+(j+p)=0 \tag{10}
\end{gather*}
$$

Proof. Since $g(z) \in \Sigma_{p, n}^{\lambda, j}(\gamma ; A, B)$, we find from (8) that

$$
\begin{equation*}
1-\frac{1}{\gamma}\left(\frac{z\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}}{\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}}+j+p\right)=\frac{1+A w(z)}{1+B w(z)} \tag{11}
\end{equation*}
$$

where w is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$. From (11), we have

$$
\begin{equation*}
\frac{z\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}}{\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}}=-\frac{(j+p)+[\gamma(A-B)+(j+p) B] w(z)}{1+B w(z)} \tag{12}
\end{equation*}
$$

From (12), we have

$$
\begin{equation*}
\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}\right| \leq \frac{(1+|B||z|)|z|}{(j+p)-|\gamma(A-B)+(j+p) B||z|}\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}\right| . \tag{13}
\end{equation*}
$$

Next, since $\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}$ is majorized by $\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}$ in U, from (2), we have

$$
\begin{equation*}
\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}=\varphi(z)\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)} \tag{14}
\end{equation*}
$$

Differentiating (14) with respect to z, we have

$$
\begin{equation*}
\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}=\varphi^{\prime}(z)\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}+\varphi(z)\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)} . \tag{15}
\end{equation*}
$$

Thus, by noting that $\varphi(z)$ satisfies the inequality (see [10]),

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(z \in U) \tag{16}
\end{equation*}
$$

using (13) and (16), in (15), we have

$$
\begin{align*}
& \left|\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}\right| \leq \\
& \quad\left(|\varphi(z)|+\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \cdot \frac{(1+|B||z|)|z|}{(j+p)-|\gamma(A-B)+(j+p) B||z|}\right)\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}\right|, \tag{17}
\end{align*}
$$

which upon setting

$$
|z|=r \quad \text { and } \quad|\varphi(z)|=\rho \quad(0 \leq \rho \leq 1)
$$

leads us to the inequality

$$
\begin{aligned}
& \left|\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}\right| \leq \\
& \\
& \quad \frac{\Theta(\rho)}{\left(1-r^{2}\right)((j+p)-|\gamma(A-B)+(j+p) B| r)}\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}\right|,
\end{aligned}
$$

where

$$
\begin{align*}
\Theta(\rho)= & -r(1+|B| r) \rho^{2}+\left(1-r^{2}\right)[(j+p)-|\gamma(A-B)+(j+p) B| r] \rho \\
& +r(1+|B| r), 18 \tag{1}
\end{align*}
$$

takes its maximum value at $\rho=1$, with $r_{0}=r_{0}(p, \gamma, j, A, B)$, where $r_{0}(p, \gamma, j, A, B)$ is the smallest positive root of (10). Therefore the function $\Phi(\rho)$ defined by

$$
\begin{align*}
\Phi(\rho)= & -\sigma(1+|B| \sigma) \rho^{2}+\left(1-\sigma^{2}\right)[(j+p)-|\gamma(A-B)+(j+p) B| \sigma] \rho \\
& +\sigma(1+|B| \sigma) 19 \tag{2}
\end{align*}
$$

is an increasing function on the interval $0 \leq \rho \leq 1$, so that

$$
\begin{align*}
\Phi(\rho) \leq & \Phi(1)=\left(1-\sigma^{2}\right)[(j+p)-|\gamma(A-B)+(j+p) B| \sigma] \\
& \left(0 \leq \rho \leq 1 ; 0 \leq \sigma \leq r_{0}(p, \gamma, j, A, B)\right) .20 \tag{3}
\end{align*}
$$

Hence upon setting $\rho=1$ in (19), we conclude that (9) holds true for $|z| \leq r_{0}=$ $r_{0}(p, \gamma, j, A, B)$, where $r_{0}(p, \gamma, j, A, B)$, is the smallest positive root of (10). This completes the proof of Theorem 1 .

Remark . Putting $p=1, n=0, A=1$ and $B=-1$ in Theorem 1, we obtain the result obtained by Goyal and Goswami [6, Theorem 2.1].

Putting $A=1$ and $B=-1$ in Theorem 1, we obtain the following result.
Corollary 1. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}^{\lambda, j}(\gamma)$. If $\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j)}$ is majorized by $\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j)}$ in U^{*}, then

$$
\left|\left(J_{p, \alpha}^{\lambda} f(z)\right)^{(j+1)}\right| \leq\left|\left(J_{p, \alpha}^{\lambda} g(z)\right)^{(j+1)}\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(p, \gamma, j)$ is given by

$$
\begin{equation*}
r_{0}=r_{0}(p, \gamma, j)=\frac{k-\sqrt{k^{2}-4(j+p)|2 \gamma-(j+p)|}}{2|2 \gamma-(j+p)|} \tag{21}
\end{equation*}
$$

where $k=2+(j+p)+|2 \gamma-(j+p)|$.

Putting $\lambda=0$ in Corollary 1, we obtain the following result
Corollary 2. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}^{, j}(\gamma)$. If $f^{(j)}(z)$ is majorized by $g^{(j)}(z)$ in U^{*}, then

$$
\left|f^{(j+1)}(z)\right| \leq\left|g^{(j+1)}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(p, \gamma, j)$ is given by (21).
Putting $\lambda=j=0, A=1$ and $B=-1$ in Theorem 1, we obtain the following result.
Corollary 3. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in U^{*}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(p, \gamma)$ is given by

$$
r_{0}=r_{0}(p ; \gamma)=\frac{k-\sqrt{k^{2}-4 p|2 \gamma-p|}}{2|2 \gamma-p|}
$$

where $k=2+p+|2 \gamma-p|$.
Putting $\gamma=p-\delta(0 \leq \delta<p)$ in Corollary 3 , we obtain the following result.
Corollary 4. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}^{*}(\delta)$. If $f(z)$ is majorized by $g(z)$ in U^{*}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where $r_{0}=r_{0}(p ; \gamma)$ is given by

$$
r_{0}=r_{0}(p ; \gamma)=\frac{k-\sqrt{k^{2}-4 p|p-2 \delta|}}{2|p-2 \delta|}
$$

where $k=2+p+|p-2 \delta|$.
Putting $\gamma=1$ in Corollary 3, we obtain the following result.
Corollary 5. Let the function $f \in \Sigma_{p, n}$ and suppose that $g \in \Sigma_{p, n}^{*}$. If $f(z)$ is majorized by $g(z)$ in U^{*}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z|<r_{0}\right)
$$

where r_{0} is given by

$$
r_{0}=r_{0}(p)=\frac{k-\sqrt{k^{2}-4 p|2-p|}}{2|2-p|}
$$

where $k=2+p+|2-p|$.

References

[1] O. Altintas, O. Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var., 46(2001), 207-218.
[2] M. K. Aouf, New criteria for multivalent meromorphic starlike functions of order Alpha, Proc. Japan Acad., Ser. A, Math. Sci., 69 (1993), 66-70.
[3] M. K. Aouf, A new criterion for meromorphically p-valent convex functions of order Alpha, Math. Sci. Research Hot-Line, 1 (1997), no. 8, 7-12.
[4] J. M. E. Aqlan , J. M. Jahargiri and S. R. Kulkarni, Certain integral operators applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003), 111-120.
[5] R. M. EL-Ashwah and M. K. Aouf, Application of differential subordinations on certain class of meromorphic p-valent functions associated with certain integral operator, Acta Univ. Apulensis, (To appear).
[6] S. P. Goyal and P. Goswami, Majorization for certain classes of meromorphic functions defined by integral operator, Anna. Univ. Mariae Curie-Sklodowska Lublin-Polonia Sect. A, 66(2012), no. 2, 57-62.
[7] A. Y. Lashin, On certain subclass of meromorphic functions associated with certain integral operators, Comput. Math. Appl., 59 (2010), no. 1, 524-531.
[8] T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.
[9] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York. and Basel, 2000.
[10] Z. Nehari, Conformal Mapping, MacGraw-Hill Book Company, New York, Toronto and London, 1952.
[11] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike functions. Bull. Austral. Math. Soc., 43(1991), 137-140.

Faculty of Science, Port Said University, Port Said, Egypt
E-mail address: ekram_008eg@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Meromorphic functions, p-valent, majorization, integral operator.

